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Abstract. We present and evaluate AMPHAROS, a new parallel SAT solver based
on the divide and conquer paradigm. This solver, designed to work on a great
number of cores, runs workers on sub-formulas restricted to cubes. In addition
to classical clause sharing, it also exchange extra information associated to the
cubes. Furthermore, we propose a new criterion to dynamically adapt both the
amount of shared clauses and the number of cubes. Experiments show that, in
general, AMPHAROS correctly adjusts its strategy to the nature of the problem.
Thus, we show that our new parallel approach works well and opens a broad
range of possibilities to boost parallel SAT solver performances.

1 Introduction

Papers dealing with SAT solvers usually begin by recalling the tremendous progress
achieved on problems coming from industry. Recent results are indeed very impressive,
and a large number of industrial problems, e.g. from planning [35], formal verification
[11] and cryptography [40] are nowadays solved using a reduction to SAT instead of
ad-hoc solvers. However, playing the devil’s advocate, one can observe that progress
has slowed down noticeably. It has become harder and harder to improve solvers dra-
matically. Furthermore, SAT suffers from its own success, since formulas to solve are
more and more difficult.

At the same time, cloud computing is changing the landscape of computing science:
it is now possible to request a virtually unlimited number of computing units that can be
used within a few seconds. However, as it was pointed out during the last competition
[37], parallel SAT solvers are not well scalable. Indeed, the winner of the parallel SAT
track chose to only use half of the available cores. Thus, to benefit from the huge number
of computing units, as in a cloud context, one must design new solvers architectures.

In the case of SAT solving, solvers can be divided into two categories. First and fore-
most, portfolio based approaches [1,8,13,23,24,36] run different strategies/heuristics
concurrently, each on the whole formula. While computing the processes exchange
information (generally in the form of learnt clauses) to help each other [1,7,23,24].
The second category of solvers uses the well known divided and conquer paradigm
[2,15,16,25,26,39,41,42]. In such solvers, the search space is divided into sub-spaces,
which are successively sent to SAT solvers running on different processors, so called
workers. In general, each time a solver finishes its job (while the others are still work-
ing), a load balancing strategy is invoked, which dynamically transfers sub-spaces to
this idle worker [15,16]. The sub-spaces can be defined using the guiding path concept
[42], generated statically, i.e., before the search [25,39], or dynamically, i.e., during the
search process [2,26,41]. As in portfolio solvers, learnt clauses can also be shared [18].



Even though the winners of the parallel track of the last SAT competitions are based
on the portfolio paradigm, solvers based on the divide and conquer approach become
increasingly more efficient (TREENGELING [12] a solver based on this paradigm was
ranked second in the last competition). It is in this context that we propose AMPHAROS,
a new parallel SAT solver, which follows the divide and conquer approach. Our long
term objective is to develop a SAT solver for the cloud and this paper is a first step in
this direction. In our approach, the formula is partitioned using cubes (as in [41]). One
process, named MANAGER, is dedicated to managing these cubes. Then, solvers work
on the formulas induced by those cubes. In constrast to other divide and conquer ap-
proaches, several solver may work on the same sub-problem and they can stop working
before finding a solution or a contradiction. The latter is to avoid solvers being stuck
on instances that turn out to be too hard for them. In that case, the solver asks the man-
ager for another sub-problem. This sub-problem can either originate from an existing
cube or from refining the current sub-problem. In our approach, the solvers select by
themselves the dynamically generated cubes they try to solve. Additionally, two types
of learnt clauses are shared: the classical shared clauses and others that are dependent
on the cubes.

Since our goal is to solve SAT with a great number of computing units, it is impor-
tant to propose a parallel architecture which adapts its strategy to the number of workers
and the nature of the problem. To this end, we propose an approach which uses an adap-
tive algorithm that adjusts simultaneously and dynamically the number of clauses that
are shared and the number of new cubes. This is possible thanks to a new measure that
estimates if the search process has to be intensified or diversified. As we demonstrate
in experiments, this measure works well and aligns with the stated goal. We show that
when the search space needs to be diversified (resp. intensified), the proposed measure
detects that the number of cubes must be increased (resp. decreased) and the number of
shared clauses decreased (resp. increased).

2 Preliminaries

Due to lack of space, we assume the reader to be familiar with the essentials of propo-
sitional logic and SAT solving. Let us just recall some aspects of CDCL SAT solvers
[32,30]. CDCL solving is a branching search process, where at each step a literal is se-
lected for branching. Usually, the variable is picked w.r.t. the VSIDS heuristic [32] and
its value is taken in a vector, called polarity vector, in which the previous value assigned
to the variable is stored [34]. Afterwards, Boolean constraint propagation is performed.
When a literal and its opposite are propagated, a conflict is reached, a clause is learnt
from this conflict [30] and a backjump is executed. These operations are repeated until
a solution is found or the empty clause is derived.

CDCL SAT solvers can be enhanced by considering restart strategies [20] and dele-
tion policies for learnt clauses [3,6,19]. Among the measures proposed to identify the
relevant clauses, the literal blocked distance measure (in short LBD) [6] is one of the
most efficient. The clause’s LBD corresponds to the number of different levels involved
in a given learnt clause. Then, as experimentally shown by the authors of [6], clauses
with smaller LBD should be considered more relevant.



It is well known that for several applications it is necessary to solve many similar
instances [5,9,17]. To make solvers more effective in such a context, it is particularly
useful to use assumptions to keep track of learnt clauses during the whole search. A set
of assumptions is defined as a set of literals that are assumed to be true [17]. This set
can be viewed as a cube, i.e. a cunjunction of literals (in the remainder of this paper, we
denote cubes using square brackets, also we sometimes identify cubes with the formu-
las they imply), and the search is restricted to this cube. If during the search process,
one needs to flip the assignment of one of these assumptions to false, the problem is un-
satisfiable under the initial assumptions. In such a situation, it is possible to recursively
traverse the implication graph to extract a clause that explains the reason of the conflict.
Even if this problem seems close to the classical SAT problem, a special track of the
last SAT competition has been dedicated to this issue [37] and several existing studies
attempt to improve SAT solvers to deal with assumptions [4,28,33].

3 Tree management

The performance of divide and conquer approaches depends on both, the quality of the
search space splitting, and how the sub-spaces are assigned to the solvers.

Even if AMPHAROS is a divide and conquer based solver, it is important to stress
that, contrary to [38], it does not use the work stealing strategy. In our case, the division
is done in a classical way as in [2,16]. More precisely, our approach generates guiding
paths, restricted to cubes, that cover all the search space. This way, the outcome of the
division is a tree where nodes are variables and the left (resp. right) edge corresponds to
the assignment of the variable to true (resp. false). Then, solvers operate on leaves (rep-
resented by the symbol NIL) and solve (under assumptions) the initial formula restricted
to a cube which corresponds to the path from the root to the related leaf. Fig. 1a shows
an example of a tree containing three open leaves (cubes [x1,¬x2,x4], [x1,¬x2,¬x4]
and [¬x1,¬x3]), two closed branches (already proven unsatisfiable) and four solvers
(S1 . . . S4) working on these leaves.

As we will see in Sect. 3.2, in our architecture, solvers can work on the same cube
(as solvers S1 and S2 in Fig. 1a) and can stop working before finding a solution or a con-
tradiction. In AMPHAROS, each time a solver shares information or asks to solve a new
cube, it communicates with a dedicated worker, called MANAGER. Its main mission is
to manage the cubes and the communication between the solvers (here CDCL solvers).
Thus, when a solver decides to stop solving a given cube (without having solved the
instance), it can ask the MANAGER to enlarge this one (see Sect. 3.3). Another situation
where a solver stops, is once a branch is proved to be unsatisfiable. In this case, a mes-
sage informs the MANAGER and the tree is updated in consequence (see section 3.4). In
both cases, when a solver stops it goes through the tree and starts solving a new cube
(potentially the same, see Sect. 3.2). The end of the solving process finally occurs either
when a cube is proved to be satisfiable or when the tree is proved to be unsatisfiable.

This section describes the overall picture of our solver. First, in Sect. 3.1, the way
the tree is initialized is presented. Then, the transmission and extension processes are
respectively explained in Sect. 3.2 and Sect. 3.3. Finally a tree pruning rule is introduced
in Sect. 3.4.
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Fig. 1: Schematic overview of how the solver S4 and the MANAGER interact to select
a cube in the current tree represented Fig. 1a (a plain (resp. dotted) line means that the
variable is assigned to true (resp. false)). On the sequence diagram, in Fig. 1b, we can
see that seven messages are exchanged between the MANAGER and the solver before
S4 starts to solve the sub-problem induced by [x1,¬x2,¬x4]. The path selectioned by
S4 is represented with black lines in the left picture.

3.1 Initialization

At the beginning of the search process, we initialize the workers. This step is required
to setup the activity (related to VSIDS heuristic [32]), the polarity of variables and to
create the root of the tree. To this end, all solvers try to solve the whole formula con-
currently until a given amount of conflicts is reached (10,000 in our implementation).
Note that this corresponds to solve an empty cube. In order to avoid performing the
same search, the first descent of each solver (i.e. the choice of the variables and their
polarity on the first branch) is randomized. Then, in the same manner as [31], the first
solver reaching the maximum number of conflicts communicates its best variable with
respect to the VSIDS heuristic to the MANAGER. This variable becomes the root of the
tree. Consequently, the tree only contains two leaves, i.e. cubes are restricted to a single
literal (a variable and its opposite). Regarding Fig. 1a, the selected variable was x1 and
the set of initial cubes was {[x1], [¬x1]}.

3.2 Transmission

As already mentioned, a solver may stop the search before solving its instance. This
situation occurs when it cannot solve the sub-problem associated to the cube with a
number of conflicts less than a certain limit (10,000 in our implementation). The solver
then contacts the MANAGER in order to select a potentially new cube to solve. The
originality of our method is that a solver selects by itself one cube among all unsolved
ones in the tree (corresponding to NIL leaves).

Fig. 1 shows a diagram sequence (Fig. 1b) that illustrates the exchanged messages
when the solver S4 requests a new cube from the MANAGER’s tree (Fig. 1a).

A first message (GO-ROOT) is sent by the solver to ask for the root of the tree. It re-
ceives x1. Then, at each step of the cube selection, the solver asks for the children of the
previously received variable (with message GIVE-CHILDREN). The answer is composed
of two triplets: one for each polarity of the current node. Each triplet is composed of



the child variable, the number of available leaves (NIL nodes) and the number of solvers
working on these leaves, in that order. Considering Fig. 1b, the first message returns the
triplet (x2,2,2) for the positive polarity of x1 (the left branch contains two leaves and
two solvers (S1 and S2)) and (x3,1,1) for the negative one.

The solver decides to go down either on the left (assigning positively the current
variable) or on the right (assigning negatively the current variable) branch according to
the values returned in these triplets. By default, it selects the branch where the number
of working solvers is lower than the number of leaves. The idea is to cover the most
of cubes and to dispatch solvers all over the tree. If this condition is true or false for
both branches, the solver selects the branch according to its polarity vector [34]. Note
that in this implementation, we do not know if some cubes do not contain solvers. After
selecting its branch, the solver informs the MANAGER (with messages GO-LEFT or GO-
RIGHT) and assigns the related literals using assumptions.

Thus, in our example of Fig. 1, the solver S4 assigns x1 (the root) positively using
its polarity (as the condition previously mentioned is false for both branches). Since the
branch related to x2 is already proven unsatisfiable, S4 does not have other alternatives
to setting the literal x2 to false. Finally, it has to set x4 to false since the previous
condition holds. Arriving at a leaf, the solver starts to solve the cube [x1,¬x2,¬, x4].

3.3 Extension

Initially, the tree contains only one variable and then two cubes to solve (see Sect.
3.1). To divide the original formula into a substantial number of cubes, we propose
to dynamically extend the tree during the search. Recall that we do not use the work
stealing strategy.

One associates to each leaf an integer variable β representing the presumed diffi-
culty of a subproblem (cube). Each time a solver cancels its search on a given cube
(associated with a leaf of the tree), the variable β of this leaf is incremented. Then, a
large value of β expresses that a cube is potentially hard to solve. Note that a solver can
increase several times the same variable β. When a solver stops its search and requests
a new cube, the MANAGER increments the value β associated to the leaf on which the
solver was working. When the β value of a leaf is greater or equal than the number of
open leaves (i.e. NIL leaves) times an extension factor fe then the tree is expanded on
the given leaf. 1

The extension is done in the following way. The last solver increasing the variable β
returns its best boolean variable w.r.t. to VSIDS heuristic and two new leaves are created,
extending the related cube. The β values of the two leaves are initialized to 0. Taking
into account the number of open leaves, the more unsolved cubes the tree contains, the
less extensions are performed. In this way and contrary to Cube And Conquer [41], our
approach does not create too many cubes, regardless of the number of cubes already
proven unsatisfiable. Since a leaf can contain many solvers, note that after extension,
some solvers can work on a node that is not a leaf.

Fig. 2 shows an example of an extension. The tree (the same as in Fig. 1) contains 3
open leaves and some solvers work on these leaves. When, solver S3 stop working on

1 We will discuss about the definition of the extension factor in section 5.2.
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Fig. 2: The left picture represents the tree before the S3’s extension request was ac-
cepted. Since the value of β associated to the node satisfied the extension criterion, the
MANAGER accepts this extension and modified the left tree to obtain the right one.

cube [¬x1,¬x3] the associated β (in red) is incremented and becomes 3. The condition
allowing an extension holds (we suppose that fe is equal to one) and thus extension
is performed. Solver S3 that is responsible for the extension provides its best variable
(x5) to the MANAGER and the cube [¬x1,¬x3] is expanded with the variable x5 gen-
erating two new cubes. Note that the (red) β value initiator of this extension becomes
useless since its associated node is not a leaf anymore. Solver S3 is now free to ask the
MANAGER a new cube to solve (see Sect. 3.2). Furthermore, in the next step, no matter
which solver ask for extension, it will not be performed since the number of leaves is
now equal to 4 (we suppose here that fe remains unchanged and is still equal to 1).

3.4 Pruning

Because each sub-problem is solved under assumptions, when a cube is proved to be un-
satisfiable, the solver (from which unsatisfiability is proved) computes a conflict clause
(which is the negation of a subset of the literal assumptions). This information is trans-
fered to the MANAGER which is able to compute a cutoff level in the tree search. The
tree is simplified in consequence. Let us remark that a solver can directly prove the
global unsatisfiability of the problem when the computed conflict clause is empty.

Moreover, if both children of a node are unsatisfiable then this node also becomes
unsatisfiable. In that case, the node can be safely removed and the unsatisfiability is
directly associated to the edge of its parent. Of course, this process is recursively applied
until each node has at least one non-unsatisfiable child.

4 Clause exchange

In this section, we discuss the two ways of exchanging information in our solver AM-
PHAROS. We first explain how the clauses learnt by a solver are shared with the others
and then we present an original approach to sharing local unit literals by taking advan-
tage of our tree.



4.1 Classical Clause Sharing

It is well known that clause sharing noticeably improves the performance of parallel
SAT solvers [24]. In our framework, solvers also share learnt clauses. However, contrary
to the classical behavior where the clauses are directly shared between workers, for us
information passes through the MANAGER.

Clause sharing from the solver side Once a solver reaches a threshold of conflicts
(500 in our implementation), it communicates with the MANAGER to send and/or re-
ceive a set of clauses. Clauses to be sent are saved in a buffer which is cleared after
each communication with the MANAGER. Good clauses with respect to initial LBD
(less or equal to 2) are directly added to the buffer. Other clauses are also added, as
in [7], if they participate in the conflict analysis. However, because we cannot share as
many clauses as SYRUP, only clauses which obtain a dynamic LBD less or equals to 2
before being used twice in the conflict analysis procedure are shared.

In order to deal with imported clauses, solvers manage three buffers: standby,
purgatory and learnt. Received clauses are stored in standby. In this buffer,
clauses are not attached to the solver [3]. Every 4,000 conflicts, clauses are reviewed:
they can be transfered from a buffer to another, or be definitively deleted or kept in the
current buffer.

A clause from the standby buffer can be transfered to the purgatory buffer.
Contrary to the standby buffer, clauses in the purgatory are attached to the solver
and then participate to the unit propagation process. We discuss the criterion allowing a
clause to be moved from standby to purgatoryin Sect. 5.2.

In the same manner, a clause from the purgatory can be transfered to the third
buffer learnt when it is used at least once in the conflict analysis process. The tempo-
rary buffer purgatory is used to limit the impact of new clauses on the learnt strategy
reduction.

The reduction strategy used to clean these two additional buffers depends on a
counter associated with each clause. The counter is incremented each time the asso-
ciated clause remains in the same buffer. If the counter reaches a threshold (14 in our
implementation), the clause is deleted. Note that the counter is reset each time a clause
is moved from one buffer to another.

Clause sharing from the MANAGER side MANAGER collects learnt clauses from ev-
ery solver and manages them. Learnt clauses are stored in a queue and the MANAGER
periodically checks if they are subsumed or not. In practice, a single core is dedicated to
the MANAGER. Thus, processing all clauses in the queue at once can be time consuming
and can block communications between MANAGER and solvers. To avoid this situation,
MANAGER checks subsumption by batches of 1,000 clauses each.

MANAGER stores the learnt clauses that are not subsumed in a database and sends
them each time a solver requests them. Of course, sent clauses are those that have not
been already sent to the solver and that are not coming from it.



x1

x2

⊥

NIL NIL

x4

x3

⊥ NIL

u1 ¬u2

¬u3 ¬u4 ¬u4

u6

u5

u7

S4

(a) S4 gives ¬u2 ¬u4 u5 to MANAGER

x1

x2

⊥

NIL NIL

x4

x3

⊥ NIL

u1 ¬u2 ¬u4

¬u3 u5

u6 u7

(b) Unit literals management
Fig. 3: The left picture represents a decorated tree with the additional literals (in red)
given by S4. These additional literals are pull up, using the unsat (pull up u5) and
identical literals (pull up u4) rules, to obtain the right tree.

4.2 Assumptive Unit Literals

A second way of exchanging information in our approach is transferring unit literals
(which are propagated under some assumptive literals) between solvers and the MAN-
AGER. In the following, we present where these literals originate from and how they are
exchanged and managed.

Assumptive Unit Literals from the solver side Let us first recall that each solver
works under an assumption A (this assumption can be empty) representing the cube to
solve. When a literal ` /∈ A is propagated thanks to a sub-assumption A′ ⊆ A, this
information can be spread to the MANAGER in order to be broadcasted to other solvers.
More precisely, the solver communicates to the MANAGER that ` can be propagated
with A′. From the other side, when a solver selects a branch (ie a literal `′) during
cube transmission, it also receives the set of unit literals associated with `′ that can be
propagated. Thus, the transmission of a cube (see Sect. 3.2) contains these additional
messages. Hence, MANAGER takes care of a decorated tree containing guiding paths
and the set of unit literals that have to be propagated at each branch. Figure 3.a shows
an example of such a tree. When solver S4 asks for a branch, it starts by recovering
the set of unit literals {u1}. It also propagates ¬u2 (in red) giving this information to
the MANAGER. It selects the branch x1 and then, retrieves the literal ¬u3 to propagate.
in the same way, it also propagates ¬u4, providing such assumptive unit literal to the
MANAGER and so on.

As we will see in the experiments later, assumptive literals are very important. They
are special clauses that clearly reduce the search space of a given branch. Consequently,
the fact that a literal ` can be propagated from A′ is taken into account in the solver
by adding, in a dedicated database (this database is different from the aforementioned
learnt buffer and is never cleaned up), a clause built with the negation of A′ and the
literal `′. Remark that when A′ = ∅ the literal `′ is unit and is added to the unit literals
of the solver.



Assumptive Unit Literals from the MANAGER side When the MANAGER learns that
a literal can be propagated from a subset of literals coming from an assumption, this
information is communicated during cube’s transmission and can be added in the last
branch of the node associated with this sub-assumption. From this decorated tree, one
can pull up unit literals from a branch to higher branches. This situation occurs either
when a branch is proved unsatisfiable or when both branches of a node contain the
same literal [29] (as highlighted Fig. 3). In the first case, all the literals of the non-
unsatisfiable branch are pulled up to the father branch (as literal u5). In the second case,
only literals occurring in both branches are transmitted to the father branch (this is the
case for literal ¬u4). This process loops recursively until a fix point is reached. Remark
that when no father branch exists (occurring when literals are moved from branches of
the root node) then these literals are proved unit.

5 The Intensifcation/Diversification Dilemma

When several solvers run concurrently on a problem, they can perform redundant work.
Identifying such a situation, it would be beneficial to modify the solvers’ strategies in
order to diversify the search. Nevertheless, due to clause sharing between solvers, ex-
ploring too different search spaces is also a handicap. Thus, in some situation focusing
several solvers on the same part is required (intensification).

This paradigm, called intensification/diversification dilemma, has already been stud-
ied in the context of portfolio-based parallel SAT solvers. This issue can be addressed
either statically, by using several solvers with orthogonal strategies [1,24,36], or dy-
namically, by modifying the solvers’ strategies during the search. However, deciding
when a solver must intensify or diversify its search is not easy and only few publica-
tions tried to deal with this problem [21,22]. Thus, in [21], a master/slave architecture
is proposed, where masters try to solve the original problem (ensuring diversification),
whereas slaves intensify their master’s strategy. In [22], a measure to estimate the de-
gree of redundancy between two solvers is presented. It considers that two solvers are
closed when they have approximately the same polarity vector. The diversification pro-
cess consists in modifying the way the phase of the next decisions is realized.

To the best of our knowledge, no criterion has been established to identify that sev-
eral solvers execute redundant work except the measure based on the polarity mentioned
before [22]. Unfortunately, this criterion is not applicable with many solvers (this mea-
sure has been initially proposed for a portfolio of four solvers). That is why a more
scalable criterion is required.

5.1 Evaluating the Degree of Redundancy

We propose to measure the degree of redundancy by taking into account how many
clauses that are shared between solvers are redundant. We use a list to store from the
beginning the number of received clauses (str) and a second to store the number of
kept clauses (stk). Kept clauses are those which have not been removed during the
subsumption process. Each time a solver comes back to the MANAGER (every 1,000
conflicts in our implementation), it shares its clauses. The number of received (resp.
kept) clauses since the beginning is pushed to str (resp. stk) by the MANAGER.



The redundancy shared clauses measure, in short rscm, is defined for a step t w.r.t.
a sliding window of sizem (20,000 in our experiments) as the ratio between the number
of clauses received during the last t−m updates of str and the number of clauses kept
during the same time. More precisely, we have ∀j < 0, str[j] = stk[j] = 0:

rscmt =
str[t]− str[t−m]

stk[t]− stk[t−m]
, if stk[t]− stk[t−m] 6= 0

rscmt = str[t]− str[t−m], otherwise
(1)

First, note that when several solvers work on the same part of the search space, there
is a high likelihood that learnt clauses by the different solvers are redundant. This means
that the number of subsumed clauses is important and therefore the rscm value is high.
Conversely, when solvers are sparsed in the search space, there is a high probability that
shared clauses are not redundant and then the rscm value tends to be low. Consequently,
a small value of the rscm indicates that the solver needs to intensify the search, whereas
a high value signifies that the solvers have to diversify their search space.

5.2 Intensification/Diversification Mechanisms based on the rscm measure

It is possible to control in several ways how solvers explore the search space (shared
clauses, solvers’ heuristics, . . . ). In AMPHAROS, we choose to solve the intensifica-
tion/diversification dilemma by controlling two criteria: the way the tree is extended
(see Sect. 3.3) and the number of clauses which are transferred from the standby
to the purgatory buffers (see Sect. 4.1). Thus, for us, diversifying (resp. intensify-
ing) the search consists in increasing (resp. decreasing) these two parameters. Before
introducing them, let us a summarize:

Few subsumed Clauses (rscm is low) Many subsumed clauses (rscm is high)

Reduce extension
Increase the number of imported clauses

Favour extension
Limit the number of imported clauses

Intensification Diversification

Extension guiding by the rscm First, let us remark that each path from the root to a
leaf represents a unique set of literals that splits the search space in a deterministic way.
Thus, the bigger the tree, the higher the probability to run two solvers in totally different
sub-problems. To control the tree grows, we define the extension factor fe introduced
in the section 3.3 in the following way:

fet =
1,000

rscmt
3

(2)

Let us recall that this extension factor is used to define the threshold of misses that
a cube can encounter before an extension is accepted. Hence, the smaller (resp. bigger)
the rscmt value is, the bigger (resp. smaller) the fe value is and then the slower (faster)
the tree extension is. Note that the cubic factor allows to decrease fe rapidly while
fe is bounded (by 1,000) since when fe is high solvers run in concurrently and the
tree is never updated. To prevent the tree from growing too quickly, we also bound the
minimum value that fe can take by 10.



Condition to move from the standby to the purgatory When a clause is received
by a solver it is possible that it is subsumed by a clause already present. This becomes
highly probable when almost all shared clauses are found to be subsumed during the
clause subsumption process. Thus, it seems natural that the number of accepted clauses
(ie. the number of clauses transferred from the standby to the purgatory) increases
(resp. decreases) when the rscm value decreases (resp. increases).

As already mentioned (Sect. 4.1), in AMPHAROS the clauses freshly received are
not directly attached to the solver. Thus, it is important to choose a clause selection
criterion independant from the activation of clauses. To control the amount of clauses
moved from the standby to the purgatory we use the notion of psm introduced
in [3] and already used in the portfolio based SAT solver PENELOPE [1]. Recall that
the psm of a clause represents the number of literals which are assigned to true by the
polarity vector. Thus, a clause can be scored even if it is not used by the solver.

Then, in order to increase/decrease the number of clauses attached (and then trans-
ferred) in the purgatory, a criterion based on both the psm and rscm values is
proposed. This criterion is motivated by the observation from [3] that the clauses with a
small psm value have a great potential to enter in conflict or be used during the search.
Thus, a clause will be authorized to move from the standby buffer to the purgatory
buffer when its psm value is less or equals than bpsmmax

rscmt
c, where psmmax corresponds

to the psmmaximum limit accepted (set to 6 in our experiments). Consequently, clauses
with a psm value of zero will be systematically accepted whatever the value of rscm.
Whereas, clauses with a high psm value will be accepted if and only if they are probably
not subsumed.

6 Experiments

We now evaluate AMPHAROS on the 100 benchmarks from the SAT-RACE 2015, par-
allel track [37]. During the last competition 53 (resp. 33) instances have been proved
satisfiable (resp. unsatisfiable) by at least one solver and 14 instances remained un-
solved. All experimentations have been conducted on 2 Dell R910 with 4 Intel Xeon
X7550. Each node has 32 cores, a gigabit ethernet controller and 256GB of RAM. Time
limit was set to 1,200 seconds per test (wall clock time). Then, for experiments executed
with 64 cores, we use two different computers. All log files and additional pictures are
available in http://www.cril.univ-artois.fr/ampharos/.

6.1 Communication management

Since in AMPHAROS a lot of messages have to be exchanged between the MANAGER
and solvers, the management of the communications has to be very effective. Thus, we
have opted for the open source Message Passing Interface implementation (Open MPI)
to manage the communication on a low level.

The bottleneck imposed by the fact that the MANAGER has to all at once compute
the subsumed clauses and communicate with the solvers, was a major problem. To avoid
that solvers wait too long without work, a round robin architecture with non-blocking
listening of solvers was put in place. Moreover, because the subsumption process can
be time consuming, the clauses received to be checked are not treated at once (in our



Tree Exchanges SAT UNS Total

Yes C + UL 49 25 74
Yes C 47 21 68
Yes UL 47 18 65
Yes None 41 15 56
No C 43 6 49
No None 44 6 50

(a) Overview table
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Fig. 4: Comparing several versions of AMPHAROS on 64 cores. Tab. 4a gives the results
of each version in term of solved instances. The columns represent, in that order, the
fact that the tree decomposition is activated (yes/no), the kind of information exchanged
(clauses (C) or/and unit literal (UL)), the number of SAT/UNSAT instances solved. Fig.
4b shows the number of solved instances (x-axis) w.r.t. the time (y-axis).

implementation packet of 1,000 clauses are considered). Thus, the MANAGER commu-
nicates with a solver, then checks a set of clauses, and so on, until the time limit is
reached or the problem is proved satisfiable/unsatisfiable.

6.2 Setup

AMPHAROS is a modular framework that allows to add easily new types of solvers. For
these experiments three sequential SAT solvers have been used: GLUCOSE [6], MIN-
ISAT [17] and MINISATPSM [3]. Only a couple small changes have been implemented
in these solvers. In order to manage the interactions with the MANAGER, all solvers
implement a C++ interface. This interface grouped communication routines and meth-
ods used to deal with standby and purgatory buffers. The core of solvers has also
been modified in order to avoid resetting everything at each call to SAT solver (restart,
learnt deletion policies, . . . ). Moreover, as for the version of GLUCOSE presented in
[4], when a solver restarts it does not go to decision level 0 but to the level of the
last assumption. The clauses moved from the purgatory to the learnt buffer are
simply incorporated into the learnt clauses database as if they were learnt by solvers
themselves.

6.3 Results

The experimental evaluation is divided into four parts. First, we evaluate the different
ingredients of AMPHAROS. Then, we study the scalability of our solver. Finally, we
compare AMPHAROS to the state-of-the-art and study the impact of the rscmmeasure.

On the impact of each component The benefit of the three optional components (tree
decomposition (Tree), clauses (C) and unit literals exchange (UL)) of AMPHAROS has
been studied experimentally. To this end, several versions of AMPHAROS have been ex-
ecuted on 64 cores. These experiments, reported in Fig. 4, show gradual improvements



when each of these options was taken into account in a cumulative way. From the table
(4a) and the cactus plot (4b) several observations can be made.

First, Fig. 4a shows that whatever the combination of options is used, AMPHAROS
is more efficient when the tree decomposition is used (Tree sets to true in the first col-
umn). The versions working on the initial problem in a competitive way, which could
be regarded as portfolio parallel SAT solvers (with (C) or without (none) clause shar-
ing), solve systematically less instances than the others running on sub-problem ob-
tained from cubes. This shows the importance of how AMPHAROS solves the intensifi-
cation/diversification dilemma using a tree decomposition.
Second, results show the importance of exchanging information between solvers. AM-
PHAROS that does not exchange information systematically solved less problems than
the others which share clauses or unit literals. When we separately compare the two
exchange options (C and UL), we observe that sharing clauses allows (as expected) to
improve the solver on unsatisfiable problems. However, as pointed out in Fig. 4b, acti-
vating this option makes the solver slower on easy problems (solved with less than 600
seconds). This can be explained by the fact that the communication engendered to share
clauses and manage them is significant and slows down the solvers on ’easy’ problems.

Finally, as highlighted by these experiments, there is a synergy between the ex-
change options. Even if clause sharing drastically reduces the solver performance on
easy benchmarks, combining this component with the unit literals allows one to deliver
the most significant improvement in terms of number of successfully solved instances.
From now, AMPHAROS is reported as the version using all components.

0

200

400

600

800

1000

1200

20 30 40 50 60 70

8 cores
16 cores
32 cores

0

200

400

600

800

1000

1200

20 30 40 50 60 70

64 cores (2x32)
64 cores   (8x8)

Fig. 5: Number of instances solved

Scalability evaluation To evaluate the
scalability of AMPHAROS we run it on 8,
16, 32 and 64 cores. Fig. 5 gives the num-
ber of solved instances w.r.t. the time by
the different versions of AMPHAROS. It
clearly demonstrates that our approach is
highly scalable. The version running on
64 cores solves 49 SAT and 25 UNSAT
benchmarks, that is 15%, 45% and 70%
more benchmarks than the one running
on 32 (44 SAT and 20 UNSAT), 16 (36
SAT and 15 UNSAT) and 8 (33 SAT and
11 UNSAT) cores, respectively. In order
to show the efficiency of our approach with more computers linked over the network,
we also ran it with 64 cores using 8 computers with 8 cores each (see the curve 8 × 8
on Fig. 5.). This version solves 46 SAT and 24 UNSAT benchmarks. Since we restrict
the number of messages, we obtain similar results. Differences can be explain by the
indeterminism of our approach.

AMPHAROS versus the state-of-the-art In order to evaluate AMPHAROS with re-
spect to existing work, we choose to compare our approach with the three best solvers
of the last SAT competition that ran in the parallel track. These solvers are (in their



rank order): SYRUP [7], TREENGELING and PLINGELING [12]. Because they do not
run with MPI, and we have no processor with 64 cores, we execute them on 32 cores.
We also compare our solver on 64 cores with the work stealing parallel SAT solver
DOLIUS [2] and the portfolio solver HORDESAT [8]. Fig. 6 reports results obtained by
these solvers.

Let us first consider the experiments launched on 32 cores. As reported in Tab. 6a,
AMPHAROS solves more instances than the other solvers. It is the best solver on the sat-
isfiable benchmarks and solves the same number of unsatisfiable problems as TREEN-
GELING (which is also a divide and conquer based method). Comparing to SYRUP and
PLINGELING, we can see that our solver significantly outperforms both on satisfiable
problems but it is less efficient on unsatisfiable ones. This can be partially explained by
the fact that AMPHAROS essentially solves the unsatisfiable problems by totally refut-
ing the tree (i.e. by closing all branches). Consequently, it seems that on 32 cores we do
not have enough workers to achieve this goal within the time limit.

When considering the running time of the solvers, reported in Fig. 6b, we can ob-
serve that AMPHAROS is faster than TREENGELING and PLINGELING but it is slower
than SYRUP. This can be explained by the fact that SYRUP solves several unsatisfiable
problems in short time (the 6s family for instance).

If we consider the experiments run on 64 cores, we can see that our approach is
highly competitive. AMPHAROS is significantly better than DOLIUS and HORDESAT.
Moreover, it is important to notice that during the competition SYRUP (the winner of
the parallel track) only used 32 cores instead of the 64 cores available. Consequently,
it is possible to conclude that AMPHAROS is more efficient than both TREENGELING
and PLINGELING on 64 cores. More importantly, as reported in Fig. 6b, AMPHAROS
is very effective since it solves more instances and faster.

Solver #thr. SAT UNS Total

AMPHAROS 32 44 20 64
SYRUP 32 36 26 62

TREENGELING 32 38 20 58

PLINGELING 32 31 26 57

AMPHAROS 64 49 25 74
HORDESAT 64 33 24 57

DOLIUS 64 33 17 50

(a) Overview table
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(b) Number of solved instances w.r.t. the time

Fig. 6: Comparing AMPHAROS versus the state-of-the-art parallel SAT solver. Tab.
6a gives results of each solver in term of solved instances w.r.t. the number of threads
(#thr.). Fig. 6b shows the number of solved instances (x-axis) w.r.t. the time (y-axis).

Let us stress that none of these solvers are deterministic. To be fair, we ran all solvers
just once and report the obtained results (as it was done in SAT competition 2015).



Benchmarks Information Time w.r.t. rscm rscm statistics

name sol. 1 3 5 10 D min max avg med

hitag2-10-60-0-65 UNS 563 173 120 127 304 1.20 2.36 2.11 2.28
jgiraldezlevy.109 UNS 544 243 214 154 260 1.60 4.32 3.76 4.12
minandmaxor128 UNS 788 IN IN IN 972 1.09 1.37 1.25 1.23
jgiraldezlevy.33 SAT 776 339 386 169 288 1.63 4.58 3.32 3.82
56bits-12.dimacs SAT 114 168 180 395 101 1.25 1.60 1.43 1.46
004-80-8 SAT 248 412 16 264 110 1.41 4.64 3.10 3.09

Table 1: This table presents the obtained results on a representative set of benchmarks.
Each line corresponds to an instance, with its satisfiability, identified by the leftmost
column. The next four columns give the WC time (reported in seconds) to solve the
instance w.r.t. the value of rscm (static (set to 1, 3, 5 and 10) or dynamic (D)). The
rightmost reports stastictics on the value obtained by the dynamic computation of rscm.

Impact of the rscm value To conclude this section, we evaluate the impact of the
rscm value on our solver’s performance. To this end, we selected a representative set
of benchmarks and ran four versions of AMPHAROS with different values of rscm (1,
3, 5 and 10) and compared them with the dynamically chosen value. Let us recall that
rscm has an impact on both the tree extension and the amount of exchanged clauses.
Moreover, recall that, as mentioned in Sect. 5.2, the extending factor fe is fixed to
10 when rscm > 3

√
100. Thus, the difference between rscm = 5 and rscm = 10

is only the amount of shared clauses. Tab. 1 shows that these instances do not have
the same comportment with respect to the rscm value. Some problems need to ex-
tend more (jgiraldezlevy) and others need to extend less and exchange more
(minandmaxor128). It is also important to note some benchmarks are unpredictable
(004-80-8). As regards the dynamic adjustment, we observe that it is in average often
close to the best value. The performance differences often come from the fact that the
solver needs time to find the right rscm value.

7 Conclusion

We proposed a new parallel SAT solver, designed to work on many cores, based on the
divide and conquer paradigm. Our solver allows two kinds of clause sharing, the classi-
cal one and one more linked to the division of the initial formula. Furthermore, we pro-
posed to measure the degree of redundancy of the search by counting the number of sub-
sumed shared clauses. With this measure, we are able to adjust dynamically the search,
resulting in a new way of controlling the dilemma of intensification/diversification of
the search. Experiments show promising results.

Our main objective is to deploy a SAT solver among the cloud. Thus, this paper is a
first step towards this goal and leads to many perspectives. We plan to run our solver on
a cloud architecture using grid computing. For that, we plan to run several MANAGERs
in parallel letting solvers go from a MANAGER to another one. For that, we need to
choose more carefully variables used for the division. Many possibilities arise like the
notion of blocked literals recently used for SAT solving [27,14]. Finally, we also need
to improve performances on unsatisfiable instances by paying more attention on shared
clauses.
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