
Noname manuscript No.
(will be inserted by the editor)

General Game Playing with Stochastic CSP

Frédéric Koriche · Sylvain Lagrue ·
Éric Piette · Sébastien Tabary

Received: date / Accepted: date

Abstract The challenge of General Game Playing (GGP) is to devise game playing
programs that take as input the rules of any strategic game, described in the Game De-
scription Language (GDL), and that effectively play without human intervention. The
aim of this paper is to address the GGP challenge by casting GDL games (potentially
with chance events) into the Stochastic Constraint Satisfaction Problem (SCSP). The
stochastic constraint network of a game is decomposed into a sequence of µSCSPs
(also know as one-stage SCSP), each associated with a game round. Winning strate-
gies are searched by coupling the MAC (Maintaining Arc Consistency) algorithm,
used to solve each µSCSP in turn, together with the UCB (Upper Confidence Bound)
policy for approximating the values of those strategies obtained by the last µSCSP in
the sequence. Extensive experiments conducted on various GDL games with different
deliberation times per round, demonstrate that the MAC-UCB algorithm significantly
outperforms the state-of-the-art UCT (Upper Confidence bounds for Trees) algorithm.

1 Introduction

From early on [23], the development of game-playing programs has become a major
research area in the field of Artificial Intelligence. Nowadays, computer players for
classical board games like chess [5] and checkers [22] are able to defeat human play-
ers on grandmaster level. Even for games of “chance” like Backgammon [27], and
games with incomplete information like (heads-up limit hold’em) Poker [4], com-
puter players have reached an excellent level. Yet, one point of objection to the suc-
cess of these game-playing programs is that they are highly tailored to the game at
hand, relying on the game specific knowledge and expertise of their developers.

The aim of General Game Playing (GGP) is to devise game-playing algorithms
which are not dedicated to a specific game, but are general enough to effectively

Université Lille-Nord de France CRIL - CNRS UMR 8188 Artois, F-62307 Lens
{koriche,lagrue,epiette,tabary}@cril.fr
http://www.cril.univ-artois.fr/~{koriche,lagrue,epiette,tabary}

2 Frédéric Koriche et al.

play a wide variety of games. A tournament is held every year by AAAI [10], in
which computer players are supplied the rules of arbitrary new games and, without
human intervention, have to play those games optimally. The rules of each game are
described in a declarative representation language, called GDL for Game Descrip-
tion Language [14]. The latest version of this language, GDLII, is an extension of
GDL which is expressive enough to describe finite multi-player games with uncertain
and incomplete information [29]. GGP algorithms include, among others, logic pro-
gramming [28], answer set programming [17], automatic construction of evaluation
functions [7], and Monte Carlo methods [6, 9]. Beyond its play value, GGP offers a
rigorous setting for modeling and analyzing sequential decision-making algorithms
in multi-agent environments.

By providing a declarative approach for representing and solving combinatorial
problems, Constraint Programming appears as a promising technology to address the
GGP challenge. Actually, several constraint-based formalisms have already been pro-
posed to model and solve games; they notably include Quantified CSP [11], Strate-
gic CSP [3] and Constraint Games [19]. Most of these formalisms are, however, re-
stricted to deterministic, perfect information games: during each round of the game,
players have full access to the current state and their actions have deterministic ef-
fects. This paper focuses on stochastic games, with chance events, using the frame-
work of stochastic constraint networks [12, 26, 30].

From this perspective, we study a fragment of the Stochastic Constraint Satis-
faction Problem (SCSP), that captures GDL games with uncertain (but complete) in-
formation. Interestingly, the SCSP for this class of games can be decomposed into a
sequence of µSCSPs (also known as one-stage stochastic constraint satisfaction prob-
lems [30]). Based on this decomposition, we propose a sequential decision-making
algorithm, MAC-UCB, that combines the MAC (Maintaining Arc Consistency) tech-
nique for solving each µSCSP in the sequence, and the multi-armed bandits Upper
Confidence Bound (UCB) method [1] for approximating the expected utility of strate-
gies. We show that, in practice, MAC-UCB significantly outperforms UCT (Upper
Confidence bound for Trees), which is the state-of-the-art GGP algorithm for stochas-
tic games [25]. MAC-UCB also dominates FC-UCB, a variant where the MAC algo-
rithm is replaced with the classical Forward Checking (FC) method. Such conclusions
are drawn from comparing the performance of these algorithms, using extensive ex-
periments (1, 800, 000 face-offs) over a wide range of GDL games.

The paper is organized as follows. The formal setting of GDL games is introduced
in Section 2, and the SCSP framework for encoding GDL games is detailed in Sec-
tion 3. Our algorithm MAC-UCB is examined in Section 4. The experimental setup
and empirical results are discussed in Section 5. Finally, Section 6 concludes with
several perspectives of further research.

2 GDL Games

The problems under consideration in GGP are finite sequential games. Each game
involves a finite number of players, and a finite number of states, including one dis-
tinguished initial state, and one or several terminal states. On each round of the game,

General Game Playing with Stochastic CSP 3

each player has at her disposal a finite number of actions (called “legal moves”); the
current state of the game is updated by the simultaneous application of each player’s
action (which can be “noop” or do nothing). The game starts at the initial state and,
after a finite number of rounds, ends at some terminal state, in which a reward is
given to each player. In a stochastic game, a distinguished player, often referred to as
“chance”, can choose its actions at random according to a probability distribution de-
fined over its legal moves. In this study, we shall focus on fully observable stochastic
games in which, at each round, the current game state, the players’ legal moves, and
the probability distribution over chance events, are accessible to all agents.

2.1 GDL Syntax

GDL is a declarative language for representing, in a compact and intuitive way, finite
games. Basically, a GDL program is a set of rules described in first-order logic. Play-
ers and game objects (coins, dices, locations, etc.) are described by constants, while
fluents and actions are described by first- order terms. The atoms of a GDL program
are constructed over a finite set of relation symbols and variable symbols. Some sym-
bols have a specific meaning in the program, and are described in Table 1. For exam-
ple, in the tic-tac-toe game, legal(alice, mark(X, Y)) indicates that player alice is
allowed to mark the square (X, Y) of the board. In GDLII, the last two keywords of the
table (random and sees) are added to represent stochastic games (ex: Backgammon),
and partially observable games (ex: Battleship). In light of the games considered in
this study, we will focus on GDLII programs without the sees keyword.

Keywords Description
role(P) P is a player
init(F) the fluent F holds in the initial state
true(F) the fluent F holds in the current state
legal(P, A) the player P can take action A in the current state
does(P, A) the player P performs action A

next(F) the fluent F holds in the next state
terminal the current state is terminal
goal(P, R) the player P gets reward R in the current state

random the "chance" player
sees(P, F) the player P perceives F in the next state

Table 1 GDLII keywords

The rules of a GDL program are first-order Horn clauses. For example, the rule:

legal(bob, noop)← true(control(alice))

indicates that noop is a legal action of bob if it is alice’s turn to move. In order to
represent a finite sequential game, a GDL program must obey to syntactic conditions,
defined over the terms and relations occurring in rules, and the structure of its rule
set. We refer the reader to [14, 29] for a detailed analysis of these conditions.

4 Frédéric Koriche et al.

Example 1 "Matching Pennies" is a well-known game involving two players, who
simultaneously place a penny (or coin) on the table, with the payoff depending on
whether pennies match. We consider here a variant in which alice and bob cooper-
atively play against the chance player (random). During the first round, alice and
bob simultaneously place a coin on the table and, during the second round, random
flips a coin; alice and bob win only if all the three sides are heads or tails. The
corresponding GDL program is described in Figure 1. Notably, the built-in predicate
alleq(X, Y, Z) is true if and only if X = Y = Z.

role(alice).
role(bob).
role(random).

side(tails).
side(heads).

init(coin(alice,unset)).
init(coin(bob,unset)).
init(coin(random,unset)).
init(control(alice)).
init(control(bob)).

legal(P,choose(X)) ← true(control(P)), side(X).
legal(P,noop) ← not(true(control(P))).

next(coin(P,X)) ← does(P,choose(X)), side(X).
next(coin(P,X)) ← does(P,noop), true(coin(P,X)).
next(control(random)) ← true(control(alice)).

terminal ← not(true(coin(alice,unset))), not(true(coin(random,unset))),
not(true(coin(random,unset))).

has_won ← true(coin(alice,X)), true(coin(bob,Y)), true(coin(random,Z)),
alleq(X,Y,Z).

goal(alice,1) ← has_won.
goal(alice,0) ← not(has_won).
goal(bob,1) ← has_won.
goal(bob,0) ← not(has_won)

Fig. 1 GDL program of the cooperative Matching Pennies game

2.2 GDL Semantics

The semantics of any GDL program with chance events can be captured by a “stochas-
tic game” [18, 24] which is essentially a multi-player Markov decision process. For
the sake of clarity, we present here a slight variant of this model which uses an explicit
representation of the chance player.

Definition 1 A k-player stochastic game consists of a set {0, 1, · · · , k} of players,
with 0 referring to as the chance player, a set A of actions, a set F of fluents, and
a labeled directed graph G = 〈S,E〉 where S is the set of nodes and E the set of
directed edges (or arcs). Sgoal ⊆ S is the set of terminal nodes and sinit ∈ S is the
initial node. With G is associated a tuple of labeling functions 〈A,F, P, r〉 such that:

General Game Playing with Stochastic CSP 5

– A = (A0, A1, · · · , Ak), where Ap maps each non-terminal node s ∈ S \Sgoal to
a finite subset of actions Ap(s) ∈ 2A,

– F maps each node s ∈ S to a finite subset of fluents F (s) ∈ 2F ,
– P maps each non-terminal node s ∈ S \ Sgoal to a probability distribution over

the action set of the chance player A0(s),
– r = (r1, · · · , rk), where each rp maps each terminal node s ∈ Sgoal to a value
rp(s) ∈ [0, 1].

With each non-terminal node s ∈ S \ Sgoal is associated one edge per tuple a =
(a0, a1, · · · , ak) ∈ A(s), where A(s) = (A0(s), A1(s), · · · , Ak(s)). The successor
of s with respect to a is denoted Q(s, a). A tree-like stochastic game is a stochastic
game for which the undirected graph of G is a tree.

Intuitively, F (s) captures the state description of s, A(s) defines the set of joint
legal moves at s, P (s) captures the likeliness of chance events, and r(s) specifies the
players’ rewards at s. Any tuple a = (a0, a1, · · · , ak) ∈ A(s), is called an action pro-
file; ap is the action of player p at s, and a−p = (a0, a1, · · · , ap−1, ap+1, · · · , ak) is
the action profile of the other players. Notably, a−0 induces a probability distribution
over the set of states {Q(s, a) : a = (a0, a−0), a0 ∈ A0(s)}, where the probability
of Q(s, a) is given by P (s)(a0), the likeliness that event a0 occurs at s.

Based on these notions, the stochastic gameG associated with a GDL program G is
defined as follows. Let B denote the Herbrand base (i.e. the set of all ground terms) of
G. ThenA (resp. F) is the set of all ground action terms (resp. fluent terms) occurring
in B. The number k of ground terms p such that role(p) ∈ G, determines the set of
players {0, 1, · · · , k}. The node set S is constructed inductively from the source node
sinit and the GDL keywords. Namely, the state description F (sinit) is given by the set
of ground fluents f occurring in any atom init(f) of G. By induction hypothesis,
suppose that s ∈ S, and let fluents(s) denote the set of ground atoms {true(f) :
f ∈ F (s)}. For any player p ∈ {0, 1, · · · , k},Ap(s) is the set of all ground actions a,
for which the fact legal(p, a) is derivable from the program G ∪ fluents(s). Any
action profile a = (a0, a1, · · · , ak) ∈ A(s) determines a successor s′ = Q(s, a) of
s in S, and F (s′) is the set of ground all fluents f, for which the fact next(f) is
derivable from the program G∪ fluents(s)∪ {does(p, ap) : ap ∈ a}. According to
the specifications of GDLII, chance events are uniformly distributed1, which implies
that P (s) is the uniform distribution over A0(s). Finally, Sgoal is the set of states s
for which terminal is derivable from G ∪ fluents(s). In this case, the reward of
player p at s is given by the constant r occurring in the fact goal(p, r) derived from
the program G ∪ fluents(s).

Recall that in General Game Playing, any game starting at the initial state sinit
must reach a terminal state in Sgoal in finite time (i.e. using a finite number of moves).
Thus, the stochastic game G of a “valid” GDL program G must be acyclic. This,
together with the fact that any node s ∈ S is, by inductive construction, connected to
sinit implies that G is a tree-like stochastic game.

1 The actions of the chance player are not necessarily equiprobable. For example, a loaded dice with a
probability of 1/2 to give 6 can be modeled by ten actions of random, whose the first five have the same
effect (i.e. 6).

6 Frédéric Koriche et al.

3 A fragment of SCSP for GDL

From a game-theoretic viewpoint, the stochastic constraint networks investigated in
[12, 26, 30] capture one-player stochastic games, in which the chance player (defined
over stochastic variables) is “oblivious”: at each round of the game, the probability
distribution over the chance player’s moves is independent from the description of the
current state. In order to encode GDL programs into stochastic constraint programs,
we shall examine in this section a slight generalization of the original SCSP model
that captures multiplayer and non- oblivious stochastic games.

3.1 Stochastic CSPs

Recall that a (valued) constraint network consists in a finite tuple V = (v1, · · · , vn)
of variables, a function D that associates with each variable vi ∈ V a finite domain
D(vi) capturing the set of values that vi can take, and a set C of constraints, which
can be divided into “hard” constraints expressing restrictions on possible variable
assignments, and “soft” constraints, assigning utilities to variable assignments. Given
a subset of variables U = (v1, · · · , vm) ⊆ V , we denote by D(U) the relation
D(v1)× · · · ×D(vm).

Definition 2 A k-player Stochastic Constraint Satisfaction Problem (SCSP) is a 6-
tuple N = 〈V, Y,D,C, P, θ〉, such that V = (v1, · · · , vn) is a finite tuple of vari-
ables, Y ⊆ V is the set of stochastic variables, D is a mapping from V to finite
domains, C is a set of constraints, P is a set of conditional probability tables, and
θ ∈ [0, 1]k is a threshold.

– Each constraint in C is a pair c = (scpc, valc), such that scpc is a subset of V ,
called the scope of c, and valc is a map from D(scpc) to ([0, 1] ∪ {−∞})k.

– Each conditional probability table in P is a triplet (y, scpy, proby), where y ∈ Y
is a stochastic variable, scpy is a subset of variables occurring before y in V , and
proby is a map from D(scpy) to a probability distribution over D(y).

In what follows, we shall often adopt standard notations from probabilistic mod-
els. Notably, if y ∈ Y is a stochastic variable and τ ∈ D(scpy) is a tuple of values
in the conditional probability table of y, then we denote by P (y | τ) the probability
distribution proby(τ). In particular, if d ∈ D(y), then P (y = d | τ) indicates the
probability that y takes value d given τ .

ByX , we denote the set V \Y of decision variables. A constraint c ∈ C is called
a decision constraint iff its scope is restricted to decision variables, that is, scpc ⊆ X;
otherwise c is called a stochastic constraint. c is called a hard constraint if the range
of valc is {0,−∞}k, and c is called a soft constraint if the range valc is [0, 1]k. With
the intuitive meaning that −∞ is the “forbidden” value, every hard constraint c can
be represented in the usual way by a relation, denoted relc, which lists the set of
allowed tuples for scpc, that is, relc = {τ ∈ D(scpc), valc(τ) = (0, · · · , 0)}.

Given a subset U = (v1, · · · , vm) ⊆ V , an instantiation on U is an assignment
I of values d1 ∈ D(v1), · · · , dm ∈ D(vm) to the variables v1, · · · , vm, that is, I is

General Game Playing with Stochastic CSP 7

a tuple of D(U). We use the notation I = {(v1, d1), . . . , (vm, dm)}, to indicate that
I is an instantiation on {v1, · · · , vm}, that associates the value di ∈ D(vi) with the
variable vi. An instantiation I on U is complete if U = V . Given a subset U ′ ⊆ U ,
we denote by I|U ′ the restriction of I to U ′, that is, I|U ′ = {(vi, di) ∈ I : vi ∈ U ′}.
The probability of an instantiation I on U is given by

P (I) =
∏

y∈Y :scpy⊆U

P (y = I|y | I|scpy
)

Correspondingly, the utility of an instantiation I on U is given by

val(I) =
∑

c∈C:scpc⊆U

val(I|scpc
)

Note that val(I) is a tuple (val1(I), · · · , valk(I)) assigning a utility to each player.
An instantation I is locally consistent if valp(I) 6= −∞ for every player p, that is, I
satisfies every hard constraint in C. I is globally consistent (or consistent) if it can be
extended to a complete instantiation I ′ which is locally consistent.

A policy π for the network N is a labeled tree inductively defined as follows. The
root of π is labeled by v1. For each internal node s of π, if s is labeled by a decision
variable vi = xi, then s has a unique successor s′ labeled by vi+1, and the edge
(s, s′) is labeled by a value di ∈ D(xi). Alternatively, if s is labeled by a stochastic
variable vi = yi with domain D(yi) = {d1, · · · , dm}, then s has m successors
{s1, · · · , sm}; each si is labeled by vi+1, and its incident edge (s, si) is labeled by
the corresponding value di. Finally, each leaf s in π is labeled by the utility val(I),
where I is the complete instantiation specified by the path from the root of π to the
leaf s. Let L(π) be the set of all complete instantiations induced by π, i.e. I ∈ L(π)
iff there is a leaf s of π such that I is the path from the root to s. The expected utility
of π is the sum of its leaf utilities weighted by their probabilities. Formally,

val(π) =
∑

I∈L(π)

P (I)val(I)

A policy π is feasible iff val(π) ≥ (0, · · · , 0). In other words, π is feasible
iff all paths in π are globally consistent. Finally, π is a solution of the stochastic
constraint network N if its expected utility is greater than or equal to the threshold
θ = (θ1, · · · , θk). This implies that valp(π) ≥ θp for all players p. Clearly, any
solution policy is feasible, but the converse is not necessarily true. A network N is
satisfiable if it admits at least one solution policy.

It is important to keep in mind that a solution policy π for a stochastic constraint
network N is not guaranteed to be a “dominant strategy” for some of the players
[24]. In fact, the notion of “policy” investigated in this study is not equivalent to
the definition of “game tree”, in which the set of decision nodes would have been
partitioned into k subsets, each associated with a specific player. Instead, the overall
goal of stochastic constraint satisfaction is to find an assignment of decision nodes
for which the resulting expected utility matches the threshold criterion.

8 Frédéric Koriche et al.

Example 2 We consider here a conceptually simple SCSP that captures the semantics
of the cooperative “Matching Pennies” game, specified in Example 1. The network is
defined over the tuple of variables 〈x1,a, x1,b, y1, x2,a, x2,b, y2〉, where the decision
variables x1,a and x2,a (resp. x1,b and x2,b) specify the choices of alice (resp. bob)
at rounds 1 and 2, and the stochastic variables y1 and y2 describe the behavior of the
chance player during both rounds. Using the values U (unset), H (heads), and T (tails),
the domains of xt,p are {H, T} for t ∈ {1, 2} and p ∈ {a, b}, the domain of y1 is {U},
and the domain of y2 is {H, T}, equipped with the uniform distribution (P (y2 = H) =
P (y2 = T) = 1/2). The decisions of alice and bob cannot be changed during the
second round, which is captured by the hard constraints cp (p ∈ {a, b}):

cp(x1,p, x2,p) =

{
0 if x1,p = x2,p

−∞ otherwise

The game scores are encoded by the soft constraint cs specified in Figure 2(a). Using
θ = 1/2, the policy π depicted in Figure 2(b) is a solution: it is consistent with both
ca and cb, and satisfies cs with an expected utility of 1/2 = θ.

x2,a x2,b y2 cs

H H H 1

T T T 1

H H T 0

H T H 0

...
...

...
...

T H H 0

(a)

x1,a x1,b y1 x2,a x2,b y2

1

0

h h u h h

h

t

(b)

Fig. 2 The utility function of the soft constraint cs (a) and a policy (b) of the SCSP in Example 2

Borrowing the terminology of [12], a (decision) stage in a SCSP is a tuple of vari-
ables 〈Xt, Yt〉, where Xt is a subset of decision variables, Yt is a subset of stochastic
variables, and decision variable occurs before any stochastic variable.

Definition 3 A T -stage k-player SCSP is a k-player SCSP N = 〈V, Y,D,C, P, θ〉,
in which V can be partitioned into T stages, i.e. V = (〈X1, Y1〉, · · · , 〈XT , YT 〉),
where {Xt}Tt=1 is a partition of V \ Y , {Yt}Ti=1 is a partition of Y , and scpyi ⊆ Xt

for each t ∈ {1, · · · , T} and each yt ∈ Yt. If T = 1, N is called a one-stage SCSP,
and denoted µSCSP.

From a computational viewpoint, the satisfiability problem for any T -stage k-
player SCSP is PSPACE-hard, since it includes as a particular case the T -state one-
player SCSP [30]. On the other hand, the complexity of a k-player µSCSP is only
NPPP-complete. This follows from the NPPP-hardness of 1-player µSCSP [30], and
the fact that, for a one-stage SCSP, the decision nodes of a solution policy π can be
non-deterministically guessed in polynomial time (NP), and the expected reward of
π can be checked in probabilistic polynomial time (PP).

General Game Playing with Stochastic CSP 9

3.2 From GDL to SCSP

In [13], we developed a procedure for encoding GDL games in SCSPs. The procedure
takes as input a GDL program G and a horizon T , and returns as output a T -stage
SCSP N , each decision stage 〈Xt, Yt〉 capturing a “round” of the sequential game.

Specifically, each decision stage of N is a tuple of the form 〈gt, {ft}, {at}, yt〉,
where gt is a Boolean variable indicating whether the game has reached a terminal
(goal) state; {ft} is a set of fluent variables describing the game state at round t;
{at} = {at,1, · · · , at,k} is a set of action variables, each at,p describing the set of
legal moves of player p, and yt = at,0 is the unique stochastic variable describing
the set of legal moves of the chance player. Additional decision variables (occurring
before yt) are used to define the conditional probability table of yt (see below), and to
express relationships between game elements (ex: alleq in Example 1). As detailed
in [13], these variables and their domains are extracted by first eliminating function
symbols from G, next identifying a variable per atom name, and then filling the do-
main of the variable by collecting all ground instances of the atom in the program.

The Horn clauses of a GDL program G can naturally be partitioned into init

rules describing the initial state, legal rules specifying the legal moves at the cur-
rent state, next rules capturing the effects of actions, and goal rules defining the
players’ rewards at a terminal state. init, legal and next rules are encoded into
hard constraints in the network N . The constraint relation is extracted in the same
way as the domains of variables, by identifying all allowed combinations of con-
stants. Similarly, goal rules are encoded by a soft constraint in N ; based on their
semantics, the players’ rewards are set to 0 for any nonterminal state, and to a value
in [0, 1] for any terminal state.

Based on the stochastic game of G, the conditional probability table of yt spec-
ifies a uniform distribution over the set of action values D(yt) = {d1, · · · , dm}
which have a consistent support in the legal constraint. To this end, we use a set
{bt} = {bt,1, · · · , bt,m} of Boolean variables, each bt,i indicating whether di is a le-
gal move, or not. A standard channelling constraint is used to express the correspon-
dence between {bt} and yt. Based on this encoding, the table is intensionally defined
over the scope scpyt = {bt} by the function P (yt = di | I|{bt}) = I|bt,i/

∑
i I|bt,i .

The threshold θ can be adjusted according to the desired strategy: starting from
the value θ = (0, · · · , 0) that allows all feasible policies, one can use the expected
value of a solution of the current SCSP as a new threshold, which determines a more
constrained SCSP defined over the same constraints.

3.3 From SCSP to µSCSP

As a key point of our framework, the T -stage stochastic constraint network encoding
a GDL game can be decomposed into a sequence 〈µSCSP1, · · · , µSCSPT 〉 of one-
stage stochastic constraint networks. Specifically, let N = 〈V, Y,D,C, P, θ〉 be the
SCSP associated with a GDL game, where the variable ordering V is partitioned into
T stages 〈V1, · · · , VT 〉, with Vt = 〈gt, {ft}, {at}, yt〉. Then, each µSCSPt in the
sequence is a tuple 〈Vt, Yt, Dt, Ct, Pt, θ〉, where Vt = 〈gt, {ft}, {at}, yt, {ft+1}〉,

10 Frédéric Koriche et al.

Variable Domain
terminalt {true, false}
coint,p {H, T, U}
controlt,p {true, false}
chooset,p {heads, tails, noop}
coint+1,p {H, T, U}
controlt+1,p {true, false}

Variables and domains (p ∈ {a, b, r})

coint,a coint,b coint,r terminalt

H H H true

H H T true

...
...

...
...

T T T true

H H U false

H U H false

...
...

...
...

U U U false

terminal constraint

controlt,r heads tails noop

true 1/2 1/2 0

false 0 0 1

Conditional probability table of chooset,r

controlt,p chooset,p

true heads

true tails

false noop

legal constraints (p ∈ {a, b, r})

controlt,p controlt+1,p

false true

true false

coint,p chooset,p coint+1,p

H noop H

T noop T

U noop U

U heads H

U tails T

next constraints (p ∈ {a, b, r})

Fig. 3 A µSCSP encoding the GDL program of cooperative Matching Pennies.

Yt is the restriction of Y to the stochastic variable yt, Dt and Ct are the restrictions
of D and C to the variables in Vt, and Pt is the restriction of P to the conditional
probability table of yt. Though yt is followed by the set of decision variables {ft+1}
in the ordering Vt, such variables express fluents for which the value is propagated
by the next constraint, once the previous action variables {at,1, · · · , at,k, yt} have
been instantiated. By construction, the above decomposition induces a partition of the
constraint setC ofN into T constraint setsCt, each associated with its µSCSPt. Fur-
thermore, because any “valid” GDL program G represents a tree-structured stochastic
game, every game state can reach a terminal state. Assuming that N is a correct
encoding of G, this implies that any instantiation I which is consistent with the sub-
sequence 〈µSCSP1, · · · , µSCSPt〉 is guaranteed to be globally consistent for N .

In a nutshell, the stochastic constraint network of a GDL program at horizon T
can be decomposed into simpler µSCSPs, each associated with a distinct subset of
hard constraints. Such a decomposition naturally encourages to solve the GDL game
in a sequential way, by iteratively solving each µSCSPt in the sequence.

To conclude this section by an illustrative example, Figure 3 describes the tth
µSCSP returned by our encoding procedure on the GDL program of Example 1. For
the sake of clarity, the identifiers representing variables and domains were renamed.
Notably, a, b, r denote the players alice, bob and random, respectively. The (soft)
goal constraint ommitted in the figure is simply a reformulation of the constraint cs
in Figure 2(a), using the scope {coint,a, coint,b, coint,r}.

General Game Playing with Stochastic CSP 11

4 MAC-UCB

Based on a fragment of SCSP for GDL games, we now present our resolution tech-
nique called MAC-UCB. As indicated above, the stochastic constraint network of a
GDL program is a sequence of µSCSPs, each associated with a game round. For each
µSCSPt in {1, · · · , T}, MAC-UCB searches the set of feasible policies by splitting
the problem into two parts: a CSP and a µSCSP (smaller than the original one). The
first part is solved using the MAC algorithm and the second part with the FC algorithm
dedicated to SCSP. Then, a sampling with confidence bound is performed to estimate
the expected utility of each feasible solution of µSCSPt.

4.1 Preprocessing Step

Before examining the resolution of the µSCSP, we use some classical preprocess-
ing techniques to improve the efficiency of the resolution step. First, hard constraints
with the same scope are merged. Given a µSCSP N , two hard constraints ci and cj
of N such as scpci = scpcj are converted into a unique constraint ck such that relck
= relci ∩ relcj and scpck = scpcj = scpci . Next, we remove all unary constraints
(e.g. constraints c such that |scpc| = 1), by projecting their relation onto the domain
of the single variable occurring in scpc, restricted to values allowed by the tuples
of the associated relation. We also remove the so-called universal variables. Recall
that a variable is universal in c if whatever the value assigned, c is always satisfied.
Formally, given a constraint c, a variable x ∈ scpc is universal if |relc| is equal to the
product of the size of the domain of x with the number of tuples of the relation asso-
ciated with the constraint ci, where scpci = scpc \ {x}. Such variables (induced by
the encoding of a GDL game in SCSP) are removed from the scope of the constraints.
The last preprocessing technique is to exploit the Singleton Arc Consistency (SAC)
[8] property. A constraint network N is singleton arc- consistent if each value (of
each variable) of N is singleton arc- consistent. A value is singleton arc-consistent
if when assigned to its variable it does not lead to an arc-inconsistent network. By
application of this property, inconsistent values are removed from the domain of vari-
ables. These preprocessing techniques are performed on all µSCSPs, except the last
one (in which the rewards are revealed). SAC is performed on a CSP extracted from
the µSCSP; the model of this CSP is detailed in the next section.

4.2 Resolution Step

After performing the preprocessing step, the aim of the resolution step is to enumerate
the feasible policies of the µSCSP, some of which can lead to an optimal solution.
To the best of our knowledge, the best method is Forward Checking (FC) presented
in [2]. Unfortunately for a µSCSP with many constraints, FC is not efficient enough,
due to its low pruning capabilities. Instead, we split the µSCSP N into a CSP N ′

including all decision constraints of N , and a µSCSP N ′′ containing only stochastic
constraints of N . The feasible solutions of the µSCSP are then identified by merging
the solutions the CSP N ′ with the solutions of the µSCSP N ′′.

12 Frédéric Koriche et al.

We first examine the resolution of N ′′. For GDL programs, N ′′ includes a single
constraint capturing the transition rule for the chance (random) player. Thus, N ′′ can
be solved using Forward Checking (FC) adapted to one side SCSPs [2] 2. The set
of the solution policies obtained by FC on N ′′ is encoded into a hard constraint cs,
called feasibility constraint, where scpcs is the set of the decision variables of N ′′,
and relcs is the set of tuples corresponding to assignments of decision variables that
are part of a feasible policy.

We now turn to the resolution of the CSP N ′. Here, the classical MAC algorithm
[20, 21] is applied to enumerate solutions of N ′. Recall that MAC interleaves infer-
ence and search, since at each step of a depth-first search with backtracking, the Arc
Consistency (AC) [15, 16] property is maintained. In order to take into account the so-
lutions identified in N ′′, we simply add the corresponding feasibility constraint cs to
N ′. The MAC algorithm is then applied on N ′, and returns a set of solutions which is
guaranteed to coincide with the set of solutions of the original µSCSP (when adding
the stochastic variable). MAC exploits the arc consistency property in order to effec-
tively prune infeasible solutions of N ′. We note in passing that it is also possible
to first solve the CSP N ′ (without the feasibility constraint) and next to process the
µSCSP N ′′. However, due to the small size of N ′′, it is more effective in practice to
first solve this problem, before proceeding to the larger problem N ′.

Example 3 We illustrate the resolution of a µSCSP N defined by the decision vari-
ables x1 and x2, and the stochastic variable y. The domains are D(x1) = {1, 2, 3}
andD(y) = D(x2) = {0, 1, 2}. The probability distributionN overD(y) is uniform,
and the threshold θ is set to 3/4. The network includes three constraints specified in
Figure 4(a). The µSCSPN ′′ is restricted to the constraints {c1, c2}. For this problem,
FC returns the policies π1 and π2 described in Figure 4. The feasibility constraint cs
is added to N ′ with scpcs = {x1, x2} and relcs = {(2, 1), (2, 2)}. The problem
N ′, associated with the CSP part of N , is thus defined by the set of (decision) vari-
ables {x1, x2} (with their associated domain) and the constraints {c3, cs}. The MAC
algorithm returns for this problem the unique solution: (x1 = 2 ; x2 = 2).

Thus, by combining the solutions obtained from N ′ and N ′′, it follows that the
unique solution policy of N is π1.

4.3 UCB

Though any GDL program represents a finite sequential game, the players’ rewards
are only accessible at a terminal state. So, after each resolution of a µSCSPt, we
need to simulate the next states of the game in order to estimate the utility of so-
lutions found in µSCSPt. To this end, we use the multi-armed bandits UCB (Upper
Confidence Bound) technique [1], by considering each feasible solution of µSCSPt
as an “arm”. Starting from the partial policy associated with a feasible solution of
µSCSPt, we sample uniformly at random all possible moves from t+1 to T −1. The

“best” feasible solution of µSCSPt is the one that maximizes ūi +
√

2 lnn
ni

, where ūi

2 Specifically, our version of FC returns all solution policies of N ′′, whereas the original algorithm
returns a satisfaction threshold.

General Game Playing with Stochastic CSP 13

is the averaged score of the feasible solution i, ni is the number of times i has been
sampled so far, and n is the overall number of samples 3. The resolution of the next
problem in the sequence is performed by instantiating µSCSPt+1 with the values of
the best feasible solution estimated from µSCSPt.

c1(x1, y) =

{
1/2 if x1 + y > 1

0 otherwise

c2(y, x2) =

{
1/2 if y + x2 ≥ 1

0 otherwise

c3(x1, x2) =

{
0 if x1 = x2

−∞ otherwise

(a) constraints

x1

x2

y

1 11

2

2

1 02

(b) π1

x1

x2

y

1 11

2

1

1 02

(c) π2

Fig. 4 Constraints of the µSCSPN , and solutions of the µSCSPN ′′.

4.4 Pruning Improvements

Recall that the task of sequential decision making associated with a strategic game is
an optimization problem. Classically, this problem is addressed by solving a sequence
of stochastic satisfaction problems whose threshold is gradually increased. Starting
from the threshold θ = (0, · · · , 0), if r = (r1, · · · , rk) is the tuple of expected re-
wards of the best policy estimated by UCB over the sequence 〈µSCSP1, · · · , µSCSPt〉,
then θ is reset to (rmin, · · · , rmin), where rmin = min{ri}.

The gradual increase of the threshold is exploited to prune the search space. To
this end, our UCB implementation uses a caching technique which stores the leaves
already explored4. By combining the leaves already encountered with the number
of legal moves at each state, one can determine whether a subtree is completely ex-
plored. If this is indeed the case, any solution of the µSCSP whose expected value
is less than θ can be safely removed. Based on this cutting scheme, UCB can exploit
its cache to remove in each µSCSP the suboptimal solutions for θ. We also take ad-
vantage of the confidence values in UCB, which estimate the quality of each sampled
solution. When a sufficient number of domain values of the stochastic variable are
below the confidence value, the corresponding subtree can be safely removed from
the solution set of the stochastic subproblem N ′′. Correspondingly, the number of
tuples in the relation of the feasibility constraint cs is reduced, which simplifies the
resolution of the CSP. In other words, the higher the threshold θ is, the more efficient
is the resolution of the µSCSP.

3 For our experiments, 10000 simulations were performed.
4 In our experiments, 32 GB were allowed for caching and this limit was never reached.

14 Frédéric Koriche et al.

5 Experimental Results

We now present some experimental results conducted on a cluster of Intel Pentium
CPU 3.4 GHz with 32 GB of RAM under Linux. Our framework was implemented
in C++ and we did not use any other tools.

We selected 15 games described in GDLII, including both deterministic games
and stochastic games. Game descriptions differ in the number of players, the number
of fluents and moves, the number and size of rules, and the scoring function (goal).

– Awale/Oware is an abstract strategy (board) game with 48 seeds and 2 straight
rows of 6 pits called "house". Each player controls the 6 houses on their side of
the board. The goal of is to capture a maximum of seeds before the opponent.

– Backgammon is a board game with 2 dices and 15 pieces by player. The playable
pieces are moved according to the roll of the dice, and a player wins by removing
all of her pieces from the board.

– Bomberman is a strategy maze-based video game where the goal is to complete
levels by placing bombs in order to kill enemies and destroy obstacles.

– Can’t stop is a board game with 4 dices. The board includes 9 columns of different
sizes, and the goal is to reach the top of three of them with the right combinations
of dices.

– Checkers is a strategy 8× 8 board game involving in diagonal moves of uniform
game pieces and mandatory captures by jumping over opponent pieces.

– Chess is a strategy board game with 64 squares where two players move 16 dif-
ferent pieces in order to "checkmate" the opponent’s king by placing it under an
inescapable threat of capture.

– Chinese Checkers is a strategy board game where the objective is to be the first
to race one’s pieces across the hexagram-shaped board into the corner of the star
opposite one’s starting corner. Our version has 3 players.

– Hex is an alternating move game played on a 9×9 board. On each step, one of the
players places a colored marker on an open hexagon. The goal is for the player to
form a path of markers of its color connecting one side of the board to the other.

– Kaseklau is a small board game involving a mouse and a cat. The goal is to roll
the 2-dice to move the mouse and the cat on different squares where slices of
cheese are placed.

– Orchard is a cooperative board game. During each round, each player rolls a
6-dice whose four faces are associated with a specific fruit tree, one face is as-
sociated with a set of pieces composing a raven, and the final face is a "basket"
allowing the player to remove two fruits of her choice. The goal is to pick the
fruits of all trees before removing all pieces of the raven.

– Othello/Reversi is a strategy board game, played on an 8× 8 uncheckered board.
There are 64 disks with one black face and one white face. Every player is as-
signed to a color. During a move, all disks of the opponent which are flanked
by the disks of the current player are flipped, and hence, assigned to the current
player. The winner is the player who has more discs of his colour than his oppo-
nent when the last playable empty square is filled.

General Game Playing with Stochastic CSP 15

Game #vars maxDom #const time

Awale 19 37 73 94
Backgammon 76 768 86 347
Bomberman 145 64 42 31
Can’t Stop 16 1296 409 248
Checkers 86 262144 52 43

Chess 71 4096 50 76
Chinese Checkers 103 192 87 54

Hex 22 6561 27 91
Kaseklau 18 7776 106 35
Orchard 9 146410 40 12
Othello 81 65 29 51
Pacman 93 64 22 36

Pickomino 29 1679616 223 172
TicTacToe 19 18 37 0

Yathzee 12 30 8862 182

Table 2 The games translated into SCSP and theirs parameters.

– Pacman is an arcade game where the player controls Pac-Man through a maze,
eating pac-dots and fruits, and avoiding 4 roaming ghosts. The player loses if a
ghost touches Pac-Man before all pac-dots are eaten, and wins otherwise.

– Pickomino is a dice game with 8 dices and 16 numbered tiles including 1 at 4
worms. At each round, the players obtain a score by rolling dices. The goal is to
get the maximum of worms.

– Tic-tac-toe is a well-known deterministic game with two players (X and O) who
iteratively mark a 3× 3 grid.

– Yathzee is a game where the goal is to get the highest score by rolling five dices.
At each round, the dice can be rolled up to 3 times in order to make one of the 13
scoring combinations.

The translation of these GDL games into SCSP is summarized in Table 2, which
indicates the number of variables (#vars), the maximum domain size (maxDom), and
the number of constraints (#const) of the resulting SCSP, together the parsing time
in seconds (time) for constructing this SCSP. The most difficult game to encode is
Backgammon, involving a large number of variables, each with a large domain and
an important number of constraints with large scope. Awale, Can’t Stop, Chess, Hex,
Pickomino and Yathzee are also challenging due to the size of their domains or the
number of their constraints.

5.1 Setup

Game competitions were organized between three players. The first player is the
state-of-the-art UCT algorithm. The second player is the FC-UCB algorithm which
solves µSCSPs using only the FC algorithm. The last player is the MAC-UCB algo-
rithm, which solves µSCSPs by decomposing them into two parts, and running MAC

16 Frédéric Koriche et al.

Game MAC-UCB vs.
UCT

σ MAC-UCB vs.
FC-UCB

σ FC-UCB vs.
UCT

σ

Awale 56.7 % 1.63 % 77.7 % 1.92 % 43.2 % 2.34 %
Backgammon 68.2 % 5.49 % 84.8 % 6.36 % 47.3 % 5.87 %
Bomberman 65.4 % 6.32 % 75.7 % 5.34 % 58.4 % 5.46 %
Can’t Stop 71.7 % 6.43 % 65.9 % 4.87 % 54.7 % 5.34 %
Checkers 61.2 % 2.12 % 76.9 % 1.61 % 57.5 % 1.43 %

Chess 53.8 % 1.75 % 68.5 % 1.76 % 39.4 % 1.75 %
Chinese checkers 5 55.4 % 8.24 % 78.1 % 7.23 % 32.7 % 6.51 %

Hex 69.7 % 2.45 % 73.2 % 3.24 % 55.3 % 3.12 %
Kaseklau 71.4 % 6.56 % 58.9 % 7.87 % 68.3 % 7.34 %
Orchard 6 70.2 % 3.41 % 70.2 % 3.45 % 70.0 % 2.45 %
Othello 79.3 % 1.41 % 75.1 % 0.89 % 61.3 % 1.14 %
Pacman 69.1 % 2.73 % 74.1 % 3.12 % 61.8 % 3.78 %

Pickomino 63.4 % 4.89 % 65.9 % 6.10 % 52.1 % 5.34 %
Tictactoe 65.7 % 0.89 % 51.8 % 0.76 % 64.9 % 0.73 %
Yathzee 71.2 % 5.48 % 74.0 % 5.12 % 58.6 % 5.34 %

Table 3 Results for several GDL games with 30s by move

on the deterministic part, as indicated in Section 4.2. We have implemented UCT,
following the specification of the multi-player version [25]. For the sake of fairness,
we also added a cache to UCT, allowing it to know in advance the subtrees already
explored. We realized 1, 800, 000 instances of duels between UCT, MAC-UCB and
FC-UCB. For each game, a player follows the strategy UCT, FC-UCB or MAC-UCB.
5000 match plays are realized with different deliberation times per round (1s, 5s, 10s,
20s, 30s, 40s, 50s, 60s).

The horizon T was fixed to the maximum number of turns that can be sampled by
UCB during a given deliberation time. If a goal state is reached before T turns, this
state and all subsequent states are considered as terminal. If no goal state is reached at
(or before) T , the state at T is considered irrelevant (with a reward of 0 to all players).

5.2 Results

In Table 3 are reported the percentage of wins obtained by MAC-UCB (or FC-UCB
when MAC-UCB is not used) for each game, with 30 seconds per move. The standard
deviation (σ) is also indicated. For all games, MAC-UCB statistically outperforms
both UCT and FC-UCB, and this phenomenon increases with deliberation time.

The leftmost part of the table (MAC-UCB vs. UCT) indicates that MAC-UCB is
particularly efficient for handling stochastic games. Indeed, for Bomberman, Can’t
Stop, Kaseklau, Pacman, Pickomino, Yathzee, and Backgammon, MAC-UCB wins

5 This game involves three players : one controls by MAC-UCB or FC-UCB and the two others by two
UCT or FC-UCB.

6 Since this game is cooperative, the cooresponding row indicates the percentage of victories using the
same algorithm for all players.

General Game Playing with Stochastic CSP 17

0 1,000 2,000 3,000 4,000 5,000

40

50

60

Awale

0 1,000 2,000 3,000 4,000 5,000

40

50

60

70

Backgammon

Fig. 5 Number of match plays (horizontal axis) versus ratio of victories (vertical axis) for MAC-UCB
against UCT, using 30 seconds per move.

more than 70% of match plays. For deterministic games, the standard deviation is
smaller, because MAC-UCB cannot benefit from stochastic pruning.

It is important to emphasis the specificity of two games: Orchard and Chinese
Checkers. The former is a cooperative game, and the performance of both algorithms
(MAC-UCB and UCT) is around 70%. We note in passing that this score is maximal
for the optimal strategy. For Chinese Checkers, a three player game, we observe that
even if MAC-UCB is the winner in 55 % of plays against “two” UCT, the standard
deviation is important (> 8%). So, we cannot statistically confirm that MAC-UCB is
efficient enough to outperform two UCT adversaries.

For the middle part of the table (MAC-UCB vs. FC-UCB), it is clear that MAC-UCB
dominates FC-UCB. Thus, the more aggressive pruning technique used by MAC-UCB
is paying off: the arc consistency property maintained by the algorithm has a signifi-
cant impact for efficiently solving µSCSPs. The rightmost part of the table (FC-UCB
vs. UCT) indicates that even if FC-UCB outperforms UCT for some games with few
constraints or variables, UCT is the winner in the majority of cases. Thus, in light of
the three columns of the table, the effectiveness of MAC (coupled with UCB) is crucial
for quickly finding winning policies.

Figure 5 reports the evolution of the victories for MAC-UCB against UCT with
30s per move when the number of plays increases up to 5000. For the deterministic
Awale game, the evolution is almost constant with a standard deviation of 1,41%
for 1000 plays. In such a deterministic case, pruning is only realized by MAC on the
CSP part. For the stochastic Backgammon game, the performance of MAC-UCB is
better and significantly increases with the number of plays. This can be explained by
the increasing number of prunings induced by UCB, whose cache is more and more
exploited. The same phenomenon can be observed for other stochastic games.

Table 4 describes the percentage of victories of MAC-UCB against UCT with dif-
ferent deliberation times per round, ranging from 1 second to 60 seconds on 5000
plays. We can observe that the performance gap between MAC-UCB and UCT in-
creases with deliberation time. This gap is explained by the ability of MAC to solve a

18 Frédéric Koriche et al.

Game 1 s 5 s 10 s 20 s 30 s 40 s 50 s 60 s

Awale 38.6 % 43.3 % 47.4 % 51.6 % 56.7 % 57.9 % 61.3 % 63.0 %
Backgammon 53.1 % 58.1 % 61.4 % 65.8 % 68.2 % 71.3 % 77.0 % 79.6 %
Bomberman 58.3 % 60.0 % 60.2 % 64.7 % 65.4 % 70.1 % 72.4 % 75.6 %
Can’t Stop 50.3 % 54.7 % 59.9 % 62.2 % 71.7 % 74.9 % 76.3 % 78.9 %
Checkers 43.4 % 49.6 % 51.4 % 56.8 % 61.2 % 67.2 % 71.3 % 75.7 %

Chess 34.0 % 39.3 % 46.1 % 49.9 % 53.8 % 56.4 % 57.6 % 60.8 %
Chinese Checkers 27.4 % 35.5 % 43.7 % 50.7 % 55.4 % 59.1 % 63.2 % 65.4 %

Hex 54.7 % 56.2 % 58.5 % 67.4 % 69.7 % 71.4 % 71.9 % 72.5 %
Kaseklau 63.6 % 65.2 % 68.3 % 70.2 % 71.4 % 73.2 % 74.7 % 75.1 %
Orchard 65.3 % 68.5 % 69.9 % 70.2 % 70.2 % 70.1 % 70.2 % 70.2 %
Othello 61.9 % 64.0 % 70.6 % 75.8 % 79.3 % 82.0 % 84.2 % 84.9 %
Pacman 64.4 % 66.2 % 67.1 % 67.9 % 69.1 % 69.4 % 69.8 % 70.5 %

Pickomino 52.4 % 55.3 % 58.0 % 61.1 % 63.4 % 65.8 % 66.1 % 68.6 %
TicTacToe 63.6 % 64.4 % 64.9 % 65.4 % 65.7 % 65.9 % 65.8 % 65.4 %

Yathzee 43.5 % 50.1 % 53.7 % 64.3 % 71.2 % 75.2 % 77.1 % 78.9 %

Table 4 Ratio of victories for MAC-UCB vs. UCTwith different deliberation time per round on 5000 plays.

more important number of µSCSPs in the sequence, which makes easier the explo-
ration task of UCB. For the smallest game TicTacToe, all the search tree is explored
using only 5s per move. Moreover, for small games like Bomberman or Pacman,
MAC-UCB can win using only 1s per move. Contrastingly, for some larger games
like Awale, Chess or Chinese Checkers, MAC-UCB is defeated by UCT when the de-
liberation time is too small (typically less than 10s). However, MAC-UCB obtains
better results for stochastic games by exploiting stochastic pruning. Notably, for the
Orchard game, the optimal strategy is discovered using only 20s per move.

We conclude the experimental analysis by shedding a light on the dilemma for
MAC-UCB between exploitation (solving) and exploration (sampling). In our exper-
iments, 90 % of deliberation time was dedicated to exploitation and 10 % to explo-
ration. In order to justify this ratio, Figure 6 shows a sensitivity analysis of MAC-UCB
for the different games, using 30s per move7. The plots report the percentage of vic-
tories of MAC-UCB for ratios ranging from 0 % to 100 % for the solving part. The
optimum is reached between 86 and 94 %, which stresses the importance of focusing
mainly on the structure of the games, captured by the hard constraints.

6 Conclusion

In this paper, we identified a fragment of SCSP for representing GDL games with un-
certain and complete information. Based on this fragment, we proposed an algorithm,
MAC-UCB, that searches solution policies by combining a Constraint Programming
method (MAC) with a multi-armed bandit method (UCB). Extensive experiments on

7 A similar phenomenon was observed using 10s and 50s per move.

General Game Playing with Stochastic CSP 19

0 20 40 60 80100
0

20
40
60
80

100

Awale

0 20 40 60 80100
0

20
40
60
80

100

Backgammon

0 20 40 60 80100
0

20
40
60
80

100

Bomberman

0 20 40 60 80100
0

20
40
60
80

100

Can’t Stop

0 20 40 60 80100
0

20
40
60
80

100

Checkers

0 20 40 60 80100
0

20
40
60
80

100

Chess

0 20 40 60 80100
0

20
40
60
80

100

Chinese Checkers

0 20 40 60 80100
0

20
40
60
80

100

Hex

0 20 40 60 80100
0

20
40
60
80

100

Kaseklau

0 20 40 60 80100
0

20
40
60
80

100

Othello

0 20 40 60 80100
0

20
40
60
80

100

Pacman

0 20 40 60 80100
0

20
40
60
80

100

Pickomino

0 20 40 60 80100
0

20
40
60
80

100

Tic Tac Toe

0 20 40 60 80100
0

20
40
60
80

100

Verger

0 20 40 60 80100
0

20
40
60
80

100

Yathzee

Fig. 6 Sensitivity analysis of MAC-UCB:. On the vertical axis, the percentage of victories of MAC-UCB
vs. UCT, and on the horizontal axis, the percentage of resolution during the deliberation time (30s).

various games, with different deliberation times per round, highlight the ability of
MAC-UCB to address the GGP challenge. In most cases, MAC-UCB outperforms UCT,
the reference in the field of games with uncertain (but complete) information.

This work paves the way for many research opportunities. From an algorithmic
viewpoint, the resolution step could be improved by exploiting symmetries, and arc
consistency methods dedicated to SCSPs (ex: [2]). Another natural perspective of
research is to extend the approach to games with incomplete information.

20 Frédéric Koriche et al.

References

1. P. Auer, N. Cesa-Bianchi, and P. Fischer. Finite-time analysis of the multiarmed bandit problem.
Machine Learning, 47(2–3):235–256, 2002.

2. T. Balafoutis and K. Stergiou. Algorithms for stochastic CSPs. In Proc. of CP’06, pages 44–58, 2006.
3. C. Bessiere and G. Verger. Strategic constraint satisfaction problems. In Proc. of CP’06 Workshop on

Modelling and Reformulation, pages 17–29, 2006.
4. M. Bowling, N. Burch, M. Johanson, and O. Tammelin. Heads-up limit hold’em poker is solved.

Science, 347(6218):145–149, 2015.
5. M. Campbell, A. J. H. Jr., and F. Hsu. Deep blue. Artificial Intelligence, 134(1-2):57–83, 2002.
6. T. Cazenave and J. Mehat. Ary, a general game playing program. In Proc. of Board Games Studies

Colloquium, 2010.
7. J. E. Clune, III. Heuristic evaluation functions for general game playing. PhD thesis, University of

California, Los Angeles, USA, 2008. Adviser-Korf, Richard E.
8. R. Debruyne and C. Bessiere. Some practical filtering techniques for the constraint satisfaction prob-

lem. In Proc. of IJCAI’97, pages 412–417. Springer, 1997.
9. H. Finnsson and Y. Björnsson. Simulation-based approach to general game playing. In Proc. of

AAAI’08, pages 259–264, 2008.
10. M. Genesereth, N. Love, and B. Pell. General game playing: Overview of the AAAI competition.

AAAI Magazine, 26(2):62–72, 2005.
11. I. P. Gent, P. Nightingale, A. Rowley, and K. Stergiou. Solving quantified constraint satisfaction

problems. Artificial Intelligence, 172(6-7):738–77, 2008.
12. B. Hnich, R. Rossi, S. A. Tarim, and S. D. Prestwich. Filtering algorithms for global chance con-

straints. Artificial Intelligence, 189:69–94, 2012.
13. F. Koriche, S. Lagrue, É. Piette, and S. Tabary. Compiling strategic games with complete information

into stochastic csps. In AAAI workshop on Planning, Search, and Optimization (PlanSOpt-15), 2015.
14. N. Love, T. Hinrichs, D. Haley, E. Schkufza, and M. Genesereth. General game playing: Game

description language specification. Technical report, 2008.
15. A. Mackworth. Consistency in networks of relations. Artificial Intelligence, 8:99–118, 1977.
16. A. Mackworth. On reading sketch maps. In Proc. of IJCAI’77, page 598–606. Springer, 1977.
17. M. Möller, M. T. Schneider, M. Wegner, and T. Schaub. Centurio, a general game player: Parallel,

Java- and ASP-based. Künstliche Intelligenz, 25(1):17–24, 2011.
18. A. Neyman and S. Sorin, editors. Stochastic Games and Applications. Springer, 2003.
19. T.-V.-A. Nguyen, A. Lallouet, and L. Bordeaux. Constraint games: Framework and local search solver.

In Proc. of ICTAI’13, pages 8–12, 2013.
20. D. Sabin and E. Freuder. Contradicting conventional wisdom in constraint satisfaction. In Proc. of

CP’94, pages 10–20. Springer, 1994.
21. D. Sabin and E. Freuder. Understanding and improving the mac algorithm. In Proc. of CP’97, pages

167–181. Springer, 1997.
22. J. Schaeffer, N. Burch, Y. Björnsson, A. Kishimoto, M. Müller, R. Lake, P. Lu, and S. Sutphen.

Checkers is solved. Science, 317(5844):1518–1522, 2007.
23. C. Shannon. Programming a computer for playing chess. Philosophical Magazine, 41:256–275, 1950.
24. Y. Shoham and K. Leyton-Brown. Multiagent Systems: Algorithmic, Game-Theoretic, and Logical

Foundations. Cambridge University Press, 2009.
25. N. R. Sturtevant. An analysis of uct in multi-player games. ICGA Journal, 31(4):195–208, 2008.
26. A. Tarim, S. Manandhar, and T. Walsh. Stochastic constraint programming: A scenario-based ap-

proach. Constraints, 11(1):53–80, 2006.
27. G. Tesauro. Programming backgammon using self-teaching neural nets. Artificial Intelligence,

134(1–2):181 – 199, 2002.
28. M. Thielscher. Flux: A logic programming method for reasoning agents. Theory Pract. Log. Program.,

5(4-5):533–565, 2005.
29. M. Thielscher. A general game description language for incomplete information games. In Proc. of

AAAI’10, pages 994–999, 2010.
30. T. Walsh. Stochastic constraint programming. In Proc. of ECAI’02, pages 111–115, 2002.

