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Abstract

The enumeration of all Maximal Satisfiable Subsets
(Msses) or all Minimal Correction Subsets (MCSes)
of an unsatisfiable CNF Boolean formula is a useful
and sometimes necessary step for solving a variety
of important A.L. issues. Although the number of
different MCSes of a CNF Boolean formula is ex-
ponential in the worst case, it remains low in many
practical situations; this makes the tentative enu-
meration possibly successful in these latter cases.
In the paper, a technique is introduced that boosts
the currently most efficient practical approaches to
enumerate MCSes. It implements a model rotation
paradigm that allows the set of MCSes to be com-
puted in an heuristically efficient way.

1 Introduction

Computing one maximal' satisfiable subset of clauses, noted
MSS, within an unsatisfiable CNF Boolean formula is a cor-
nerstone task in various A.l. domains ranging from model-
based diagnosis (see e.g., the seminal work in [Reiter, 1987],
a readings book [Hamscher et al., 1992] or some more re-
cent research work in [Felfernig et al., 2012; Marques-Silva
et al., 2015]) to various paradigms of belief change (see e.g.,
[Fermé and Hansson, 2011] for a survey of the field). In the
Boolean setting, reasoning in a credulous [Reiter, 1980] way
about contradictory information represented by an unsatisfi-
able CNF ¥ can amount to reasoning about one MSS of X.
Interpreted as a set of constraints, an unsatisfiable CNF for-
mula X represents an over-constrained problem [Meseguer
et al., 2003] for which no solution exists. When @ is one
maximal satisfiable subset of ¥ and when ¥ is defined as
>\ ®, U is one minimal subset of X such that dropping ¥
from the problem makes this one become feasible. Accord-
ingly, ¥ is sometimes called a minimal correction subset of
3. (hence the interchangeable notations MCS and Co-MSS for
this concept). In the worst case, the computation of an MSS
or an MCS is a hard computational task since the basic prob-
lem of checking whether a set of clauses forms one MCS is
DP-complete [Chen and Toda, 1995], which is also the com-
plexity of the SAT-UNSAT problem. However, in many prac-

"'We always consider set-inclusion maximality in this paper.

tical situations, computing one MSS is routinely performed
by SAT-based tools (see e.g., [Marques-Silva er al., 2013;
Grégoire et al., 2014; Bacchus et al., 2014; Mencia et al.,
2015; 2016] among others).

The enumeration of all MCSes or all MSSes of X is even
more computationally challenging. This task is a useful and
sometimes necessary step in order to implement some forms
of skeptical reasoning in abstract argumentation [Lagniez et
al., 2015] or in the presence of contradictions, which is a
general issue that can be traced back to early seminal works
about nonmonotonic logics [Bobrow, 1980]. It plays also
a role in infeasibility analysis of a set of clauses, as the
computation of all minimal unsatisfiable subsets, in short
MUSes, can rely on the success of this enumeration (see
e.g., [Liffiton and Sakallah, 2008; Grégoire er al., 2007;
Nadel et al., 2014; Bacchus and Katsirelos, 2015; 2016;
Previti and Marques-Silva, 2013; Liffiton et al., 2016] among
others). Although the number of different MCSes of the same
formula is exponential in the worst case, it remains low in
many practical situations; this makes the tentative enumera-
tion of all MCSes possibly successful in these latter cases.

In the paper, a technique is introduced that boosts the cur-
rently most efficient practical techniques to enumerate the
McCSes of an unsatisfiable Boolean formula 3. It is based
on a form of so-called model rotation paradigm [Belov and
Marques-Silva, 2011a; Nadel et al., 2014; Bacchus and Kat-
sirelos, 2015]. We show that it allows the set of MCSes of &
to be computed in an heuristically efficient way.

The paper is organized as follows. The technical back-
ground and the well-known MSS and MCS concepts are briefly
reviewed in the preliminaries. In section 3, the key paradigms
of transition clauses and clause selectors are recalled; their
roles are illustrated through the basic linear search for one
MCS. Section 4 presents a basic MCSes enumeration algo-
rithm before an original advanced one is step-by-step de-
scribed in section 5. In section 6, the use of model rotation in
this latter algorithm is explained. Then, we present our exten-
sive experimental study. Promising paths for further research
are briefly introduced in the conclusion.

2 Technical Background

We consider a standard language of formulas £ of Boolean
logic. -, V, A and = represent the negation, disjunction, con-
junction and material implication connectives, respectively.
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A literal is either a Boolean variable or its negation. A clause
is a formula that consists of a disjunction of literals. A CNF
(clausal normal form) formula is a conjunction (also repre-
sented as a set) of clauses. o, 3,... and X, A, ®, U, ... de-
note formulas and sets of formulas, respectively. An interpre-
tation p assigns values from {0, 1} to every Boolean variable,
and, following usual compositional rules, to all formulas of
L. A formula « is satisfiable iff there exists at least one in-
terpretation u that satisfies «; p is then called a model of a.
Accordingly, u satisfies a non-empty clause o when there ex-
ists at least one literal of « that is assigned 1 by p; p satisfies
a CNF X iff y satisfies all clauses of X. Any formula of £ can
be rewritten under an equisatisfiable CNF formula.

The core, MUS, MSS and MCS cross-related concepts are
defined as follows. Let 3 be a CNF formula.

Definition 1. (Core) A CNF X’ is a core of X iff ¥’ C ¥ and
>/ is unsatisfiable.

Definition 2. (MUS) A minimal unsatisfiable subset (in short,
MUS) T of ¥ is a core of ¥ such that Voo € T, T\ {a} is
satisfiable.

When a CNF X is unsatisfiable, it can be split into one
MSS, i.e., one maximal satisfiable subset of X, and its set-
theoretical complement in X, namely, one minimal correction
subset, for short one MCS, of X.

Definition 3. (MSS) A maximal satisfiable subset (in short,
MSS) @ of X is a subset & C X that is satisfiable and such
that Voo € ¥\ @, ® U {a} is unsatisfiable.

Definition 4. (MCS) A minimal correction subset (in short
MCS, also called co-MSS) ¥ of ¥ is a set ¥ C X whose
complement in ¥, i.e., ¥ \ ¥, is an MSS of X.

Example 1. Let X be an unsatisfiable CNF formed by a set
of clauses {1, a, a3, g, a5, g}, where ap = a Vb, g =
—aVb a3 = aV-b ag = -aV b ag = b, ag =
b. The McCSes of ¥ are {a1,a6}, {9, a6}, {as, a5} and
{aq,a5}. The MUSes of ¥ are {1, a0, a3, a4}, {1, s,
as}, {as, aq, a6} and {as, ag}.

Notice that one MSS of X can be interpreted as one ap-
proximate solution of Max-SAT on X, since maximality in
MSS is about set-inclusion vs. cardinality. The currently most
efficient approaches and tools to compute one MSS are de-
scribed in [Grégoire et al., 2014] and [Mencia et al., 2015;
2016].

The MSS and MCS paradigms can be extended into the so-
called Partial-MSS and Partial-MCS concepts in order to han-
dle the situation where ¥ = (X1, ¥s), where ¥ and X5 are
sets of hard and soft clauses, respectively: hard clauses are
required to belong to any Partial-MSS of 3J; they thus do not
belong to any Partial-MCS of 3. In the sequel, ¥; and ¥
always denote sets of hard and soft clauses, respectively. No-
tice that when > is unsatisfiable, Partial-MSSes of > do not
exist. In all the other cases, there always exists at least one
Partial-MCS of X that is included in Y. Moreover, every
Partial-MCS of (31, ¥5) is an MCS of ¥; U Xo. Conversely,
every MCS of X1 U35 that does not satisfy 3; is not a Partial-
MCS of (31, Xo).

3 Basic Linear Search for one MCS

State-of-the-art MCS extractors often make use of so-called
clause selectors as follows. Each clause « of X is augmented
with its own (negated) selector, namely a fresh new literal
—54. This yields a new (relaxed) CNF formula ¥°. A clause
a 'V =8, in ©F is thus activated (resp., deactivated) when the
literal s, (resp., s, ) is set to 1. Selectors play the role of
assumptions that can be activated/deactivated during the same
search while useful information can be recorded at each step.
Especially, when ¥’ is shown unsatisfiable under some such
assumptions, modern SAT solvers can often extract a subset
of the assumptions that causes ¥’ to be unsatisfiable [Eén and
Sorensson, 2003; Lagniez and Biere, 2013; Audemard et al.,
2013]. We will exploit this feature in the MCSes enumeration
algorithm. In the rest of the paper, we often implicitly refer to
¥% and make no ontological difference between the selectors
and the other literals in ¥°.

The concept of transition clause (in short, TC) is also often
a key paradigm for the currently most efficient approaches
to compute one MUS [Grégoire et al., 2007; Previti and
Marques-Silva, 2013], one MSS or one MCS [Grégoire et al.,
2014].

Definition 5. (Transition Clause) A clause a € ¥ is a transi-
tion clause (in short, TC) of ¥ when, at the same time, X is
unsatisfiable and 3 \ {«a} is satisfiable.

Thus, when a clause « is a TC of X, a (resp., & \ {a}) is
an MCS (resp., MSS) of 3. Moreover, if « is a TC of X then
« belongs to every MUS of X.

Although ¥ might not contain any TC, state-of-the-art
McCs-finding tools often take advantage of TCes in the fol-
lowing way. Starting from the empty set, they iteratively
and greedily construct a set ¥': at each step, clauses from
> that have not been considered so far are inserted one by
one in ¥’ until X’ becomes unsatisfiable. The last consid-
ered clause is a TC for ¥’ and is introduced in the MCS un-
der construction. The corresponding linear search algorithm
for computing one MCS is called BLS. State-of-the-art MCS-
finding tools [Grégoire et al., 2014; Bacchus et al., 2014;
Marques-Silva et al., 2013] have grafted various improve-
ments to this algorithm skeleton; they take advantage of dis-
joint cores, computed models, the exploitation of the disjunc-
tion of the clauses of the MCS under construction and back-
bone literals, mainly. In the rest of the paper, we refer to
improved versions of BLS that include subsets of these ad-
ditional features: they are noted ELS for Enhanced Linear
Search.

ELS is easily adapted in such a way that it computes one
Partial-MCS: the hard clauses are initially inserted in the MSS
without selectors. An initial call to a SAT solver is neces-
sary to check whether the set of the hard clauses is unsatisfi-
able: in the positive case, an empty set needs to be returned.
In the following, when we refer to a Partial-MCS-finding al-
gorithm, we consider a procedure with a set of hard clauses
331 and a set of soft clauses Yo as input parameters: namely,
ExtractPartialMCS(Xq, 22).

1310



Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence (IJCAI-18)

4 McSes Enumeration

Alg. 1 describes the typical skeleton of usual current ap-
proaches [Liffiton and Sakallah, 2008; Liffiton ef al., 2016;
Marques-Silva et al., 2013] to enumerate all MCSes: each
time one MCS is found, an additional clause is created. Its
role is to prevent the same MCS from being computed again.
It is made of the disjunction of all the selectors of the clauses
in the discovered MCS. In Alg. 1, the blocking clauses are
inserted in a set A. Partial-MCses of (X% U A, S) are com-
puted while Mcses still exist, or, equivalently, while ¥ U A
is satisfiable.

Clearly, the time-consuming part of this algorithm lies
in the multiple calls to a SAT oracle in the routine extract-
ing one Partial-McS. In this respect, [Previti et al., 2017]
has proposed to enhance the algorithm by recording, for
caching purpose, the cores discovered during the successive
computations of the different MCSes: this yields the cur-
rently most efficient MCSes enumeration algorithm, noted
mcscache—els in this paper. In the next section, we pro-
pose another approach to decrease the number of calls to a
SAT oracle; it is compatible with the caching technique. In
the experimental section, we show that the proposed approach
outperforms mcscache-els. Moreover, when combined
with the caching technique, it yields an even more efficient
algorithm. It is based on properties of transition clauses and
on the so-called recursive model rotation paradigm; both are
described in the next two sections.

Algorithm 1: Enum-ELS (Enumerate All MCSes Com-
puted with the Ext ractPartialMCS procedure);
Input : an unsatisfiable CNF formula X
Output : all McCSes of X
1 29« {aVasy|ae X}
2 5 {splaeX};
3 A0
4 while X° U A is satisfiable do
5
6
7

// with s, fresh variables
// a set of selectors

M~ + ExtractPartialMCS(X° UA,S);
output(M~);
A+~ AU (VSQGM’ Sa) 5

// blocking clauses

5 More MCSes Thanks to Transition Clauses

First, the next property shows that any transition clause (in
short, TC) o of an unsatisfiable subset ¥’ C ¥ can be the
starting point of a family of MCSes of 3, where each member
of this family contains «. This family is shown to capture the
McSes of X that are made of « together with any Partial-MCS
of (2'\ {a}, 5\ ),

Property 1. Let X be an unsatisfiable CNF formula and let
¥/ C ¥ such that ¥ contains at least one TC o.

For all Partial-MCSes T that can be built from (X' \ {a}, 2\
¥, T'U{a} is an MCS of ¥.

The previous property is easily adapted to address the case
where Partial-MCSes are targeted, as the following corollary
shows.
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Corollary 1. Let (X1, Xs) be a couple of CNF formulas such
that 3 is satisfiable and Y1 U X is unsatisfiable. Assume
that ¥, C Yo is such that ¥, U X} contains at least one
TC « of X For all Partial-MCSes T that can be built from
(Z1 U35\ {a}, X2\ Xb), we have that T' U {«} is a Partial-
MCS 0f<21, 22>

Now assume that we compute several TCes for a given sub-
formula CNF X’ C X. For each TC, it is possible to recur-
sively apply the previous corollary in order to compute sev-
eral Partial-MCSes. Moreover, the following property ensures
that all these Partial-MCSes are different.

Property 2. Let (31, X5) be a couple of CNF formulas such
that 331 is satisfiable and 31 U5 is unsatisfiable. Assume that
XY C 3y is such that X1 U X, contains at least two different
TCes ay and g that occur in XY, Then, for all Partial-MCSes
I’y and Ty that can be built from (31 UX5\{ a1}, X2\ X5) and
(Z1UZ\{aa}, 32\ X35), respectively, we have thatT'1U{c; }
and T'y U {az} are different Partial-MCSes of (¥1,%2).

The latter property allows us to derive and justify the orig-
inal recursive Algorithm 2, called TC-McCS, for Transition-
Clauses-Based Enumeration of MCSes. This algorithm ex-
tends ELS by computing not just one but several MCSes
in a recursive way by means of a model rotation method
(lines 7-12, Alg. 2). Its input is a couple of CNF formulas
(¥ U X5,U); the output is a set of Partial-Mcses for this
couple. Remember that U is the set of selectors correspond-
ing to the clauses that have not been assigned so far to either
an MCS or an MSS under construction. We assume that >J; is
satisfiable and thus, that ¥; U5 is satisfiable. ©5 is actually
built from X5 using selectors as explained earlier. Notice that
hard clauses do not need selectors as they must always be sat-
isfied and thus be activated. The Partial-MCSes of (X1, o)
are derived directly from the Partial-MCSes of (X; U X5, S),
where S is the set of unit clauses corresponding to all selec-
tors.

The algorithm starts by checking if U is empty. In the pos-
itive case, the procedure returns () since the set of Partial-
McSes of (X1 U X5, U) is empty as X1 U 5 is always sat-
isfiable by construction. This is also the non-recursive step.
Otherwise, the set of computed Partial-MCSes © and the set
of selectors M ™ are initialized to the empty set. Remember
that M records the selectors corresponding to the clauses
that can be activated when > U 25 U M is satisfiable. s,
is initialized to T, i.e., the tautology.

Next, the loop (lines 3-6) incrementally augments M T
with a sequence of s,,, which are removed from U. This pro-
cess is iterated while U is not empty and, at the same time,
while s, is not a TC of ¥y U X5 UMt U {s,}. 54 isa TC
when 2; UX5 UM+ U {s,} becomes unsatisfiable. Indeed,
all the selectors inserted so far in M have guaranteed that
Y1 U Eg U M remained satisfiable. Thus, when an incom-
ing s, makes the formula become unsatisfiable, this selector
S 1s a TC. At the end of the loop, two cases can occur: (1)
Sq € M. In this case, M7 has captured all the selectors
from U and the input formula was actually satisfiable. Ac-
cordingly, the empty set is returned; (2) s, ¢ M™ and thus
Sq 1s a TC. In this case, we look for a core I' of the current un-
satisfiable formula 3, UY5 UM U{s,} (line 8). It is easy to
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see that s, belongs to I" and it is a TC of I'. As already men-
tioned, modern SAT solvers return as a byproduct a core that
is often smaller than the formula that is shown unsatisfiable.
We choose to use this core instead of the latter formula since
the core often contains more TCes. It is easy to prove by con-
tradiction that every TC is present in the core. Once a core is
extracted, a method is called in order to identify TCes belong-
ing to the core. In the next section, we present an approach to
achieve this process, but for the moment, we just assume that
TCes are extracted. Notice that we have no guarantee that this
approach is efficient and identifies s, as a TC. For this reason,
we directly add s,, into 7, i.e., the set of transitions clauses,
in order to ensure the termination of the algorithm. Then, for
each identified TC sg € (T'N M) we recursively call the
function with (X UX5 U(T\{=ss}), UU(MT\I')) as input.
It is easy to show that these parameters match the conditions
stated in Corollary 1. Accordingly, all the Partial-MCSes that
we can compute from (X, UX5 U(T\{=s3}), UU(M*\TI))
can be augmented with s to yield a Partial-MCS of the input
formula.

Algorithm 2: TC-Mcs ((X; U X5, U));

Input : (X; UX5,U) acouple of CNF formulas
Output : © a set of Partial-MCSes of (X; U X5, U)

if U = () then return (;
O+ 0 Mt 050 < T
while U # () and ¥, UX5 UM™ U {s,} is satisfiable do
Mt Mt U{sa};
Sq < choose s, € U,
U+ U\{sa}s
if s, ¢ M then
[ < Core(X; UXS UM™Y U {s.});
9 | T+ {sa}UFind-TC();
10 | foreach s € TN M™ do
11 Q  TC-Mcs((S1UBS U(D\ {-s5}), UU(MT\D)));
12 L@e@u(ﬂxQ);

A B W N =

«w 3
=

13 return O;

TC-MCS ((¥1 U X5, U)) can be inserted in Alg. 1 to yield
a new enumeration algorithm for McCSes, depicted in Alg. 3.

Algorithm 3: Enum-ELS-RMR;

Input : an unsatisfiable CNF formula ¥
Output : all MCSes of X

1 29+ {aVs,la € X}

2 S+ {sala€eX };

3 A0

4 while ©° U A is satisfiable do

O «+Tc-Mcs ((ZFUA,S));

foreach M/~ € © do
output(M™);

LA — AUV, en-5a)s

// with s, fresh variables
// a set of selectors

w 3 W

// blocking clauses
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6 Using Model Rotation

Let us now explain how the Find-TC procedure (line 9 of
Alg. 2) computes additional TCes. A naive method would
consist in computing all the MCSes of ¥; U5 UM* U {s,}
that are singletons contained in M™. As this complete
direct method can be too time-consuming, we propose an
incomplete process to compute additional TCes, based on
the so-called recursive model rotation paradigm [Belov and
Marques-Silva, 2011b] noted rmr. This latter paradigm has
been initially defined in the context of computing one or sev-
eral Minimal Unsatisfiable Subsets (MUSes) of an unsatisfi-
able CNF formula, where computing additional TCes in a fast
way can also play a key role. As for [Bacchus and Katsirelos,
2015] where MUSes enumeration is targeted, we take advan-
tage of the duality between MUSes and MCSes. However, we
use the rmr paradigm for a very different task, which consists
in enumerating MCSes. rmr is based on a model-theoretical
perspective of TC: a TC of an unsatisfiable CNF formula X is
any clause oo € ¥ such that there exists a complete interpre-
tation 4 of ¥ that satisfies X \ {a} (and falsifies «, otherwise
the formula ¥ would be satisfiable). Starting from a model
w of ¥\ a, rmr consists in flipping variables from « and
checking if this new interpretation y’ satisfies all the clauses
of X except some o’ of X. In the positive case, o’ is marked
as being a TC of X provided that it was not already marked as
such, and the process is recursively repeated with p’ and «'.

rmr can thus compute several TCes when a first one is
identified as such. In the search of one Partial-MCS, this situ-
ation occurs when we have shown that there exists a model p
of ¥1 UYS UM and proven that ; UX5 U M+ U {s,} is
unsatisfiable. p then plays the role of the initial interpretation
and we keep the detected TCes belonging to {8 € Xs | sg €
M +}, only. Finally, the set of selectors associated with the
discovered TCes can be returned. It is important to note that
we make sure that the clause selectors are never flipped by
the process.

Although the rmr process is a polynomial one, it turns out
that it can be time consuming in practice; it can actually re-
duce the practical efficiency of the enumeration algorithm.
Such a situation occurs when the number of clauses contained
in the set A of blocking clauses becomes too large. To avoid
such a drawback, we point out some sufficient conditions to
deprive clauses of A of the rmr process.

First, let us show the possible critical role of A in the
search for additional TCes. Consider (X, S) with ¥° =
{81 V aV b-sy V —a,—s3 V —b}. Assume that one
MCS, namely the singleton {s; }, has been computed, already.
Thus, at this step A = {s1}. Let us iterate the process and
compute one more MCS and call TC-McS on (X% U A, S).
Let us suppose that we stop the main loop of TC-MCS when
M™* = {s1,s2} and s, = s3. The condition in line 7 is
satisfied; one core that is the complete formula is computed.
Then, we search more TCes of ¥° U S instead of 5 USUA.
In this case, it is easy to show that si, s, s3 are TCes and
twice the same MCS will be computed. Obviously, a posteri-
ori checking whether an MCS has already been computed by
consulting A can be too time-consuming.

However, a useful feature is that ¥° and A do not share
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literals. Indeed, A is a set of positive clauses composed of
selectors whereas these selectors occur negatively in $°. Ac-
cordingly, the satisfiabilty of ¥ U A can be split into two in-
dependent sub-problems following a partition { P, N'} of the
set of selectors, where P and N denote the set of selectors that
are positive and the set of negative ones, respectively. More
precisely:

Property 3. Let {P, N} be a partition of S, ¥° a CNF for-
mula augmented with the set of selectors S and A a CNF
formula built on selector variables and formed of positive
clauses, only. 5 U AU A cpsU N,y s is satisfiable

ifand only if 5 U \ o p s and AU\, y —s are satisfiable.

When an MCS is under construction we are implicitly
computing a bi-partition {M*, M~} of S such that £ U
Nscrr+ sand AUA /- —s are satisfiable. The aim is then
to move as many as possible selectors from M~ to M while
keeping both % U A\ 4+ sand AU A, —s satisfiable.
It is easy to prove that if the bi-partition {M T M~} of S is
such that % U A+ sand AU A ), —s are satisfiable,
then if we move one element s’ from M~ to M7 such that
»Su Nsenr+ugsy 8 is satisfiable then AU A ¢/ (o} 78
is satisfiable (as all the clauses of A are positive, assigning
one more positive selector cannot make the formula become
unsatisfiable). Let us stress that symmetric results can be ob-
tained when one element is moved from M ™ to M.

In order to avoid the need to consider A in the rmr pro-
cedure, we propose the following process. First, compute a
partition {M*, M~} of S that satisfies £ U A _,,+ s and
AU Ajepr- s M is then used as starting point to be
evolved into an MSS and all the clauses of M ~ are marked as
being candidates for being a TC. Then, each time we augment
M with a new selector, we have that 3% U e+ 8is satis-
fiable. Let us notice that, when we add an element to M T, in
some sense we “move” this element from M~ to M *. Con-
sequently, both SYUA 4+ sand AUA - —s are satisfi-
able. In some sense, the marked selectors are responsible for
the satisfiability of A. Thus, since M * is constructed such
that =5 U /\Se M+ S is satisfiable, it becomes useless to check
the satisfiability of A during the rmr process when we forbid
the marked clauses to be selected as TCes.

7 Experimental Study

We have implemented all our algorithms in C++ and
used Minisat http://minisat.se/ as backend SAT
solver. We have selected the 866 benchmarks used in [Previti
et al., 2017; Marques-Silva et al., 2013]: 269 instances
are plain Max-SAT ones and the remaining 597 are Partial-
Max-SAT ones. We have enriched this experimental set-
ting by also considering a second series of plain Max-SAT
benchmarks made of the instances from the MUS competition
http://www.satcompetition.org/2011. Some of
these instances were already present in the benchmarks pro-
posed by [Previti er al., 2017]. As we only kept the new ones,
1090 benchmarks were considered in total: 493 of them are
plain Max-SAT instances and 597 are Partial-Max-SAT ones.

All experimentations have been conducted on Intel Xeon
E52643 (3.30GHz) processors with 64Gb memory on Linux
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CentOS. Time-out was set to 1800 seconds for each run
of an algorithm on an instance; memory-out was set to
8 Gb for each such run. All data, results and soft-
ware used in the experimentations are available from
http://www.cril.fr/enumcs.

First, we compared our own implementation of
Enum-ELS-RMR (Alg. 4) with the same algorithm de-
prived of rmr. Our version of ELS included the exploitation
of computed models [Grégoire et al., 2014], as well as
of backbone literals [Marques-Silva et al., 2013]. The
comparison was made in terms of the total number of
computed MCSes for each benchmark instance. As shown
by Fig. 1 the rmr paradigm allowed us to compute more
(or the same number) of MCSes for every plain Max-SAT
benchmark instance. The same result was obtained for most
Partial-Max-SAT benchmarks, too.

107 T T T T
Partial-Max-SAT benchmarks g
8x106k . Max-SAT benchmarks 57 4
3 (0 I e R R .
B : e
o 3
g Ax100 o O o
[E] ‘ ¢} (¢) o (ﬂo : o
0 © @ o® ©o
2 6 A9 L& S S SR _
x10 o ®? : s
%O@AO o
0 A DO 208 A

sn O |
by 2x10° 4x105 6x10°  8x10% 107
Enum-ELS-RMR

Figure 1: Enum-ELS-RMR vs. Enum-ELS

Then, we combined the caching technique with
Enum-ELS-RMR, giving rise to Enum-ELS-RMR-Cache.
Following the recommendation of [Previti et al., 2017], we
did not include the backbone feature in ELS since it might
slow down the caching technique. Enum-ELS-RMR-Cache
allowed a largest number of MCSes to be computed, most
often (Fig. 2). Noticeably, it appeared that the instances for
which Enum-ELS-RMR-Cache delivered a smaller num-
ber of MCSes where such that Enum—-ELS-Cache already
produced a smaller number of MCSes than Enum-ELS-RMR.
Also, introducing the caching method leads to more memory-
out conclusions. These two last points can be explained by
the fact that, as already pointed out in [Previti et al., 2017],
the caching memory can become too large to handle.

Finally, we have compared the mcscache-els tool
from [Previti et al., 2017], which implements the caching
technique on a state-of-the-art version of Enum-ELS, with
Enum-ELS-RMR-Cache.  Fig. 3 clearly shows that
Enum-ELS-RMR-Cache outperforms mcscache-els
for almost all benchmarks and the difference between both
approaches is generally even more significant for the in-
stances with the largest numbers of MCSes.

8 Conclusion and Perspectives

In this paper, we have enhanced the most efficient tool to
enumerate all the minimal correction subsets (MCSes) of a
Boolean CNF formula. Although the number of MCSes can
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Figure 3: Enum-ELS-RMR-Cache vs. mcscache-els

be exponential in the worst case, it remains low in many real-
life problems, especially in problems for which the number
and the cardinality of the different minimal sources of unsat-
isfiability remain low. Indeed, there exists a hitting set cor-
respondence between the set of MCSes and the set of MUSes,
namely of minimal unsatisfiable subsets. Accordingly, com-
putational progress made in enumerating all MCSes of CNF
formulas when their number of MCSes is large opens new
perspectives for enumerating all MUSes for the same formula.
Indeed, the approches for listing all MUSes that first compute
all Mcses before they compute MUSes from them can clearly
benefit from these improvements obtained in the MCSes enu-
meration task. We believe that this study opens other various
paths for further research, too. Specifically, Property 3 opens
the way for some parallelization of the enumeration task. It
could be interesting to extend rmr using forms of local search
to detect additional TCes. Also, we plan to adapt this study
to the enumeration of all preferred MCSes when the clauses
of ¥ obey some preference pre-orderings. Finally, as skepti-
cal reasoning in the presence of conflicting information can
amount to computing the intersection of all maximal satisfi-
able subsets (MSSes), new progress in enumerating all MSSes,
and thus all MCSes, can prove valuable for implementing such
forms of reasoning.

9 Proofs

Proof of Property 1. By contradiction. Let us assume that
I' U {a} is not an MCS of X. That means that either (1) X\
(T U {a}) is unsatisfiable or (2) 356 € T' U {a} such that
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Y\ ((Tu{a})\ {B}) is satisfiable.

Assume (1). As T is defined as a Partial-MCS of (X' \
{a}, X\ '), we have that T is an MCS of (X \ {a}). Thus,
(3 \ {a}) \ T is satisfiable. This entails that (X \ {a}) U
{a}) \ (' U {a}) is satisfiable. This latter formula can be
simplified into ¥ \ (I' U {a}), which is thus also satisfiable.
This contradicts (1). Accordingly, (1) never occurs.

Assume (2). Let us suppose that 5 € T' (then 8 # «).
Since T is a Partial-MCS of (X \ {a}, X \ X'), we have that
I' is an McS of ¥ \ {a}. Thus, (X \ {a}) \ (T'\ {8}) is
unsatisfiable. This entails that ((X \ {a}) U {a}) \ (T"\
{8}) U {a}) is unsatisfiable. Because we supposed § # «,
we have (T'\ {8}) U{a} = (T U{a})\ {B}. Consequently,
Y\ ((TU{a}) \ {B}) is unsatisfiable. This contradicts the
assumption and thus 5 and « must be the same clause.

Because T is a Partial-MCS of (X' \ {a}, 2\ '), we have
(X'\{a})NT'=0PandT C X\ '. By hypothesis o € 3/,
this means o ¢ T and thus ((X'\ {a})U{a})NT = 0. Hence
YNT =0.If 8 = o, thenwe have X\ (T U{a})\{a}) =
Y\T is satisfiable according to assumption (2). Since &' C 3,
we also have ¥’ \ T is satisfiable. Since ¥’ N T = @ we
have that ¥’ is satisfiable. This contradicts the hypothesis
that asserts that >’ is an unsatisfiable subset of 3.

Proof of Corollary 1. Property 1 allows us to conclude that
T'u{a}isanMcs of ¥ U (Z4H\ {a}) U (B2 \ X)) U{a}, and
thus of 37 U Xo. Since I' U {a} C 3o, we directly conclude
that T' U {a} is a Partial-MCS of (X1, ¥s).

Proof of Property 2. From Corollary 1 it is easy to show that
'y U{a;} and T2 U{aa} are both Partial-MCSes of (31, 3s).
Now, let us show that these Partial-MCSes are different. It is
sufficient to show that ai; ¢ I's. By definition of a Partial-
MCS, we have I's C 5 \ X, As ag € X), it is straightfor-
ward that oy ¢ 'y and then T’y U {a1} # Ty U {an}.

Proof of Property 3. Let us show thatif 25 UAUA _p sU
Nsen s then S5 U p sand AU, s are satisfiable
and vice versa. (=) Straightforward. (<) If 25 U A _ps
and A U /\S€ n s are both satisfiable, then there exists a

model £ that satisfies ©° U A .ps. By definition of %9,
whatever the satisfiable interpretation considered is, it is al-
ways possible to flip the truth value of selectors from 1 to
0 and keep the resulting interpretation pp such that pup is a
model of ¥ (this is possible because assigning a selector to
0 deactivates clauses of ©° and then weakens this formula).
Thus, since P N N = (), we can construct the interpreta-
tion u¥ that is equivalent to yp except on the truth value of
the selectors belonging to /N where we force them to be as-
signed to 0. It is clear that ,u]}’ is a model of ¥° U Necp s
Now, let us prove that % is a model of A U Nsen 78 too.
By construction, A only contains positive clauses composed
of selectors. Then, whatever the model of A U A 5 —s
considered is, it is always possible to flip the truth value of
some selectors from O to 1 and keep this interpretation as
a model of A. Thus, since all models of A U A .y —s
must satisfy A\ . —s, we can construct the interpretation
Nsen =8 N N\yep s that satisfies AU A\ —s. Thus, since
A is only constructed on selector variables, it is easy to show
that p%¥ also satisfies AU A\, —s. Consequently, 1) satis-

fies DS UA U, cpsUA, e s
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