
Introduction

The concept of constraint is central to a number of human activities. A constraint
limits the field of possibilities in a certain universe. For example, a school timetable
that coordinates students, teachers, lessons, rooms and time slots, must satisfy many
constraints. Typically, for each group of students, the objective is to fill up one sheet
such as the one shown1 in Figure 1. In each time slot, you have to indicate who the
teacher is, what the lesson is, and where it is located. Obviously, not all combinations
are possible, since the constraints are numerous and various:

– no teacher can teach more than one class at the same time;

– different classes cannot be taught in the same room at the same time;

– classes cannot be taught in rooms that are too small, and preferably should not
be taught in rooms that are much too big;

– some classes require specialized rooms such as science laboratories;

– some classes require consecutive periods in the same room with the same
teacher;

– some part-time teachers need to have certain entire days off;

– students cannot have too far to travel between consecutive classes.

Besides school timetabling, constraint satisfaction problems arise in many enterprise
and industrial tasks, ranging from scheduling to configuration, circuit design and
molecular biology.

Constraint programming (CP) is a general framework providing simple, general
and efficient models and algorithms for solving real-world and academic problems.
The appeal of constraint programming mainly relates to the clear distinction between,
on the one hand, its formalism, which facilitates the representation of various

1. All figures can be downloaded at http://www.iste.co.uk/Lecoutre/cn.zip

28 Constraint Networks

�����
�����
�����

�����
�����
�����

�����
�����
�����

�����
�����
�����

�����
�����
�����

�����
�����
�����

�����
�����
�����

�����
�����
�����

�����
�����
�����

�����
�����
�����

����������

�����������

�����������

�����������

	
��
� �����
� �������
� ������
� ����
�

����
�
���

����
�� �

�� ��
�����

�� 	� ��� �
!�
�
"�

. . .

�� 	�� #
�

.

Figure 1. The timetable assigned to a group of students. Filling timetable sheets is a constraint
satisfaction problem

problems by means of constraints, and, on the other hand, a vast range of algorithms
and heuristics to solve them. Practical use of this framework involves two main stages.
In the first of these, the user represents the problem abstractly by a constraint network,
which is a set of variables together with a set of constraints, and perhaps also one or
more objective functions. Ideally, this first stage is purely declarative, but in practice,
some limited form of programming may be required (using e.g. an object-oriented or
logic programming language). In the second stage, the problem represented by the
constraint network is tackled by an available software tool, known as a constraint
solver, that automatically obtains one solution, or all solutions, or an optimal solution,
to the given problem. A solution is an assignment of values to all variables such that
all constraints are satisfied.

A constraint network is a formulation of an instance of the constraint satisfaction
problem (CSP) which is at the core of constraint programming. In a discrete instance,
the domains, which are the sets of allowed values of variables, are finite. The discrete
constraint satisfaction problem is not known to admit polynomial running time
algorithms to solve its instances. More precisely, unless P = NP (which is very
unlikely to be the case), no such general algorithm can exist, since CSP is NP-hard2.
This means that the worst-case time complexity of any algorithm for solving CSP
instances is expected to be exponential. However, the worst case actually arises only

2. Complexity analysis is briefly introduced in Appendix A.2

Introduction 29

within a limited range of situations, and outside this range efficient algorithms are
already available. Efficiency is achieved by exploiting the structure of instances.

Although this book is focused on CSP, this problem or framework has many
derivatives, mainly extensions, as indicated in Figure 2: temporal CSP (TCSP),
weighted CSP (WCSP), valued CSP (VCSP), quantified CSP (QCSP), constraint
optimization problem (COP), Max-CSP, distributed CSP (DisCSP), etc. Quite often,
a concept or technique introduced for basic CSP has turned out to be relevant to its
extensions. For example, the concept of arc consistency has been applied to most of
these extensions.

����

���
������

	���

���

����

�
��
���

���

�������
�����������

�������

����������
����

��
������

�������� �����
����� !���
��
� "
��

��#� �����

��
�����

���$��
�
� �$
��
� ��
������

Figure 2. The CSP framework and some of its extensions

I. Toward simplicity of use

The ability to take heterogeneous constraints into account under a unifying
framework has contributed to growing commercial interest in constraint programming
since the 1990s. Modeling a problem may, however, turn out to be very difficult for the
uninitiated user, as, for example, the number of specific patterns of constraints, called
global constraints, may be unexpectedly large. In some cases, there is a need for
specialized expertise to take full advantage of the efficiency of available techniques
and algorithms.

A solver applies constraints so as to avoid exploring combinations of values that
cannot possibly belong to any solution. Ideally, the operation of a solver should be
totally transparent to the user: the user should not be aware of specific short-cuts
used by the solver. Unfortunately, this idyllic vision is not exactly correct in reality
because most of the currently available constraint toolkits require the user to guide
search, to select algorithms to filter the search space, to break symmetries, etc. As
pointed out by Puget [PUG 04], an important challenge for constraint programming is

30 Constraint Networks

to achieve greater simplicity of use: constraint programming should be made easier
for non-specialist users. Enhanced ease of use will boost the impact of constraint
programming on industry and academia, and will establish it more firmly as a key
software technology for solution of combinatorial problems.

To take up the “simplicity of use” challenge, there is a need for robust and efficient
solvers that users can regard as black-boxes. A black-box is a system such that the
user sees only its input and output data, while its internal structure or mechanism
remains invisible. This approach has recently been emphasized by some position
papers [PUG 04, GEN 06a] as well as the holding of constraint solver competitions3.
The black-box approach partially addresses the requirement for simplicity since the
user does not have to be aware of (or modify or extend) embedded techniques and
algorithms. However, a black-box constraint solver must have a default configuration
that in most cases yields the best behavior that could be obtained by fine tuning of
available options. This can be achieved by making the solver robust.

A solver is robust when it is able to produce similar results, consuming similar
resources (time and space), given different but equivalent models of the same
problem. It is important to note that the user of an ideally robust solver does not need
to provide carefully chosen constraint network models. Robustness compensates for
bad modeling by providing sophisticated solving techniques. Some of these certainly
remain to be invented, but others are presented in this book: inferences from strong
consistencies, adaptive heuristics, nogood recording, automatic symmetry breaking,
state-based search, etc. These techniques enable a particularly clever exploration
of the search space, learning much useful information before or during search so
as to avoid exploring fruitless combinations of values of variables. Given different
formulations of the same CSP instance, advanced learning and inference techniques
reduce behavior disparities by increasing the efficiency of the solver. Thus robustness
and efficiency are intimately interrelated.

II. Conceptual simplicity of techniques and algorithms

Robust and efficient black-box solvers are intended to simplify the life of users.
However, identifying and implementing appropriate state-of-the-art techniques and
algorithms can be quite a hard task for black-box designers and developers. It is not
easy to distinguish the most important algorithms among the large number that have
been published. Moreover, certain algorithms require complex data structures and
procedures that have not been disclosed in complete detail, so re-implementation is
hazardous. Luckily, many of the substantial new developments that have appeared
during the last decade are characterized by conceptual simplicity of techniques

3. See http://www.cril.univ-artois.fr/CPAI08/

Introduction 31

and algorithms. This book attempts to present these developments comprehensively
and rigorously, offering you a gentle introduction to this active field of research.
Pragmatically, the book concentrates on general-purpose approaches that have proven
to be effective in practice. These approaches are the source of a nascent generation of
robust constraint solvers accessible to the average user.

If we insist on (conceptual) simplicity, this is because it has many nice features.
Although these may be obvious, they deserve brief comment as follows. First,
simplicity may be understood primarily as ease of comprehension. An easily
understood principle is, from the master’s point of view, easy to explain and, from the
disciple’s point of view, quick to assimilate. The difficulty in the comprehension of
the world or of nature certainly lies in finding the elementary principles that enable
explanation of the Creation. Modestly, in our context, the difficulty lies in finding the
basic recipes that are at the origin of the efficiency of algorithms.

Another comment about simplicity is that it tends to make development easier.
Proposed algorithmic solutions eventually become procedures written in programming
languages. Software development time can be reduced, and more robust code can
be written, if an algorithm is easy to code. Ease of coding usually depends on the
complexity of the data structures that are employed. Generally, the shorter the code
that implements an algorithm, the less the risk of bugs therein.

A final comment about simplicity concerns its impact on the reproduction of
experiments. If a method is simple to understand and to implement, this simplicity
substantially increases the probability that two people independently evaluating
the method will develop similar (source) code and consequently obtain similar
experimental results. Surely, science is nothing without the possibility of reproducing
experiments (and, more generally, without the possibility of checking theoretical
results).

III. Organization of this book

In the first chapter, constraint networks are introduced with the formalism that
surrounds them. Formal foundations are then given, and several examples of constraint
satisfaction problems are presented. In the second chapter, we study the nature of
constraint networks, essentially discussing the presence or absence of structure in
problems. The remainder of the book is divided into two parts.

The first part describes general inference methods based on local consistencies,
which are relational and structural properties of constraint networks. The principle
is to simplify the problem instance that must be solved by discarding some
useless portions of the search space. This is made possible by propagating
constraints following a targeted consistency that allows identification of inconsistent

32 Constraint Networks

instantiations. Chapter 3 provides an overview of the consistencies usually studied
in constraint satisfaction. Following usual practice, we concentrate mainly on first-
order (or domain-filtering) consistencies that identify globally inconsistent values.
Chapter 4 describes generic algorithms proposed to enforce the central consistency in
constraint programming, namely (generalized) arc consistency; such algorithms are
universal, as they can theoretically be used for any type of constraints. In Chapter 5,
we restrict our attention to table constraints, that is to say, constraints defined by
explicitly listing allowed (or forbidden) combinations of values. We describe very
recent propagation schemes that have led to significant progress. In Chapter 6, we
are interested in singleton arc consistency, a consistency built upon (generalized) arc
consistency. We introduce some recent approaches that make use of the incrementality
of arc consistency algorithms in different ways. Finally, in Chapter 7, we study dual
consistency, which is a consistency related to path consistency.

The second part of the book presents general search methods that cleverly explore
the search space of combinatorial problems. The basic idea of these methods is to
gather useful information, before and especially during a search, so as to guide the
search efficiently. Chapter 8 presents the concept of backtrack search, together with
classical look-back and look-ahead schemes. Chapter 9 explains how dead-ends
encountered during a search can be quite helpful in guiding the search toward sources
of conflicts. The guidance heuristics involve constraint weighting and last-conflict
reasoning. Chapter 10 investigates nogood recording, in conjunction with the idea of
regularly restarting search. Nogoods can easily be extracted from the current state of
search before each restart, and exploited in subsequent runs to discard portions of the
search space that have already been explored. Chapter 11 introduces the promising
related approach of exploiting partial states extracted, using sophisticated operators,
throughout the search. Finally, Chapter 12 addresses the automatic breaking of
symmetries. This is an important reasoning mechanism that allows symmetric
portions of the search space to be discarded.

We wish to emphasize that many algorithms presented in this book have been
implemented in our constraint solver Abscon. This solver is primarily intended to
serve as a platform for the scientific development of research ideas. Incidentally, it
participates in constraint solver competitions. We also wish to emphasize that this
book does not attempt exhaustive coverage of all topics in the constraint processing
field. It is intended mainly to promote the artificial intelligence approach to constraint
programming, and is unsurprisingly built upon the experience of the author, making
some sections rather personal.

IV. Introductory example

Most of the concepts introduced in this book refer to either inference or search.
Nevertheless, sometimes concepts refer to both principles of inference and search.

Introduction 33

This is the reason why we propose4 an example to gently introduce the central notions
of consistency and backtrack search. Map coloring is the problem chosen for this
example.

The goal of a map coloring problem is to color a map so that adjacent regions,
i.e. regions sharing a common border, have different colors. Figure 3(a) shows a map
that has nine regions which need to be colored. The four color map theorem (e.g. see
[WIL 05]) states that given any plane separated into regions, such as a political map
of the states of a country, the regions can be colored using no more than four colors.
Thus, we propose to color the map shown in Figure 3(a) with the four colors shown in
Figure 3(b).

(a) Map

����� ���

��	
��
 ��
�

	���
��
 �	
�

��
��
��
 ��
�

(b) Colors

Figure 3. A map with nine regions to be colored using four colors

The map together with the colors shown in Figure 3 is an instance of the map
coloring problem. We can represent this instance by a constraint network P which is
a structure composed of variables and constraints. A variable is an unknown, which
must be given, or assigned, a value from an associated domain. Naturally, the variables
of our constraint network correspond to the nine regions of the map, and the domain
of each variable contains the four available colors. The variables are {x1, x2, . . . , x9}
and the domains are {dg,mg, lg, w}, where dg stands for dark gray, mg stands for
mid gray, etc. Figure 4 illustrates this. A constraint restricts the possible combinations
of values of some variables. Since adjacent regions must be colored differently, we
introduce a constraint on every pair of variables that represent adjacent regions. Such
a binary constraint states that the values assigned to the two variables involved in this
constraint must be different. We just use inequation constraints. For example, we have

4. I would like to thank Julian Ullmann for having suggested this to me.

34 Constraint Networks

x1 	= x2 since x1 and x2 represent two adjacent regions located in the north of the
map.

x2

x7

x1

x8

x9

x6

x5

x3

x4

Figure 4. Each region of the map is represented by a variable x whose domain is the set
{dg, mg, lg, w}, that is, the four available colors

It may be useful to associate a constraint graph with a (binary) constraint network
so as to benefit from well-known results from graph theory. A constraint graph is
an undirected graph built from a constraint network such that there is a vertex per
variable, and there is an edge per pair of variables involved in a constraint. Figure 5
shows the constraint graph for our example. Using the constraint graph of the map
coloring problem, we obtain an equivalent graph coloring problem: color the vertices
of the graph such that adjacent vertices, i.e. vertices linked by an edge, have different
colors.

x3

x2

x4
x7

x8

x5

x6

x1

x9

Figure 5. The constraint graph associated with the constraint network partially depicted in
Figure 4. Here, vertices are labeled with the variable names they represent

Introduction 35

To find a solution for this problem, we need search. In its complete form,
search performs an exhaustive exploration of the search space. The search space is
basically the Cartesian product of the domains of the variables; here, as we have nine
variables and four values per domain, we obtain a search space whose size is 49.
This represents 262,144 different configurations, or complete instantiations, for the
constraint network. Enumerating every complete instantiation in turn and checking
each one to see whether it satisfies all the constraints appears to be quite inefficient;
this is a method called generate and test.

To improve the performance of the “generate and test” approach, it is possible
to perform a depth-first exploration of the search space, verifying at each step that
it may still be possible to find a solution. Variables are assigned, or instantiated, in
turn, thereby forming partial instantiations. At each step, the local consistency of the
partial instantiation can be checked: the partial instantiation is locally consistent iff
each constraint covered by it (i.e. each constraint only involving instantiated variables)
is satisfied.

For our example, a depth-first search (DFS) starts by assigning dg to x1; see
Figure 6(a). The partial instantiation {x1 = dg} is locally consistent because no
constraint is covered by it (all constraints are binary). Then, DFS assigns dg to x2; see
Figure 6(b). This time, the partial instantiation is not locally consistent because the
constraint x1 	= x2 is covered and violated. No solution can be found by extending
this partial instantiation, which corresponds to a dead-end situation and is called a
nogood. This is why another value for x2 is tried by the search; see Figure 6(c).

Assume now that the (locally consistent) partial instantiation {x1 = dg, x2 = mg,
x3 = mg, x4 = w, x5 = lg, x6 = dg} must be extended over x7; see Figure 7(a).
It is easy to see that any assignment to x7 yields an inconsistent instantiation because
x1, x2, x4 and x5 are adjacent to x7 and have all been assigned different colors.
Otherwise stated, no color remains possible for x7. Consequently, after four tentative
assignments for x7 (because the domain of x7 is composed of four values), the search
has to return to the variable that was instantiated before x7, which is x6. When the
search returns to a previous variable, we say that the search algorithm backtracks; this
general principle is called backtracking. Depth-first search (with backtracking) is also
called backtrack search. In our example, after backtracking from x7, another value for
x6 must be tried; this is color mg as shown in Figure 7(b). This new assigned color
is immediately discarded because the constraint x3 	= x6 is violated. For a similar
reason, lg is discarded, and so the only remaining possibility is to try w for x6; see
Figure 7(c). However, after assigning w to x6, the algorithm again performs the same
useless tentative instantiations of x7, although the value of x6 has no bearing on these
failures. Rediscovering the same failure situations during search is called thrashing.

Finally, it seems reasonable to prevent conflicts that can easily be anticipated
(so as to prevent, or at least reduce, thrashing). For example, if at the beginning of

36 Constraint Networks

x2

x7

x1

x8

x9

x6

x5

x3

x4

(a) DFS assigns dg to x1

x2

x7

x1

x8

x9

x6

x5

x3

x4

(b) DFS assigns dg to x2. The partial instantiation is not locally consistent because the
constraint x1 �= x2 is violated.

x2

x7

x1

x8

x9

x6

x5

x3

x4

(c) DFS tries another assignment for x2 (mg is assigned to x2). The new partial instantiation
is locally consistent.

Figure 6. The early steps performed by DFS (depth-first search)

Introduction 37

x2

x7

x1

x8

x9

x6

x5

x3

x4

(a) The partial instantiation {x1 = dg, x2 = mg, x3 = mg, x4 = w, x5 = lg, x6 = dg}
must be extended over x7. No extension is locally consistent: search has to backtrack to x6.

x2

x7

x1

x8

x9

x6

x5

x3

x4

(b) After backtracking to x6, a new value has been assigned to x6. This value (as well as lg)
is immediately discarded because the new partial instantiation is not locally consistent.

x2

x7

x1

x8

x9

x6

x5

x3

x4

(c) The value w is now assigned to x6. Four useless tentative assignments to x7 will be
performed again. This is a phenomenon called thrashing.

Figure 7. Illustration of backtracking and thrashing

38 Constraint Networks

search the value dg is assigned to x1, then clearly this value can be removed from
the domain of the variables in the neighborhood of x1, namely x2, x3, x4 and x7; see
Figure 8. A value for an uninstantiated variable is incompatible with the value of the
last instantiated variable if there is a constraint that prevents these two variables from
taking these values simultaneously. Such incompatible values are not arc-consistent
and can be safely deleted without losing any solutions. Deletion of inconsistent values
is called filtering of the domains.

x2

x7

x1

x8

x9

x6

x5

x3

x4

Figure 8. By reasoning locally from constraints after dg is assigned to x1, we deduce (infer)
that the value dg can be safely removed from the domains of x2, x3, x4 and x7

Sophisticated backtrack search algorithms interleave search steps and filtering
inference processes that can identify inconsistent partial instantiations of arbitrary
size. Before starting search, constraint networks are usually processed during a so-
called preprocessing stage. Typically, inferences such as removing inconsistent values
are performed at preprocessing time. Sometimes preprocessing alone is sufficient to
solve a problem instance.

Chapter 1

Constraint Networks

This chapter introduces the formalism of constraint networks, which can abstractly
represent many academic and real-world problems. Section 1.1 introduces variables
and constraints, which are the main ingredients of constraint networks. This
introduction includes different representations of constraints as well as the vital
concept of constraint support. In section 1.2, we formally define constraint networks.
Moreover, we present the (hyper)graphs that can be associated with any constraint
network, and introduce instantiations. Section 1.3 provides some illustrative examples
of problems that can be easily represented by means of constraint networks. For
simplicity and entertainment, these examples are based on logic puzzles. Section 1.4
is concerned with partial orders in constraint networks, decisions and general
properties of values and variables. Finally, section 1.5 introduces some data structures
that can be employed to represent constraint networks in computer programs.

1.1. Variables and constraints

Here we will define variables and constraints, which are the main ingredients of
constraint networks. They constitute the surface part of a problem representation,
whereas domains and relations constitute the underlying part. In object-oriented
design, we would certainly build up a class for variables and another for constraints,
and represent all relevant information about variables and constraints in terms of
attributes (maybe introducing additional classes) for these objects: identifier, domain,
scope, relation, etc.

DEFINITION 1.1.– [Variable] A variable, which is a component of an abstract system,
is an object that has a name and is able to take different values. In our context, a
variable (whose name is) xmust be given a value from a set, which is called the current

40 Constraint Networks

domain of x and is denoted by dom(x). The domain of a variable x may evolve over
time, but it is always included in a set called the initial domain of x.1 This initial
domain, which is denoted by dominit(x), represents the full universe of the variable
x.

A continuous variable has an infinite initial domain, usually defined in terms of
real intervals. Continuous variables are outside the scope of this book, which only
considers discrete variables. A discrete variable is a variable whose initial domain
contains a finite number of values.

We use letters x, y, z (and when necessary u, v, w), possibly subscripted or primed,
to denote variables. Without any loss of generality, our variables can be assumed
to have integer values in their domains when necessary. Quite often, letters a, b, c,
possibly subscripted or primed, will be used to denote values. For example, x and y
such that dominit(x) = {a, b} and dominit(y) = {1, 2, . . . , 100} are two discrete
variables whose initial domains contain 2 and 100 values, respectively.

Domains are dynamic sets, i.e. they may change over time. A variable is said to
be fixed when its current domain only contains one value, and unfixed otherwise. A
variable can be fixed either explicitly or implicitly (incidentally). When a variable x
is explicitly given a value a from its current domain dom(x) during the progression
of a scenario or an algorithm, every other value b 	= a is considered to be removed
from dom(x). In this case we say that the variable x is instantiated; otherwise, we say
that x is uninstantiated. We also say that the variable x is assigned (the value a) or
that the value a is assigned to x. Assigning a value to a variable is called a variable
assignment. Implicitly fixed variables occur when deduction (inference) mechanisms
are used. For example, consider the equality x = y between two variables x and y
whose (common) current domain is {1, 2}. If the variable x is assigned the value 1,
by reasoning from the equality we can deduce that y must also be equal to 1, i.e. the
value 2 can be removed from dom(y) by deduction. The two variables are then fixed,
the first one explicitly and the second one implicitly. However, only the first variable
is considered to be instantiated (or assigned).

A value a is said to be valid for a variable x iff a ∈ dom(x). Because of changes
in dom(x), a value that is valid for x at time t may be invalid at another time t′. To
keep track of those changes, it can be helpful to use a superscript t to denote the time at
which we refer to a domain: domt(x) is the domain of x at time t. With t0 representing
the time origin we have, for every variable x, domt0(x) = dominit(x). Actually, as
we shall see later, instead of using time, we use constraint networks as superscript
for domains. Indeed, when we reason about several related constraint networks, it is

1. We can imagine situations where initial domains could be enlarged. However, no technique
presented in this book allows us to do that.

Constraint Networks 41

expedient to write domP (x) to denote the domain of x in constraint network P . When
the context is unambiguous, we simply use dom(x).

In this book, without any loss of generality, we assume that (names of) discrete
variables belong to an infinite totally ordered set, with the (strict) total order denoted
by �; thus x � y means that variable x (strictly) precedes y within this order.
Consequently, any set of variables handled in the remainder of this book is assumed
to be totally ordered by �.

REMARK 1.2.– [Total Order on Variables] Any set X of variables is totally ordered
according to the relation �.

Similarly, without any loss of generality, we assume that values are always taken
from a totally ordered set, with the (strict) total order denoted by <; thus a < b means
that the value a (strictly) precedes b within this order. Consequently, any set of values
handled in the remainder of this book is assumed to be totally ordered by <.

REMARK 1.3.– [Total Order on Values] Any set V of values is totally ordered
according to the relation <.

To define constraints, we introduce tuples, Cartesian product and relations. More
information about sets, relations, etc. can be found in Appendix A.1.

DEFINITION 1.4.– [Tuple] A tuple τ is a sequence, usually enclosed between
parentheses, of values separated by commas. A tuple containing r values is called an
r-tuple. The ith value of an r-tuple, with 1 ≤ i ≤ r, is denoted by τ [i].

As values are taken from a totally ordered set, r-tuples can be lexicographically
ordered by extending the relation <. The new strict total order is denoted by <lex, and
the corresponding non-strict total order is denoted by ≤lex.

DEFINITION 1.5.– [Lexicographic Order] Let τ and τ ′ be two r-tuples.

– τ <lex τ ′ iff ∃i ∈ 1..r such that τ [i] < τ ′[i] and ∀j ∈ 1..i− 1, τ [j] = τ ′[j].

– τ ≤lex τ ′ iff τ <lex τ ′ or τ = τ ′.

EXAMPLE.– Considering values taken from N, we have:

– (2, 4, 7, 6) <lex (3, 3, 3, 8);

– (2, 4, 7, 6) <lex (2, 4, 8, 2);

– (2, 4, 7, 6) <lex (2, 4, 7, 8).

A Cartesian product is a set composed of all tuples that can be built from a
sequence of sets.

42 Constraint Networks

DEFINITION 1.6.– [Cartesian Product] Let D1, D2, . . . , Dr be a sequence of r
sets. The Cartesian product D1 × D2 × · · · × Dr, also written

∏r
i=1 Di, is the set

{(a1, a2, . . . , ar) | a1 ∈ D1, a2 ∈ D2, . . . , ar ∈ Dr}. Each element of
∏r

i=1 Di is
an r-tuple.

EXAMPLE.– We can define Cartesian products of domains of variables. For example,
if x, y and z are three variables such that dom(x) = dom(y) = {a, b} and dom(z) =
{a, c}, we have:

dom(x)× dom(y)× dom(z) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(a, a, a),
(a, a, c),
(a, b, a),
(a, b, c),
(b, a, a),
(b, a, c),
(b, b, a),
(b, b, c)

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
A relation is simply a subset of a Cartesian product.

DEFINITION 1.7.– [Relation] A relation R defined over a sequence of r sets
D1, D2, . . . , Dr is a subset of the Cartesian product

∏r
i=1 Di, so R ⊆∏r

i=1 Di.

We also say that R is defined on
∏r

i=1 Di.

EXAMPLE.– Here is a relation defined on dom(x)× dom(y)× dom(z):

Rxyz =

⎧⎪⎪⎨⎪⎪⎩
(a, a, c),
(b, a, a),
(b, a, c),
(b, b, c)

⎫⎪⎪⎬⎪⎪⎭
We can now introduce the central concept of constraint.

DEFINITION 1.8.– [Constraint] A constraint, which is a component of an abstract
system, is represented by a name and is a restriction on combinations of values that
can be taken simultaneously by a set of variables. In our context, a constraint (whose
name is) c is defined over a (totally ordered) set of variables, which constitute the
scope of c and are denoted by scp(c). A constraint c is defined by a relation, denoted
by rel(c), comprising exactly the set of tuples allowed by c for the variables of its
scope; we have rel(c) ⊆∏x∈scp(c) dominit(x).

The letter c, possibly subscripted with the sequence of scope variables, or possibly
primed, is used to denote a constraint. For example, the constraint cxyz is such that

Constraint Networks 43

scp(cxyz) = {x, y, z}. Sometimes we use the symbol c to denote a value for a variable,
but the context is always sufficient to distinguish between a constraint and a value.

A tuple τ allowed by c is also said to be accepted by c, and we say that τ satisfies
c. A tuple that is not allowed by c is said to be disallowed or forbidden by c, and we
say that c is unsatisfied, or violated, by τ . For example, if cxyz is a constraint such
that rel(cxyz) = Rxyz , where Rxyz is the relation introduced above, then (b, a, c) is
an allowed tuple, whereas (a, b, a) is disallowed by cxyz .

A variable x that belongs to scp(c) is said to be involved in c. Note that scp(c)
is totally ordered according to the relation �; see Remark 1.2. Consequently, in
Definition 1.8 the order of the domains in the Cartesian product corresponds to the
order of the variables for which they are the domains. We use scp(c)[i] in some
algorithms to denote the ith variable involved in scp(c), with 1 ≤ i ≤ | scp(c)|. Two
constraints c and c′ such that scp(c) ∩ scp(c′) 	= ∅ are said to intersect. For example,
cxyz and cwy are two constraints that intersect on variable y. The arity of a constraint
c is the number of variables involved in c, i.e. | scp(c)|. A constraint is:

– unary iff its arity is 1;

– binary iff its arity is 2;

– ternary iff its arity is 3;

– non-binary iff its arity is strictly greater than 2.

Notice that a non-binary constraint is considered as being neither binary nor (more
surprisingly) unary. The reason is that, as we shall see later, unary constraints defined
on discrete variables can easily be discarded (and so ignored).

Definition 1.8 is a little bit more general than the one usually employed, which
is confined to tailored constraints. This has to do with the concept of embedded
constraint networks introduced in [BES 06].

DEFINITION 1.9.– [Tailored Constraint] A constraint c is said to be tailored iff
rel(c) ⊆∏x∈scp(c) dom(x).

When a constraint is tailored, every allowed tuple only involves valid values,
i.e. values in current domains. When it is not tailored, we may have rel(c) 	⊆∏

x∈scp(c) dom(x), but by definition we know that rel(c) ⊆ ∏
x∈scp(c) dominit(x).

The general definition 1.8 is useful in dynamic situations, as we shall see later. In
practice, constraints are tailored when they are defined; but when domains of variables
change, constraints do not systematically remain tailored.

It is important to note that constraint relations may also change over time; this
is a feature of various approaches such as enforcing path consistency or pairwise
consistency, which are introduced later. The state of a constraint c at time t is given

44 Constraint Networks

by the state of rel(c) at time t, and also, indirectly, by the state of the domains of
the variables involved in c at time t. To keep track of changes, if any, in a constraint
relation, we can use a superscript t so that relt(c) is the relation of c at time t.

EXAMPLE.– Figure 1.1 illustrates the dynamic aspect of constraint relations with
a ternary constraint cxyz (with scp(cxyz) = {x, y, z}). We have dominit(x) =

dominit(y) = dominit(z) = {a, b, c}. At time t0, the initial tailored constraint
is defined. At time t1, two allowed tuples of the initial relation have here been
(arbitrarily) removed. At time t2, some values have been (arbitrarily) removed from
the domains of the variables involved in cxyz , making cxyz no longer tailored. For
example, (b, a, a) ∈ relt2(cxyz) but (b, a, a) /∈ domt2(x)× domt2(y)× domt2(z).

rel
t1(cxyz) = {
(a, b, b)

(b, a, a)

}
(c, c, a)
(c, a, c)

(a, c, a)

dom
t1(y) = {a, b, c}

dom
t1(z) = {a, b, c}

dom
t1(x) = {a, b, c}

dom
t0(y) = {a, b, c}

dom
t0(z) = {a, b, c}

dom
t0(x) = {a, b, c}

(a, c, a)

rel
t0(cxyz) = {
(a, b, b)

(b, a, a)
(c, a, c)
(c, c, a)
}

dom
t2(y) = {a, b, c}

dom
t2(z) = {a, b, c}

dom
t2(x) = {a, b, c}

rel
t2(cxyz) = {
(a, b, b)

(b, a, a)
(c, a, c)
(c, c, a)
}

(a, c, a)

���������� cxyz

�� ��	
 t1

�� ��	

t
2

��
��	

 t0

Figure 1.1. Three (arbitrary) successive states of a constraint cxyz

The initial relation of c is denoted by relinit(c); this is the relation defined at the
time origin t0. As for domains, when we are concerned with constraints in more than
one constraint network, e.g. when analyzing the dynamic behavior of an algorithm,
we write relP (c) to denote the relation of c in constraint network P . When the context
is unambiguous, we simply use rel(c).

Although we have defined a constraint in terms of an associated relation, this
imposes no restriction on the practical prescription of constraints. In practice, a
constraint may be defined either intensionally or extensionally.

Constraint Networks 45

DEFINITION 1.10.– [Intensional Constraint] A constraint c is intensional, or defined
in intension, iff rel(c) is implicitly described by a predicate2, i.e. by a characteristic
function that is defined from

∏
x∈scp(c) dominit(x) to {false, true} and based on a

Boolean expression or formula.

Examples of Boolean expressions are x 	= y and |x ∗ y| < |z|. Clearly, the
semantics of constraints intensionally defined by Boolean expressions is immediately
understood. We usually refer to an intensional constraint c as c : expr where expr is
the predicate expression of c (also denoted by expr [c]).

DEFINITION 1.11.– [Extensional Constraint] A constraint c is extensional, or defined
in extension, iff rel(c) is explicitly described, either positively by listing the tuples
allowed by c or negatively by listing the tuples disallowed by c.

For an extensional constraint c, we use table[c] and table[c] to denote the set of
tuples allowed and disallowed by c, respectively. Of course, we have table[c] = rel(c)
and table[c] =

∏
x∈scp(c) dominit(x) \ rel(c). The use of these special terms shows

clearly that we are dealing with extensional constraints.

EXAMPLE.– Consider a ternary constraint cxyz . Imagine that this constraint means
that the values which can be assigned simultaneously to x, y and z must all be
different. The constraint cxyz can be defined in intension by using x 	= y∧x 	= z∧y 	=
z as a predicate expression, denoted by cxyz : x 	= y ∧ x 	= z ∧ y 	= z. Note that
this representation remains stable, irrespective of the initial domains of variables in
scp(cxyz). If dominit(x)×dominit(y)×dominit(z) = {0, 1, 2}×{0, 1, 2}×{0, 1, 2},
then cxyz can be represented in extension by one of the two following sets:

table[cxyz] =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

(0, 1, 2),
(0, 2, 1),
(1, 0, 2),
(1, 2, 0)
(2, 0, 1),
(2, 1, 0)

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
table[cxyz] =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

(0, 0, 0),
(0, 0, 1),
(0, 0, 2),

. . .
(2, 2, 1),
(2, 2, 2)

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
The number of allowed tuples is 6, whereas the number of disallowed tuples

is 21. For simplicity and for space efficiency, it is better in this case to employ a
representation of allowed tuples. If we generalize the ternary constraint cxyz to an
r-ary constraint c such that the initial domain of any involved variable is {0, 1, . . . ,
r−1}while keeping the same semantics, the number of allowed and disallowed tuples
become r! and rr−r!, respectively. It is then essential to represent such a constraint in

2. Note that an intensional constraint cannot always easily be defined by a Boolean formula,
because it sometimes corresponds to use of a computer function.

46 Constraint Networks

intension, and even better, by a so-called global constraint whose meaning is implicit.
Actually, the constraint introduced in our example is (an instance of) the well-known
global constraint (pattern) allDifferent.

DEFINITION 1.12.– [Global Constraint] A global constraint is a constraint pattern
that captures precise relational semantics and can be applied over an arbitrary
number of variables.

For example, the semantics of allDifferent is that every variable must take a
different value. When the allDifferent constraint pattern is applied to three variables
x, y and z, we obtain a constraint denoted by cxyz : allDifferent(x, y, z). Clearly, the
allDifferent constraint pattern can be applied to any number of variables. For more
information about global constraints, see e.g. [HOE 06, BEL 08].

(a, b)
(a, c)
(b, a)
(b, b)
(c, c)

x y

(a) table of cxy

� � �

� ��

�

y

c

b

a

x

a b c

� �

(b) (0, 1)-matrix of cxy

Figure 1.2. Extensional representation of a binary constraint cxy by a table and a
(0, 1)-matrix

An alternative representation for extensional constraints is to use multi-
dimensional Boolean arrays, also called (0, 1)-matrices when constraints are binary.
For example, assume that x and y are two variables such that dom(x) = dom(y) =
{a, b, c}, and cxy is a binary constraint defined in extension by the table3 given in
Figure 1.2(a). The constraint cxy can equivalently be represented by the (0, 1)-matrix
given in Figure 1.2(b). An entry of 0 (resp. 1) means that the tuple composed of the
value labeling the row and the value labeling the column is disallowed (resp. allowed)
by the constraint. For example, we find 1 at the intersection of row b and column a,
meaning that (b, a) is allowed by cxy. The space complexity of a table representation
is O(tr), where t denotes the number of tuples in the table, and r the arity of the
constraint4. The space complexity of a multi-dimensional array representation is
O(dr), where d denotes the greatest domain size, which shows that arrays can be used

3. Henceforth, tables are presented as a simple enumeration (list) of tuples.
4. Asymptotic notation is presented in Appendix A.2.1.

Constraint Networks 47

only for small-arity constraints. In the remainder of the book, we always consider
extensional constraints implemented by tables.

As explained above, when constraints are not tailored we have rel(c) 	⊆∏
x∈scp(c) dom(x). For example, consider a binary intensional constraint cxy : x = y

such that dominit(x) = dominit(y) = {0, 1, . . . , 9}. We have rel(cxy) = {(i, j) ∈
dominit(x) × dominit(y) | i = j}. When the membership of domains is changed,
we can implicitly update the relation associated with cxy , e.g. as in [BAC 02a], so
that rel(cxy) = {(i, j) ∈ dom(x) × dom(y) | i = j}, and constraints always
remain tailored. However, it may not be practical to update a constraint relation
represented in extension; in our example, an extensional representation of cxy is
table[cxy] = relinit(cxy) = {(0, 0), . . . , (9, 9)}. If 0 and 1 are removed from
dom(x), then in principle, (the table associated with) the relation of cxy can be
reduced to rel(cxy) = {(2, 2), . . . , (9, 9)}. In practice, updating table[cxy] may be
expensive and not very helpful, and implicitly considering such an update may be
unsafe in the development and/or complexity analysis of some algorithms. Therefore,
unless explicitly mentioned, constraint relations will be considered as invariant, i.e.
rel(c) = relinit(c) for all constraints c.

The distinction between what is allowed (i.e. what can be accepted by a constraint)
and what is valid (i.e. what can be built from the variable domains of a constraint) is
important for understanding the dynamic aspect of some algorithms.

Let τ = (a1, . . . , ar) be an r-tuple of values of a (totally ordered) set of r variables
X = {x1, . . . , xr}. The value ai will be denoted by τ [xi]. By extension, for any
subset X ′ ⊆ X , the restriction of τ to the variables in X ′ will be denoted by τ [X ′].
For example, let X = {w, x, y, z} and τ = (a, b, b, c). We have τ [w] = a, τ [x] = b,
. . . , and τ [{w, z}] = (a, c). A valid tuple for a constraint is a tuple containing a valid
value for every variable in the scope of the constraint.

DEFINITION 1.13.– [Valid Tuple] Let c be an r-ary constraint. An r-tuple τ is valid
on c iff ∀x ∈ scp(c), τ [x] ∈ dom(x). The set of valid tuples on c is val(c) =∏

x∈scp(c) dom(x).

By definition of variables, we always have val(c) ⊆ ∏
x∈scp(c) dominit(x).

Moreover, when c is tailored, we have rel(c) ⊆ val(c). Recall that a tuple τ is allowed
by a constraint c iff τ ∈ rel(c). Supports and conflicts are defined as follows.

DEFINITION 1.14.– [Support and Conflict] Let c be an r-ary constraint. An r-tuple
τ is a support (resp. a conflict) on c iff τ is a valid tuple on c which is allowed (resp.
disallowed) by c.

If τ is a support (resp. a conflict) on a constraint c involving a variable x and such
that τ [x] = a, we say that τ is a support (resp. a conflict) for (x, a) on c; we also say

48 Constraint Networks

that (x, a) is supported (resp. not supported) by c. When (a, b) is a support on a binary
constraint cxy , we sometimes say that (x, a) supports (y, b) on cxy , and symmetrically
that (y, b) supports (x, a) on cxy .

NOTATION 1.15.– Let c be a constraint.

– The set of supports on c is sup(c) = val(c) ∩ rel(c).

– The set of conflicts on c is con(c) = val(c) \ sup(c).

For a tailored constraint c, we have sup(c) = rel(c) since rel(c) ⊆ val(c).
Determining if a tuple is allowed is called a constraint check, and determining if a
tuple is valid is called a validity check. We often need to make such checks when
looking for supports; search of supports represents a basic operation in constraint
reasoning. Figure 1.3 summarizes the different sets introduced so far; Figure 1.4
provides a detailed example.

rel(c)

val(c)

sup(c)

∏
x∈scp(c) dom

init(x)

Figure 1.3. A constraint c whose “universe” is
Q

x∈scp(c) dominit(x). The set of tuples
allowed by c is rel(c). The set of valid tuples on c is val(c). The set of supports on c is

sup(c) = rel(c) ∩ val(c)

The following notation will be useful in situations where we need to deal with
tuples that involve a particular value.

NOTATION 1.16.– Let c be a constraint, x ∈ scp(c) and a ∈ dom(x).

– The set of valid tuples for (x, a) on c is val(c)x=a = {τ ∈ val(c) | τ [x] = a}.
– The set of supports for (x, a) on c is sup(c)x=a = val(c)x=a ∩ rel(c).

– The set of conflicts for (x, a) on c is con(c)x=a = val(c)x=a \ sup(c).

– The set of strict supports for (x, a) on c is sup(c)↓x=a= {τ [scp(c) \ {x}] | τ ∈
sup(c)x=a}.

Constraint Networks 49

�

�

�

�

�

� � � � �

rel(cxy)

y

x

val(cxy)

sup(cxy)

dom
init(x)× dom

init(y)

Figure 1.4. A constraint cxy : x < y whose “universe” is
dominit(x) × dominit(y) = {0, . . . , 3} × {0, . . . , 5}. The set of tuples allowed by cxy is
rel(cxy) = {(i, j) ∈ dominit(x) × dominit(y) | i < j}. When dom(x) = {1, 2, 3} and

dom(y) = {0, 1, 2, 3}, the set of valid tuples on cxy is val(cxy) = {1, 2, 3} × {0, 1, 2, 3}.
The set of supports on cxy is sup(cxy) = rel(cxy) ∩ val(cxy) = {(1, 2), (1, 3), (2, 3)}

�

�

�

�

�

� � � � �

rel(cxy)

y

x

dom
init(x)× dom

init(y)

sup(cxy) = val(cxy)

Figure 1.5. The constraint from Figure 1.4 in a different state, since we now have
dom(x) = {1, 2} and dom(y) = {3, 4}. Here, we have

sup(cxy) = val(cxy) = {1, 2} × {3, 4}. Hence, cxy is entailed: we have
a guarantee that x < y

When we have sup(c)x=a 	= ∅, we say that c (currently) supports (x, a).
Note here that a strict support for a value (x, a) on a constraint c is a tuple
composed of | scp(c)| − 1 values, whereas a “classical” support contains | scp(c)|
values. We need strict supports to define some properties later. For example,
if cxyz is such that sup(cxyz) = {(a, b, a), (a, b, c), (b, a, b), (c, c, b)}, then
sup(cxyz)x=a = {(a, b, a), (a, b, c)}, and sup(cxyz)↓x=a= {(b, a), (b, c)}.

50 Constraint Networks

We can now introduce constraint tightness (and looseness), which is an important
feature. The greater the tightness of a constraint, the more difficult it is to satisfy the
constraint.

DEFINITION 1.17.– [Constraint Tightness and Looseness] Let c be a constraint.

– The looseness of c is equal to the ratio

| relinit(c)|
|∏x∈scp(c) dominit(x)| .

– The tightness of c is equal to the ratio

|∏x∈scp(c) dominit(x) \ relinit(c)|
|∏x∈scp(c) dominit(x)| .

Looseness and tightness above are defined from initial domains and relation; this
corresponds to the classical usage. Sometimes it is useful to compute tightness or
looseness from current domains and relation. The current constraint tightness (resp.
looseness) of a constraint c is the ratio | con(c)|/| val(c)| (resp. | sup(c)|/| val(c)|).
Current constraint tightness corresponds to the ratio “number of conflicts on c over
number of valid tuples on c”. For example, the constraint tightness of the constraint
cxy depicted in Figure 1.4 is 10

24 , assuming that rel(cxy) = relinit(cxy), and its current
constraint tightness is 9

12 .

Universal and empty constraints correspond to extreme values of rel(c). A
universal constraint can be safely ignored (but may be introduced for special
purposes), whereas an empty constraint can never be satisfied.

DEFINITION 1.18.– [Universal and Empty Constraints] Let c be a constraint.

– c is universal iff relinit(c) =
∏

x∈scp(c) dominit(x).

– c is empty iff relinit(c) = ∅.

After domains have been reduced, constraints sometimes seem to be universal or
empty; they are said to be entailed or disentailed:

DEFINITION 1.19.– [Entailed and Disentailed Constraints] Let c be a constraint.

– c is entailed iff sup(c) = val(c).

– c is disentailed iff sup(c) = ∅.

As long as no value is restored to any domain, an entailed constraint is guaranteed
to be satisfied (provided that at least one value remains in each domain). Similarly,
a disentailed constraint is guaranteed to be unsatisfied. An illustration of an entailed
constraint is given in Figure 1.5.

