
Stochastic Constraint Programming for General Game Playing
with Imperfect Information

Frédéric Koriche, Sylvain Lagrue, Éric Piette, and Sébastien Tabary
CRIL Univ. Artois - CNRS UMR 8188, France-62307 Lens
{koriche,lagrue,epiette,tabary}@cril.fr

Abstract
The game description language with incomplete
information (GDL-II) is expressive enough to
capture partially observable stochastic multi-agent
games. Unfortunately, such expressiveness does
not come without a price: the problem of finding a
winning strategy is NEXPNP-hard, a complexity class
which is far beyond the reach of modern constraint
solvers. In this paper, we identify a PSPACE-complete
fragment of GDL-II, where agents share the same
(partial) observations. We show that this fragment
can be cast as a decomposable stochastic constraint
satisfaction problem (SCSP) which, in turn, can be
solved using general-purpose constraint programming
techniques. Namely, we develop a constraint-based
sequential decision algorithm for GDL-II games
which exploits constraint propagation and Monte
Carlo sampling based. Our algorithm, validated on a
wide variety of games, significantly outperforms the
state-of-the-art general game playing algorithms.

1 Introduction
Of all human activities, games convey one of the most illustrative
examples of intelligent behavior. A player has indeed to face
complex tasks, such as understanding abstract rules, evaluating the
current situation, choosing the best possible move and, ultimately,
devising a winning strategy. In Artificial Intelligence, the General
Game Playing (GGP) challenge [Genesereth and Thielscher, 2014;
Genesereth et al., 2005] is to develop computer players that
understand the rules of previously unknown games, and learn to
play these games well without human intervention.

In General Game Playing, the rules of an input game are
described using a high-level, declarative representation formalism,
called Game Description Language (GDL). The first version
of this language (GDL-I) is restricted to deterministic games
with complete information [Love et al., 2008]. While a GDL-I
game may involve multiple players, each player has complete
knowledge about the current game state, the past actions of her
opponents, and the deterministic effects of the joint action.

In order to alleviate these restrictions, Schiffel and Thielscher
[2011; 2014] recently proposed a new game description language
(GDL-II) for representing games with incomplete information.
In a GDL-II game, players may have restricted access to the

current game state, and the effects of their joint actions are uncer-
tain. As such, GDL-II is expressive enough to capture partially
observable stochastic games (POSGs), which cover a wide variety
of multi-agent sequential decision problems. However, such ex-
pressiveness does not come without a price: from a computational
viewpoint, the problem of finding a winning strategy in a POSG
is NEXPNP-complete [Goldsmith and Mundhenk, 2007], a com-
plexity class which is far beyond the standard PSPACE complexity
class of games with complete information. Although several algo-
rithms have been devised for tackling specific instances of POSGs,
such as Contract Bridge [Ginsberg, 2001] and Poker [Bowling
et al., 2015], they are dedicated programs which heavily rely on
human knowledge about game rules and evaluation functions. By
contrast, the task of developing general game players for POSGs
appears extremely challenging due to their complexity barrier.

Despite this theoretical issue, several GGP algorithms have
been recently developed for solving restricted, yet expressive,
fragments of GDL-II. They include, for example, mono-agent
deterministic games with incomplete information [Geißer et
al., 2014], and multi-agent stochastic games with complete
information [Koriche et al., 2016]. In particular, the last approach
relies on Constraint Programming techniques which have proved
to be successful in practice. Our present study aims at extending
the range of GDL-II games which can be expressed in terms
of Stochastic Constraint Satisfaction Problems (SCSPs).

The main contribution of this article can be summarized as fol-
lows: (i) we present an important PSPACE-complete fragment of
GDL-II, where players share the same (partial) observations, and
which can be expressed as a SCSP; (ii) we extend MAC-UCB, a
sequential decision algorithm that exploits constraint propagation
and Monte Carlo sampling, to GDL-II games; (iii) we provide
a comparative experimental study on various GDL games,
including deterministic games, stochastic games, and partially
observable stochastic games (with shared information). Exper-
imental results show that our constraint programming technique
outperforms the current general game playing algorithms.

2 General Imperfect Information Games
The problems under consideration in GGP are finite sequential
and synchronous games. Each game involves a finite number of
players, and a finite number of states, including one distinguished
initial state, and one or several terminal states. On each round
of the game, each player has at her disposal a finite number of
actions (called “legal moves”); the current state of the game is

updated by the simultaneous application of each player’s action
(which can be “noop” or do nothing). The game starts at the initial
state and, after a finite number of rounds, ends at some terminal
state, in which a reward is given to each player. In a stochastic
game, a distinguished player, often referred to as “chance”, can
choose its actions at random according to a probability distribution
defined over its legal moves. In an incomplete information game,
some aspects (called “fluents”) of the current game state are not
fully revealed to the agents. We shall focus on stochastic shared
information games in which, at each round, all agents have the
same (possibly incomplete) information about the game state.

2.1 GDL-II Syntax
GDL is a declarative language for representing finite games.
Basically, a GDL program is a set of rules described in
first-order logic. Players and game objects (coins, dice, locations,
pieces, etc.) are described by constants, while fluents and actions
are described by first-order terms. The atoms of a GDL program
are constructed over a finite set of relation symbols and variable
symbols. Some symbols have a specific meaning in the program,
and are described in Table 1. For example, in the TicTacToe
game, legal(alice,mark(X,Y)) indicates that player alice is
allowed to mark the square (X,Y) of the board. In GDL-II, the
last two keywords of the table are added to represent stochastic
games (random), and partially observable games (sees).

Table 1: GDL-II keywords

Keywords Description
role(P) P is a player
init(F) the fluent F holds in the initial state
true(F) the fluent F holds in the current state
legal(P,A) the player P can take action A in the current state
does(P,A) the player P performs action A
next(F) the fluent F holds in the next state
terminal the current state is terminal
goal(P,V) the player P gets reward V in the current state

sees(P,F) the player P perceives F in the current state
random the "chance" player

The rules of a GDL program are first-order Horn clauses. For
example, the rule:

sees(alice,cell(X,Y,o))←does(alice,mark(X,Y))

states that alice sees the effect of marking squares of the
board. In order to represent a finite sequential game, a GDL
program must obey to syntactic conditions, defined over
the terms and relations occurring in rules, and the structure
of its rule set. We refer the reader to [Love et al., 2008;
Thielscher, 2010] for a detailed analysis of these conditions.

Example 1 "Matching Pennies" is a well-known game involving
two players, who place a penny (or coin) on the table, with the
payoff depending on whether pennies match. We consider here
a variant named "Hidden Matching Pennies" in which alice plays
against the chance player (random) playing two pennies, one sees
by alice and the other hidden. During the first round, the chance

player chooses tails or heads for its two pennies and, during the
second round, alice places a coin on the table; alice wins 100
points if all the three sides are heads or tails and 50 points if at
least one side of the chance player and its side are similar. The
corresponding GDL program is described in Figure 1;

2.2 GDL-II Semantics
For a positive integer n, let [n] = {1,··· ,n}. For a finite set S,
let ∆S denote the probability simplex over S, that is, the space
of all probability distributions over S. Various descriptions
of incomplete information games have been proposed in the
literature (see e.g. [Schiffel and Thielscher, 2011]). We focus
here on a variant of [Geißer et al., 2014].

Formally, a partially observable stochastic game with legal
actions (POSG), is a tupleG=〈k,S,s0,Sg,A,L,P,B,R〉, where:

• k∈N is the number of players,
• S is a finite set of states, including a distinguished initial

state s0, and a subset Sg of goal (or terminal) states.
• A is a finite set of actions. As usual an action profile

is a tuple a = 〈a1, ... , ak〉 ∈ Ak; by ap, we denote
the action of player p, and by a−p the action profile
〈a1,...,ap−1,ap+1,...,ak〉 of the remaining players.

• L : [k]×S→ 2A defines the set of legal actions Lp(s) of
player p at state s; we assume that Lp(s)=∅ for all s∈Sg.
P : S × Ak ↪→ ∆S is the partial transition probability
function, which maps each state s ∈ S and each action
profile 〈a1,...,ak〉∈L(s) to a probability distribution over S.

• B : [k]× S → ∆S is the belief function which maps ev-
ery player p ∈ [k] and every state s ∈ S to a probability
distributionBp(s) over S, capturing the belief state of p at s.

• R : [k]×Sg → [0,1] is the reward function which maps
every player p∈ [k] and every goal state s∈Sg to a value
Rp(s)∈ [0,1], capturing the reward of p in s.

With these notions in hand, the POSG G associated to a
GDL-II program G is defined as follows. Let B denote the
Herbrand base (i.e. the set of all ground terms) of G;A (resp. F)
is the set of all ground action (resp. fluent) terms occurring in B.
We use G |=A to denote that atom A is true in the unique answer
set of G. The number k of ground terms p such that role(p)∈G,
determines the set of players.

Each state s is a subset of F . Notably, the initial state s0 is
{f :G |=init(f)}, and any terminal state is a set of fluents s=
{f1,···,fn} such that G∪strue |=terminal, where strue is the set
of facts {true(f1),···,true(fn)}. The set Lp(s) of legal actions
for player p at state s is given by G∪strue |=legal(p,a). In par-
ticular,L0(s) denotes the set of legal actions for the chance player
(random). Any action profile (extended to the chance player)
a= 〈a0,a1,...,ak〉 ∈ L0(s)×L1(s)×···×Lk(s) determines a
successor s′ of s given by {f : G∪ strue ∪adoes |= next(f)},
whereadoes is the set of facts {does(a0),does(a1),...,does(ak)}.
The probability distribution P(s,a−0) over all those successors
is the uniform distribution, i.e. P(s,a−0)(s

′)=1/|L0(s)|.
The belief state Bp(s) of player p at any successor s′ of s is

given by the joint distribution
∏
f∈F P(f), where P(f) = 1 if

G∪strue∪adoes |=sees(p,f), and P(f)=1/2 otherwise. Finally,
the reward Rp(s) of player p at a terminal state s is the value v
such that G∪strue |=goal(p,v).

% roles
role(alice).
role(random).

% side of a coin
side(tails).
side(heads).

% initial state
init(coin(unset)).
init(coins(unset,unset)).
init(control(random)).

% legal moves
legal(random,choose(S1,S2)) ← true(control(random)), side(S1),side(S2).

legal(alice,play(S)) ← true(control(alice)), side(S).

legal(P,noop) ← not(true(control(P)).

% game update
next(coins(S1,S2)) ← does(P,choose(S1,S2)).
next(coin(S)) ← does(P,play(S)).
next(coins(S1,S2)) ← not(true(control(random)), true(coins(S1,S2)).
next(coin(S)) ← not(true(control(alice)), true(coin(S)).
next(control(alice)) ← true(control(random)).

% the percepts
sees(alice,coins(S1,_)) ← does(random,choose(S1,S2)).

% terminal states
terminal ← not(true(coin(unset))), not(true(coins(unset,unset))).
goal(alice,100) ← true(coin(S)), true(coins(S,S)).
goal(alice,50) ← or(true(coin(S1)),true(coin(S2))), true(coins(S1,S2)), distinct(S1,S2).
goal(alice,0) ← true(coin(S1)), true(coins(S2,S2)), distinct(S1,S2).

Figure 1: GDL program of "Hidden Matching Pennies"

2.3 A PSPACE Fragment of GDL-II
A game with shared information is any partially observable
stochastic gameG in which, at each round, all players share the
same belief state, i.e. B1(s)= ···=Bk(s) for all states s∈S. We
use here B(s) to denote the common belief state in s. Remark
that any game with shared information can be converted into
a fully observable stochastic game, by replacing the transition
function P and the belief function B with a new transition
functionQ :S×Ak ↪→∆S defined by:

Q(s,a)(s′)=
∏
t∈S

P(s,a)(t)·B(t)

for all a∈L(s). In other words,Q(s,a)(s′) is the probability of
observing s′ after performing the action profile a in state s. Since
any gameG with shared information is a stochastic game, a joint
policy for G is a map π :S→Ak, where πp(s) is the policy of
player p, and π−p(s) is the joint policy of other players. Given a
threshold vector θ∈ [0,1]k, we say that π is a winning policy for
player p if the expected reward of p w. r. t. π is greater than θp.

Based on the notion of shared information, we now examine
several restrictions of GDL-II programs which together guar-
antee that the problem of finding a winning policy is in PSPACE.
Namely, a GDL-II program G is depth-bounded if the number
of ground terms in the Herbrand universe of G is polynomial in
|G|. If G is bounded and each rule of G has a constant number of
variables, then G is propositional. For an integer T , G is of horizon
T if any terminal state is reachable after at most T rounds. Finally,
G is information sharing if for every player p, every fluent f , every

state s, and every action profilea, if G∪strue∪adoes |=sees(p,f),
then G∪strue∪adoes |=sees(q,f), for all players q∈ [k].

Theorem 1 Let GT ⊆ GDL-II be the fragment propositional,
information sharing programs of horizon T . Then, the problem
of finding a winning policy in GT is PSPACE-complete.

Proof 1 (Sketch) Since GT includes full-information stochastic
games as a special case, the problem is PSPACE-hard. For any
finite and depth-bounded game G ∈ GT , a winning policy can
be found in f(|G|) time and g(|G|) space using a stochastic-
alternating Turing Machine (TM), i.e. a TM which includes
stochastic states (for random), existential states (for player p), and
universal states (for all other players). Since G is propositional, the
number of fluents and the number of actions are polynomial in |G|,
which together imply that g(|G|) is polynomial. At each game state,
the stochastic-alternating TM can guess a game action profile us-
ing its existential states. Since k≤|G|, the next game state can be
found using a polynomial number of universal states and stochas-
tic states. This, together with fact that the TM will find a terminal
game state in at most T rounds, implies that f(|G|) is also polyno-
mial. Finally, since any stochastic-alternating TM using polyno-
mial time and space can be simulated by NPSPACE (see e.g. [Bon-
net and Saffidine, 2014]) then, using Savitch’s theorem NPSPACE
= PSPACE, it follows that GT is in PSPACE, which yields the result.

3 The SCSP Framework
Borrowing the terminology of [Walsh, 2002], stochastic constraint
networks extend the standard CSP framework by introducing

stochastic variables in addition to the usual decision variables.
We focus here on a slight generalization of the original SCSP
model that captures conditional probability distributions over
stochastic variables.

Definition 1 A Stochastic Constraint Satisfaction Problem
(SCSP) is a 6-tuple N = 〈V, Y, D, C, P, θ〉, such that
V=(V1,···,Vn) is a finite tuple of variables, Y⊆V is the set of
stochastic variables,D is a mapping from V to domains of values,
C is a set of constraints, P is a set of conditional probability
tables, and θ∈ [0,1] is a threshold.

• Each constraint in C is a pair C=(scpC,valC), such that
scpC is a subset of V, called the scope of C, and valC is
a map fromD(scpC) to {0,1}.

• Each conditional probability table in P is a triplet
(Y,scpY ,probY), where Y ∈ Y is a stochastic variable,
scpY is a subset of variables occurring before Y in V, and
probY is map from D(scpY) to a probability distribution
over the domainD(Y).

By X , we denote the set V\Y of decision variables. If Y ∈Y
is a stochastic variable and τ ∈D(scpY) is a tuple of values in
the conditional probability table of Y , then we use P(Y | τ) to
denote the distribution probY (τ). In particular, if y∈D(Y), then
P(Y =y |τ) is the probability that Y takes value y given τ .

Given a subset U = (V1,··· ,Vm)⊆ V, an instantiation of U
is an assignment I of values v1 ∈ D(V1), ··· ,vm ∈ D(Vm) to
the variables V1,···,Vm, also written I={(V1,v1),...,(Vm,vm)}.
An instantiation I on U is complete if U = V. Given a subset
U ′⊆U, we use I|U′ to denote the restriction of I to U ′, that is,
I|U′={(Vi,vi)∈I :Vi∈U ′}. The probability of I is given by:

P(I)=
∏

Y∈Y:scpY⊆U

P(Y =I|Y |I|scpY
)

Correspondingly, the utility of an instantiation I on U is given by

val(I)=
∑

C∈C:scpC⊆U

val(I|scpC
)

An instantiation I is called consistent with a constraint C if
val(I|scpC

) = 1, that is, I can be projected to a tuple satisfying
C. By extension, I is locally consistent if val(I) = 1, that is, I
satisfies every constraint in C. Finally, I is globally consistent
(or consistent, for short) if it can be extended to a complete
instantiation I′ which is locally consistent.

A policy π for the network N is a rooted tree where each
internal node is labeled by a variable V and each edge is labeled
by a value inD(V). Specifically, nodes are labeled according to
the ordering V: the root node is labeled by V1, and each child of
a node Vi is labeled by Vi+1. Decision nodes Xi have a unique
child, and stochastic nodes Yi have |D(Yi)| children. Finally,
each leaf in π is labeled by the utility val(I), where I is the
complete instantiation specified by the path from the root of π
to that leaf. Let L(π) be the set of all complete instantiations
induced by π. Then, the expected utility of π is the sum of its
leaf utilities weighted by their probabilities. Formally,

val(π)=
∑

I∈L(π)

P(I)val(I)

A policy π is a solution of N if its expected utility is greater
than or equal to the threshold θ, that is val(π)≥θ. We mention
in passing that if θ= 1, then π is a solution of N if and only if
val(I)=1 for each path I in L(π) such that P(I) 6=0.

A (decision) stage in a SCSP is a tuple of variables 〈Xi,Yi〉,
where Xi is a subset of decision variables, Yi is a subset of
stochastic variables, and decision variables occurs before any
stochastic variable [Hnich et al., 2012]. By extension:

Definition 2 A T -stage stochastic constraint satisfaction problem
is an SCSP N=〈V,Y,D,C,P,θ〉, in whichV can be partitioned
into T stages, i.e. V = (〈X1,Y1〉,...,〈XT ,YT 〉), where {Xi}Ti=1

is a partition of X , {Yi}Ti=1 is a partition of Y, and scpYi
⊆Xi

for each i∈{1,...,T} and each Yi∈Yi. If T =1, N is called a
one-stage SCSP, and denoted µSCSP.

Note that the problem of finding a winning policy in a SCSP is
PSPACE-complete. The problem remains in PSPACE for T -stage
k-player SCSPs, as each stage of the problem is in NPPP.

4 An SCSP Representation of Games
In this section, we present a constraint-based representation of
games. Namely, a GDL-II game G is first cast as a stochastic
constraint network N , which encodes the rule of the game as a
set of constraints. Then,N is enriched by a new set of constraints
describing the players’ solution concepts. The final stochastic
constraint network, capturing both the game rules and the players’
strategies, can be solved using standard SCSP algorithms.

4.1 Modelling Game Rules
The translation of a k-player game G ∈ GT into a T -stage
SCSP is specified as follows. We first convert G into a set
ground rules G′, whose size is polynomial in |G| because G
is propositional. To G′ we associate a one-stage SCSP N =
〈[k],Gt,Rt,{Ft},{At},At,0,{Ft+1}〉, where [k] = {1,··· ,k} is
the set of players, Gt is a Boolean variable indicating whether
the game has reached a terminal (goal) state, and Rt is the set
of reward values of the game. {Ft} and {Ft+1} are the sets of
fluents describing the game state at round t and t+1, respectively;
in order to respect the one-stage property, {Ft} is a set of decision
variables, and {Ft+1} is a set of stochastic variables. {At}=
{At,1,...,At,k} is a set of decision variables, eachAt,p describing
the set of possible moves of player p. Finally,At,0 is a stochastic
variable describing the set of possible moves of the chance player.

The Horn clauses of a GDL program G can naturally be
partitioned into init rules describing the initial state, legal
rules specifying the legal moves at the current state, next
rules capturing the effects of actions, sees rules describing
the observations of each player on the game, and goal rules
defining the players’ rewards at a terminal state. init, legal
and next rules are encoded into hard constraints in the network
N . The sees rules are used to express the conditional probability
table P(ft+1 |f ,a), of each stochastic variable Ft+1. The last
stochastic variable At,0 is associated to a uniform probability
distribution P(a0 |f) over the legal moves of the chance player.
The constraint relation is extracted in the same way as the
domains of variables, by identifying all allowed combinations
of constants. Similarly, goal rules are encoded by a constraint
encoding player’s rewards at a terminal state.

By repeating T times this conversion process, we therefore
obtain a T -stage SCSP encoding the T -horizon game G. The
threshold θ is set to 1, indicating that all constraints must be
satisfied by a solution policy.

4.2 Modelling Strategies
Based on the above translation process, the resulting SCSPN en-
codes only the game rules of the input GDL program. In order to
“solve” a game,N must also incorporate, in a declarative way, the
solution concepts of players. In essence, these solutions concepts
or strategies are captured by two operators ⊕ and ⊗, together
with a set of constraints joining them. In what follows, we write
a−0∈{At} as an abbreviation of (a1,···,at)∈At,1×···×At,k, for
specifying an action profile of the k players (excluding the chance
player 0). By extension, a−{0,p} ∈ {At}−p denotes an action
profile (a1,···,ap−1,ap+1,···,ak) of k−1 players exluding both p
and the chance player. The shortcut f∈{Ft} is defined similarly.

To incorportate players’ strategies, each one-stage SCSP in
N is enriched with several constraints. The first constraint ut,0,
defined over the scope ([k],{Ft},{At},U0), associates to each
player p∈ [k], each state description f ∈{Ft}, and each action
profile a−0∈{At}, the value ut,0(p,f ,a−0) in U0 given by:

ut,0(p,f ,a−0)=
∑

a0∈At,0

∑
f′∈{Ft+1}

P(a0 |f)P(f ′ |f ,a)u∗t+1,p(f
′)

where a=(a0,a−0) is the final action profile of all k+1 players
(including the chance player), and u∗t+1,p(f

′) is the utility of
player p at state f ′. Intuitively, ut,0(p,f ,a−0) is the expected
utility of player pwhen the joint action a−0 of the k players is ap-
plied on the game position f . Based on this value, we can define
the utility of each player’s move. To this end, we associate to each
player p a constraint ut,p defined over the scope ({Ft},Ap,Up).
This constraint maps each state description f ∈ {Ft} and each
action ap∈{Ap} to the value ut,p(f ,ap) in Up given by

ut,p(f ,ap)=
⊕

a−{0,p}∈{At}−p

ut,0(p,f ,a−0)

In a symmetrical way, we can also capture the player’s utility of
each state. To this end, we associate to each player p a constraint
u∗t,p defined over the scope ({Ft},U∗p). This constraint maps
each state description f∈{Ft} to a value u∗t,p(f) in U∗p , defined
by the following condition: if f is a terminal state, then u∗t,p(f)
is the reward of p at f , as specified by the goal rules. Otherwise,

u∗t,p(f)=
⊗

ap∈At,p

ut,p(f ,ap)

Finally, the optimal play is captured by simply adding the equality
constraints u∗t,p(f)=ut,p(f ,ap) defined over the scope (U∗p ,Up).
These equalities filter out any player’s move that is not optimal.
Various solution concepts can be defined according the operators
⊕ and ⊗. In our experiments, we use the standard maximin
strategy (for all players) given by⊗=max and⊕=min.

5 MAC-UCB-II
Based on a fragment of SCSP for GDL games, we now
present our resolution technique called MAC-UCB-II, an ex-
tension of the MAC-UCB algorithm [Koriche et al., 2016] for

GDL-II. As indicated above, the stochastic constraint network
of a GDL program is a sequence of µSCSPs, each associated
with a game round t in {1,...,T}. For each µSCSPt in {1,...,T},
MAC-UCB-II searches the set of feasible policies by splitting
the problem into two parts: a CSP and a µSCSP (smaller than
the original one). The first part is solved using the MAC algo-
rithm [Sabin and Freuder., 1994; 1997] and the second part with
the FC algorithm dedicated to SCSP [Walsh, 2002]. Then, a
sampling with confidence bound (UCB) is performed to estimate
the expected utility of each feasible solution of µSCSPt.

Recall that the task of sequential decision associated to a
strategic game is an optimization problem. Classically, this
problem is addressed by solving a sequence of stochastic
satisfaction problems. In practice, each time our player has to
play, a slot of time is dedicated to choose the next action in which
we solve as much µSCSPs as possible.
MAC-UCB-II adds conditional probabilities in eachµSCSPt

based on the sees rules for each fluent.
Figure 2 represents the constraint network of the tth

µSCSP returned by our encoding procedure on the GDL
program of Example 1. For the sake of clarity, the iden-
tifiers representing variables and domains were renamed:
H (heads),T (tails),U (unset) denote the different values of
a side of a coin. First, the two variables terminalt and scoret
stand for the end of the game and the remaining reward. These
variables are extracted from terminal and goal(P,V) keywords.
Their associated domain is boolean for the first one and the set of
possible rewards for the second one. From the role keyword, two
variables controlt and controlt+1 determine the player for
the round t and t+1. The domain of these variables corresponds
to the set of players defined with the role statement. The states
of the game for the round t and t+1 are represented by the set
of variables derived from the next keyword. The domains of
these variables corresponds to the different combinaison of values
of the fluents S, and S1 S2. One can extract from the legal
keywords the variables chooset and playt. Note that chooset
is a stochastic variable since it corresponds to legal move of the
chance player. The second stochastic variable is coinst. The
conditional probability of the fluent coinst for Alice is directly as-
sociated to the corresponding sees rules (sees(alice,coins(S1,_))
← does(random,choose(S1,S2)).) indicating that Alice percepts
only the first coin when Random chooses its two coins. A
terminal constraint links the terminalt variable with the two
variable coins. The game is ended when no unset value is set to a
coin. In the same manner the goal constraint links the side of the
different coins with the associated reward. The next constraints
allow the game to change from one state (t) to another (t+1)
depending on the chosen action for the player (variable playt)
and the chosen action for random (variable chooset).

Figure 3 illustrates the tree search obtained directly by the
SCSP model built by MAC-UCB-II. To simplify, we have
renamed the first coin of the random player R1, its second R2

and the coin of Alice A. MAC-UCB-II computes an average
reward of 75 for the red sub-trees and 25 for the blue sub-trees.
Consequently MAC-UCB-II plays always on the red sub-tree
depending on the first coin revealed by the random player. We
can easily remark that the strategy followed by MAC-UCB-II
(to guarantee the best score) is to play the same side of the coin
than the one revealed by the random player. Note that, for game

Variable Domain
terminalt {true,false}
scoret {0,50,100}
perceptt {coins(H),coins(T)}
coint {H,T,U}
coinst {HH,TT,HT,TH,UU}
controlt {alice,random}
chooset {HH,TT,HT,TH,noop}
playt {H,T,noop}
coint+1 {H,T,U}
coinst+1 {HH,TT,HT,TH,UU}
controlt+1 {alice,random}

Variables and domains

coint coinst terminalt

H HH true

H HT true
...

...
...

T TT true

H HU false

H UH false
...

...
...

U UU false

terminal constraint

coint coinst scoret

H HH 100

T TT 100

H HT 50

H TH 50

T HT 50

T TH 50

H TT 0

T HH 0

goal constraint

controlt playt
alice H

alice T

random noop

legal constraints

controlt controlt+1

random alice

coinst chooset coinst+1

HH noop HH

TT noop TT

HT noop HT

TH noop TH

UU HH HH

UU TT TT

UU HT HT

UU TH TH

coint playt coint+1

U noop U

U H H

U T T

next constraints

controlt HH HT TH TT noop

random 1/4 1/4 1/4 1/4 0

alice 0 0 0 0 1

Conditional probability table of chooset

perceptt HH HT TH TT

coinst(H,_) 1/2 1/2 0 0

coinst(T,_) 0 0 1/2 1/2

Conditional probability of coinst associated with the percept of alice

Figure 2: A µSCSP encoding the GDL program of Hidden Matching Pennies. (H=heads, T=tails, U=unset)

R1

A A

R2 R2 R2 R2

50100 500 050 10050

H T

H T H T

TH TH TH TH

Figure 3: The tree search of MAC-UCB-II for the hidden
matching pennies.

with a large tree search, MAC-UCB-II can not completely
explore it during the alloted deliberation time. In this case, we use
UCB to simulate an expected utility for each non terminal node.

6 Experimental Results
Based on our framework and algorithm, we now present a series
of experimental results conducted on a cluster of Intel Xeon
E5-2643 CPU 3.3 GHz with 64 GB of RAM and four threads
under Linux. Our framework was implemented in C++.

We have selected 10 deterministic games described in GDL-I
from the Tiltyard server1, and 15 stochastic games in GDL-II
including 5 with no sees rules. A majority of GDL-II games

1http://tiltyard.ggp.org/

have been selected from the Dresden server2. Experiments have
been performed on a large variety of games for a total amount
of 9,500 matches. More detailed information about specific game
can be found on boardgamegeek.com.

Setup. Game competitions have been organized between
different general game players. The first player is the multi-player
version of the UCT algorithm [Sturtevant, 2008], which is the
state-of-the-art algorithm for the deterministic games in GGP.
The second player is Sancho version 1.61c 3, a Monte Carlo
Tree Search player elaborated by S. Draper and A. Rose, which
has won the 2014 International General Game Playing Compe-
tition. The third player is [Cazenave, 2015]’s GRAVE algorithm,
which implements the Generalized Rapid Action Value Estima-
tion technique, a generalization of the RAVE method [Gelly and
Silver, 2007] adapted for GGP. Finally, we also compare our
player to CFR [Shafiei et al., 2009], a GGP implementation of
the well-known CounterFactual Regret technique used in partially
observable games. We did not use HyperPlayer-II algorithm
[Schofield and Thielscher, 2015], because it was not available
online during experiments and we can not adapt it to our model.

For all matches, we used the 2015 Tiltyard Open (last
international GGP competition) setup: 180 seconds for the start
clock and 15 seconds for the play clock.

Our algorithm MAC-UCB-II needs to split the play clock
time into two parts: exploitation (the MAC part) and exploration
(the UCB part). The same parameters as MAC-UCB in
[Koriche et al., 2016] was used (90 % of the time dedicated to
exploitation and 10 % to exploration).

For all the GDL games, we realized 100 matches between
MAC-UCB-II and each other player. For the sake of fairness,
the role of players were exchanged during each match.

Our results are summarized in Table 2. The rows are grouped
into 4 parts, respectively capturing GDL-I games, GDL-II
games with a random player (but no sees rules), GDL-II
games with information sharing (all players have the same partial
observation of the game state) and one-player GDL-II games
with sees rules. Each column reports the average percent of wins
for MAC-UCB-II against the selected adversary. For example,
the entry of the UCT column for the Chess game (3rd row)
indicates that, on average, MAC-UCB-II wins 58% of contests
against UCT. Since the fourth group only involves one-player
games, the player columns (including MAC-UCB-II) report the
average number of times the one-player game is solved, divided
by the total number of matches.

Results on GDL-I. For deterministic games, UCT and
CFR were defeated by MAC-UCB-II, with sometimes a
score greater than 80 % (e.g. Reversi Suicide). Sancho, the
IGGPC’14 leader, and GRAVE are on average less competitive
than MAC-UCB-II. Notable examples are Hex, Connect Four
20x20 against Sancho and Chess against GRAVE. The only
exceptions are the Amazons torus 10x10 against GRAVE with
a score on average of 46 % and for the Breakthrough suicide
against Sancho with 49 %.

Results on GDL-II. For the GDL-II games with no sees
rules but a random player, the four opponents are beaten with

2http://ggpserver.general-game-playing.de/
3http://sanchoggp.github.io/sancho-ggp/

Table 2: Results of MAC-UCB-II on GDL games.

Multi-players GDL-I games
Game UCT CFR GRAVE Sancho

Amazons torus 10x10 62 73 46 52
Breakthrough suicide 71 80 54 49

Chess 58 82 71 53
Connect Four 20x20 76 83 51 72

English Draughts 69 78 55 51
Hex 81 76 64 64

Shmup 75 66 51 51
Skirmish zero-sum 63 77 63 59

TTCC4 2P 79 83 50 54
Reversi Suicide 86 86 57 53

Multi-players GDL-II games with a random player
Game UCT CFR GRAVE Sancho

Backgammon 70.0 66.7 54.6 97.5
Can’t Stop 73.1 67.5 62.1 94.3
Kaseklau 73.6 71.5 56.2 80.3

Pickomino 65.2 60.6 60.2 74.2
Yahtzee 72.1 72.3 53.9 72.0

Multi-players GDL-II games with information sharing
Game UCT CFR GRAVE Sancho

Pacman 57.2 58.9 55.1 ×
Schnappt Hubi 71.3 57.5 56.2 ×
Sheep & Wolf 68.2 56.2 55.0 ×

TicTacToe Latent Random 10x10 82.6 78.7 69.1 ×
War (card game) 72.0 69.1 66.0 ×

One-player GDL-II games with sees rules
Game MAC-UCB-II UCT CFR GRAVE

GuessDice 15 15.7 16 16.5
MasterMind 67.8 53.8 68.1 60.1
Monty Hall 65.2 62.2 63.1 64.3

Vaccum Cleaner Random 61.5 34 46 58.8
Wumpus 32.1 40.1 44.1 51.2

a score higher than 60% for MAC-UCB-II against Sancho,
UCT, CFR, and higher than 50% against GRAVE.

For games with partial observations, Sancho does not
participate because it is dedicated to GDL-I (modulo a possible
simulation of the chance player). For the puzzle games with im-
perfect information, MAC-UCB-II is the best player for those
games except for the Wumpus or GuessDice. However, the Guess-
Dice is not significant because there is no strategy to win, but just
chance to guess the Dice. We can note that on the MasterMind,
MAC-UCB-II and CFR obtain an equivalent score.

Finally, the last five games are partially observable games with
information sharing. For instance, the TicTacToe Latent Random
10x10 involves 3 players, including the chance player. The
chance player randomly places a cross or a round in the free cases

and the other two players observe the squares marked by chance,
only when they try to mark it. Schnappt Hubi and Sheep & Wolf
are cooperative games, where all agent share their observation
in order to beat the chance player. MAC-UCB-II wins with an
average score higher than 55% against each opponent, with an
average number of wins of about 69% for the TicTacToe Latent
Random 10x10 game.

7 Conclusion
This paper has presented a consequent forward step on using
constraint-based formalisms for GGP by considering a large
subclass of GDL-II games. We have identified an important
fragment of imperfect information games that can be cast
as SCSPs, and which can be solved using general-purpose
Constraint Programming techniques. Our sequential decision
algorithm for GDL-II games exploits constraint propagation
and Monte Carlo sampling. Based on extensive experiments
involving various types of games and computer opponents, we
showed that general-purpose CP techniques are paying off.

A work in progress is to focus on symmetries in order to
strongly decrease the search space. The idea is to exploit sym-
metries to avoid the useless resolution of symmetrical µSCSPs.
For that, we need to unify and extend the constraint approaches
[Cohen et al., 2006] and the ones in GGP [Schiffel, 2010].

References
[Bonnet and Saffidine, 2014] Edouard Bonnet and Abdallah

Saffidine. On the complexity of general game playing. In
Proceedings of CGW, pages 90–104, 2014.

[Bowling et al., 2015] Michael Bowling, Neil Burch, Michael
Johanson, and Oskari Tammelin. Heads-up limit hold’em
poker is solved. Science, 347(6218):145–149, 2015.

[Cazenave, 2015] Tristan Cazenave. Generalized rapid action
value estimation. In Proceedings of IJCAI 2015, pages
754–760, 2015.

[Cohen et al., 2006] Davis Cohen, Peter Jeavons, Christopher
Jefferson, Karen E. Petrie, and Barbara M. Smith. Symmetry
definitions for constraint satisfaction problems. Constraints,
11(2-3):115–137, 2006.

[Geißer et al., 2014] Florian Geißer, Thomas Keller, and Robert
Mattmüller. Past, present, and future: An optimal online
algorithm for single-player GDL-II games. In Proceedings
of ECAI, pages 357–362, 2014.

[Gelly and Silver, 2007] Sylvain Gelly and David Silver. Com-
bining online and offline knowledge in UCT. In Proceedings
of ICML, pages 273–280, 2007.

[Genesereth and Thielscher, 2014] Michael R. Genesereth and
Michael Thielscher. General Game Playing. Synthesis
Lectures on Artificial Intelligence and Machine Learning.
Morgan & Claypool Publishers, 2014.

[Genesereth et al., 2005] Michael Genesereth, Nathaniel Love,
and Barney Pell. General game playing: Overview of the
AAAI competition. AAAI Magazine, 26(2):62–72, 2005.

[Ginsberg, 2001] Matthew L. Ginsberg. GIB: imperfect
information in a computationally challenging game. J. Artif.
Intell. Res. (JAIR), 14:303–358, 2001.

[Goldsmith and Mundhenk, 2007] Judy Goldsmith and Martin
Mundhenk. Competition adds complexity. In Proceedings
of NIPS, pages 561–568, 2007.

[Hnich et al., 2012] Brahim Hnich, Roberto Rossi, S. Armagan
Tarim, and Steven Prestwich. Filtering algorithms for global
chance constraints. Artificial Intelligence, 189:69–94, 2012.

[Koriche et al., 2016] Frédéric Koriche, Sylvain Lagrue, Éric
Piette, and Sébastien Tabary. General game playing with
stochastic CSP. Constraints, 21(1):95–114, 2016.

[Love et al., 2008] Nathaniel Love, Timothy Hinrichs, David
Haley, Eric Schkufza, and Michael Genesereth. General game
playing: Game description language specification. Technical
report, Stanford University, 2008.

[Sabin and Freuder., 1994] D. Sabin and E.C. Freuder. Contra-
dicting conventional wisdom in constraint satisfaction. In
Proceedings of CP’94, pages 10–20. Springer, 1994.

[Sabin and Freuder., 1997] D. Sabin and E.C. Freuder. Under-
standing and improving the mac algorithm. In Proceedings
of CP’97, pages 167–181. Springer, 1997.

[Schiffel and Thielscher, 2011] Stephan Schiffel and Michael
Thielscher. Reasoning about general games described in
GDL-II. In Proceedings of AAAI 2011, pages 846–851. AAAI
Press, 2011.

[Schiffel and Thielscher, 2014] Stephan Schiffel and Michael
Thielscher. Representing and reasoning about the rules of
general games with imperfect information. J. Artif. Intell. Res.
(JAIR), 49:171–206, 2014.

[Schiffel, 2010] Stephan Schiffel. Symmetry detection in general
game playing. In Proceedings of AAAI 2010. AAAI Press,
2010.

[Schofield and Thielscher, 2015] Michael John Schofield and
Michael Thielscher. Lifting model sampling for general game
playing to incomplete-information models. In Proceedings
of AAAI 2015, pages 3585–3591, 2015.

[Shafiei et al., 2009] Mohammad Shafiei, Nathan Sturtevant, and
Jonathan Schaeffer. Comparing uct versus cfr in simultaneous
games. In IJCAI Workshop on General Game Playing, 2009.

[Sturtevant, 2008] Nathan R. Sturtevant. An analysis of uct in
multi-player games. ICGA Journal, 31(4):195–208, 2008.

[Thielscher, 2010] Michael Thielscher. A general game
description language for incomplete information games. In
Proceedings of AAAI’10, pages 994–999, 2010.

[Walsh, 2002] Toby Walsh. Stochastic constraint programming.
In Proceedings of ECAI’02, pages 111–115, 2002.

