0.00/0.00 c SCIP version 2.1.1.4 [precision: 8 byte] [memory: block] [mode: optimized] [LP solver: SoPlex 1.6.0.3] [GitHash: a3bf3a4-dirty]
0.00/0.00 c Copyright (c) 2002-2012 Konrad-Zuse-Zentrum fuer Informationstechnik Berlin (ZIB)
0.00/0.00 c
0.00/0.00 c user parameter file <scip.set> not found - using default parameters
0.00/0.00 c reading problem <HOME/instance-3717537-1338196039.wbo>
0.00/0.02 c original problem has 4954 variables (4954 bin, 0 int, 0 impl, 0 cont) and 3932 constraints
0.00/0.02 c problem read in 0.02
0.00/0.06 c presolving:
0.07/0.09 c (round 1) 33 del vars, 1 del conss, 0 add conss, 0 chg bounds, 537 chg sides, 1074 chg coeffs, 0 upgd conss, 8350 impls, 0 clqs
0.07/0.09 c (round 2) 33 del vars, 67 del conss, 0 add conss, 0 chg bounds, 537 chg sides, 1074 chg coeffs, 0 upgd conss, 8350 impls, 0 clqs
0.09/0.10 c (round 3) 33 del vars, 67 del conss, 0 add conss, 1336 chg bounds, 537 chg sides, 1074 chg coeffs, 0 upgd conss, 8350 impls, 0 clqs
0.09/0.13 c (round 4) 33 del vars, 67 del conss, 0 add conss, 1336 chg bounds, 537 chg sides, 1074 chg coeffs, 2529 upgd conss, 8350 impls, 0 clqs
0.09/0.16 c (round 5) 33 del vars, 67 del conss, 8 add conss, 1336 chg bounds, 545 chg sides, 1090 chg coeffs, 2529 upgd conss, 8406 impls, 0 clqs
0.19/0.20 c (0.2s) probing: 51/4921 (1.0%) - 0 fixings, 0 aggregations, 0 implications, 0 bound changes
0.19/0.20 c (0.2s) probing aborted: 50/50 successive totally useless probings
0.19/0.20 c (round 6) 33 del vars, 841 del conss, 266 add conss, 1336 chg bounds, 545 chg sides, 1090 chg coeffs, 2529 upgd conss, 8406 impls, 0 clqs
0.19/0.21 c (round 7) 34 del vars, 842 del conss, 267 add conss, 1336 chg bounds, 545 chg sides, 1090 chg coeffs, 2529 upgd conss, 8406 impls, 0 clqs
0.19/0.24 c (round 8) 34 del vars, 843 del conss, 268 add conss, 1336 chg bounds, 545 chg sides, 1090 chg coeffs, 2529 upgd conss, 8406 impls, 0 clqs
0.19/0.25 c (0.3s) probing: 56/4921 (1.1%) - 0 fixings, 0 aggregations, 0 implications, 0 bound changes
0.19/0.25 c (0.3s) probing aborted: 50/50 successive totally useless probings
0.19/0.25 c presolving (9 rounds):
0.19/0.25 c 34 deleted vars, 843 deleted constraints, 268 added constraints, 1336 tightened bounds, 0 added holes, 545 changed sides, 1090 changed coefficients
0.19/0.25 c 9742 implications, 1 cliques
0.19/0.25 c presolved problem has 6256 variables (4920 bin, 0 int, 1336 impl, 0 cont) and 4693 constraints
0.19/0.25 c 707 constraints of type <knapsack>
0.19/0.25 c 741 constraints of type <setppc>
0.19/0.25 c 256 constraints of type <and>
0.19/0.25 c 1336 constraints of type <linear>
0.19/0.25 c 1336 constraints of type <indicator>
0.19/0.25 c 317 constraints of type <logicor>
0.19/0.25 c transformed objective value is always integral (scale: 1)
0.19/0.25 c Presolving Time: 0.22
0.19/0.25 c - non default parameters ----------------------------------------------------------------------
0.19/0.25 c # SCIP version 2.1.1.4
0.19/0.25 c
0.19/0.25 c # maximal time in seconds to run
0.19/0.25 c # [type: real, range: [0,1.79769313486232e+308], default: 1e+20]
0.19/0.25 c limits/time = 1797
0.19/0.25 c
0.19/0.25 c # maximal memory usage in MB; reported memory usage is lower than real memory usage!
0.19/0.25 c # [type: real, range: [0,1.79769313486232e+308], default: 1e+20]
0.19/0.25 c limits/memory = 13950
0.19/0.25 c
0.19/0.25 c # default clock type (1: CPU user seconds, 2: wall clock time)
0.19/0.25 c # [type: int, range: [1,2], default: 1]
0.19/0.25 c timing/clocktype = 2
0.19/0.25 c
0.19/0.25 c # belongs reading time to solving time?
0.19/0.25 c # [type: bool, range: {TRUE,FALSE}, default: FALSE]
0.19/0.25 c timing/reading = TRUE
0.19/0.25 c
0.19/0.25 c # force restart if we have a max FS instance and gap is 1?
0.19/0.25 c # [type: bool, range: {TRUE,FALSE}, default: FALSE]
0.19/0.25 c constraints/indicator/forcerestart = TRUE
0.19/0.25 c
0.19/0.25 c # priority of branching rule <inference>
0.19/0.25 c # [type: int, range: [-536870912,536870911], default: 1000]
0.19/0.25 c branching/inference/priority = 1000000
0.19/0.25 c
0.19/0.25 c # frequency offset for calling primal heuristic <coefdiving>
0.19/0.25 c # [type: int, range: [0,2147483647], default: 1]
0.19/0.25 c heuristics/coefdiving/freqofs = 0
0.19/0.25 c
0.19/0.25 c # frequency for calling primal heuristic <shiftandpropagate> (-1: never, 0: only at depth freqofs)
0.19/0.25 c # [type: int, range: [-1,2147483647], default: 0]
0.19/0.25 c heuristics/shiftandpropagate/freq = -1
0.19/0.25 c
0.19/0.25 c # frequency for calling primal heuristic <undercover> (-1: never, 0: only at depth freqofs)
0.19/0.25 c # [type: int, range: [-1,2147483647], default: 0]
0.19/0.25 c heuristics/undercover/freq = -1
0.19/0.25 c
0.19/0.25 c # frequency for calling separator <rapidlearning> (-1: never, 0: only in root node)
0.19/0.25 c # [type: int, range: [-1,2147483647], default: -1]
0.19/0.25 c separating/rapidlearning/freq = 0
0.19/0.25 c
0.19/0.25 c # frequency for calling primal heuristic <indrounding> (-1: never, 0: only at depth freqofs)
0.19/0.25 c # [type: int, range: [-1,2147483647], default: -1]
0.19/0.25 c heuristics/indrounding/freq = 1
0.19/0.25 c
0.19/0.25 c -----------------------------------------------------------------------------------------------
0.19/0.25 c start solving
0.19/0.26 c
0.69/0.74 c time | node | left |LP iter|LP it/n| mem |mdpt |frac |vars |cons |cols |rows |cuts |confs|strbr| dualbound | primalbound | gap
0.69/0.74 c 0.7s| 1 | 0 | 1236 | - | 26M| 0 | 672 |6256 |4693 |6256 |4949 | 0 | 0 | 0 | 9.386258e-07 | -- | Inf
0.69/0.75 o 6640
0.69/0.75 c s 0.8s| 1 | 0 | 1236 | - | 26M| 0 | 672 |6256 |4693 |6256 |4949 | 0 | 0 | 0 | 9.386258e-07 | 6.640000e+03 | Large
1.29/1.34 o 2530
1.29/1.34 c 6 1.3s| 1 | 0 | 1236 | - | 26M| 0 | 672 |6256 |4693 |6256 |4949 | 0 | 0 | 0 | 9.386258e-07 | 2.530000e+03 | Large
5.39/5.42 c 5.4s| 1 | 0 | 3896 | - | 28M| 0 |1196 |6256 |5066 |6256 |5206 | 257 | 0 | 0 | 6.590397e-03 | 2.530000e+03 | Large
5.58/5.63 o 2107
5.58/5.63 c 6 5.6s| 1 | 0 | 3896 | - | 28M| 0 |1196 |6256 |5066 |6256 |5206 | 257 | 0 | 0 | 6.590397e-03 | 2.107000e+03 | Large
6.49/6.52 c 6.5s| 1 | 0 | 6345 | - | 29M| 0 | 881 |6256 |5066 |6256 |5728 | 779 | 0 | 0 | 8.686121e-03 | 2.107000e+03 | Large
6.59/6.65 o 2091
6.59/6.65 c 6 6.7s| 1 | 0 | 6345 | - | 29M| 0 | 881 |6256 |5066 |6256 |5728 | 779 | 0 | 0 | 8.686121e-03 | 2.091000e+03 | Large
7.19/7.27 c 7.3s| 1 | 0 | 7411 | - | 29M| 0 | 963 |6256 |5066 |6256 |6046 |1097 | 0 | 0 | 2.000000e+00 | 2.091000e+03 | Large
8.28/8.30 c 8.3s| 1 | 0 | 9259 | - | 29M| 0 |1039 |6256 |5066 |6256 |6229 |1280 | 0 | 0 | 4.000000e+00 | 2.091000e+03 | Large
9.28/9.37 c 9.4s| 1 | 0 | 11205 | - | 30M| 0 |1143 |6256 |5066 |6256 |6448 |1499 | 0 | 0 | 4.000000e+00 | 2.091000e+03 | Large
10.38/10.47 c 10.5s| 1 | 0 | 13001 | - | 30M| 0 |1123 |6256 |5066 |6256 |6655 |1706 | 0 | 0 | 4.000000e+00 | 2.091000e+03 | Large
11.89/11.93 c 11.9s| 1 | 0 | 15372 | - | 30M| 0 |1224 |6256 |5066 |6256 |6849 |1900 | 0 | 0 | 4.000000e+00 | 2.091000e+03 | Large
14.68/14.76 c 14.8s| 1 | 0 | 20444 | - | 30M| 0 |1360 |6256 |5066 |6256 |7034 |2085 | 0 | 0 | 4.000000e+00 | 2.091000e+03 | Large
16.68/16.77 c 16.8s| 1 | 0 | 23084 | - | 31M| 0 |1394 |6256 |5066 |6256 |7247 |2298 | 0 | 0 | 4.000000e+00 | 2.091000e+03 | Large
22.08/22.17 c 22.2s| 1 | 2 | 37154 | - | 31M| 0 |1394 |6256 |5066 |6256 |7247 |2298 | 0 | 0 | 4.000000e+00 | 2.091000e+03 | Large
44.97/45.03 o 1207
44.97/45.03 c time | node | left |LP iter|LP it/n| mem |mdpt |frac |vars |cons |cols |rows |cuts |confs|strbr| dualbound | primalbound | gap
44.97/45.03 c v45.0s| 51 | 52 | 94552 |1429.4 | 37M| 29 | - |6256 |5121 |6256 |6305 |2434 | 55 | 0 | 4.000000e+00 | 1.207000e+03 | Large
45.07/45.15 o 1109
45.07/45.15 c 645.1s| 51 | 52 | 94556 |1429.4 | 33M| 29 | 796 |6256 |5121 |6256 |6305 |2434 | 55 | 0 | 4.000000e+00 | 1.109000e+03 | Large
45.17/45.24 o 1084
45.17/45.24 c 645.2s| 52 | 51 | 94556 |1401.4 | 33M| 29 | - |6256 |5121 | 0 | 0 |2434 | 55 | 0 | 4.000000e+00 | 1.084000e+03 | Large
49.27/49.36 c 49.4s| 100 | 101 |109539 | 873.3 | 33M| 41 | 848 |6256 |5121 |6256 |6301 |2484 | 55 | 0 | 4.000000e+00 | 1.084000e+03 | Large
57.57/57.60 c 57.6s| 200 | 185 |136793 | 571.4 | 34M| 77 | 644 |6256 |5183 |6256 |6289 |2497 | 117 | 0 | 4.000000e+00 | 1.084000e+03 | Large
70.86/70.91 c 70.9s| 300 | 282 |162888 | 467.6 | 35M| 77 | 656 |6256 |5242 |6256 |6289 |2535 | 176 | 0 | 4.000000e+00 | 1.084000e+03 | Large
79.56/79.69 c 79.7s| 400 | 380 |183611 | 402.3 | 35M| 81 | 537 |6256 |5270 |6256 |6299 |2569 | 204 | 0 | 4.000000e+00 | 1.084000e+03 | Large
88.26/88.39 c 88.4s| 500 | 480 |202712 | 360.0 | 36M| 81 | 523 |6256 |5285 |6256 |6302 |2603 | 219 | 0 | 4.000000e+00 | 1.084000e+03 | Large
91.05/91.11 o 671
91.05/91.11 c C91.1s| 520 | 500 |209684 | 359.5 | 36M| 85 | 607 |6256 |5303 |6256 |6301 |2615 | 237 | 0 | 4.000000e+00 | 6.710000e+02 | Large
101.55/101.60 c 102s| 600 | 577 |229425 | 344.5 | 36M| 85 | 569 |6256 |5376 |6256 |6301 |2642 | 310 | 0 | 4.000000e+00 | 6.710000e+02 | Large
114.45/114.56 c 115s| 700 | 677 |257322 | 335.1 | 37M| 85 | 687 |6256 |5443 |6256 |6299 |2685 | 377 | 0 | 4.000000e+00 | 6.710000e+02 | Large
135.25/135.34 c 135s| 800 | 777 |312560 | 362.3 | 37M| 85 | 648 |6256 |5476 |6256 |6302 |2747 | 410 | 0 | 4.000000e+00 | 6.710000e+02 | Large
143.25/143.34 c 143s| 900 | 877 |336520 | 348.6 | 37M| 85 | 645 |6256 |5497 |6256 |6303 |2783 | 431 | 0 | 4.000000e+00 | 6.710000e+02 | Large
164.85/164.96 c 165s| 1000 | 975 |383685 | 361.0 | 38M| 85 | 820 |6256 |5721 |6256 |6295 |2842 | 660 | 0 | 4.000000e+00 | 6.710000e+02 | Large
177.35/177.47 c 177s| 1100 | 1075 |413473 | 355.2 | 38M| 85 | 827 |6256 |5751 |6256 |6292 |2879 | 691 | 0 | 4.000000e+00 | 6.710000e+02 | Large
185.75/185.90 c time | node | left |LP iter|LP it/n| mem |mdpt |frac |vars |cons |cols |rows |cuts |confs|strbr| dualbound | primalbound | gap
185.75/185.90 c 186s| 1200 | 1175 |442556 | 349.9 | 39M| 85 | 623 |6256 |5791 |6256 |6298 |2917 | 731 | 0 | 4.000000e+00 | 6.710000e+02 | Large
197.85/197.95 c 198s| 1300 | 1275 |472405 | 345.9 | 39M| 85 | 765 |6256 |5835 |6256 |6289 |2945 | 798 | 0 | 4.000000e+00 | 6.710000e+02 | Large
231.94/232.03 c 232s| 1400 | 1375 |538652 | 368.5 | 40M| 85 | 638 |6256 |5938 |6256 |6289 |2974 | 937 | 0 | 4.000000e+00 | 6.710000e+02 | Large
261.63/261.80 c 262s| 1500 | 1471 |602836 | 386.8 | 39M| 85 | 713 |6256 |5687 |6256 |6297 |3013 |1012 | 0 | 4.000000e+00 | 6.710000e+02 | Large
289.62/289.75 c 290s| 1600 | 1571 |680083 | 410.9 | 40M| 85 | 973 |6256 |5685 |6256 |6305 |3133 |1027 | 0 | 4.000000e+00 | 6.710000e+02 | Large
364.11/364.20 c 364s| 1700 | 1671 |921264 | 528.7 | 40M| 85 | 763 |6256 |5770 |6256 |6299 |3248 |1129 | 0 | 4.000000e+00 | 6.710000e+02 | Large
371.01/371.11 c 371s| 1800 | 1771 |950015 | 515.2 | 40M| 85 |1064 |6256 |5769 |6256 |6272 |3312 |1129 | 0 | 4.000000e+00 | 6.710000e+02 | Large
382.81/382.92 c 383s| 1900 | 1871 |984712 | 506.4 | 41M| 85 | 615 |6256 |5771 |6256 |6294 |3397 |1135 | 0 | 4.000000e+00 | 6.710000e+02 | Large
385.61/385.77 c 386s| 2000 | 1969 |996130 | 486.8 | 41M| 85 | 633 |6256 |5773 |6256 |6290 |3468 |1137 | 0 | 4.000000e+00 | 6.710000e+02 | Large
388.51/388.61 c 389s| 2100 | 2067 | 1004k| 467.8 | 42M| 85 | 763 |6256 |5775 |6256 |6305 |3498 |1139 | 0 | 4.000000e+00 | 6.710000e+02 | Large
396.61/396.72 c 397s| 2200 | 2167 | 1027k| 457.0 | 42M| 85 | 599 |6256 |5782 |6256 |6306 |3514 |1151 | 0 | 4.000000e+00 | 6.710000e+02 | Large
400.91/401.07 c 401s| 2300 | 2265 | 1035k| 440.2 | 42M| 93 | 647 |6256 |5789 |6256 |6304 |3519 |1158 | 0 | 4.000000e+00 | 6.710000e+02 | Large
404.11/404.21 c 404s| 2400 | 2365 | 1046k| 426.6 | 43M| 99 | 632 |6256 |5785 |6256 |6303 |3538 |1158 | 0 | 4.000000e+00 | 6.710000e+02 | Large
406.60/406.70 c 407s| 2500 | 2465 | 1054k| 412.8 | 43M| 101 | 716 |6256 |5783 |6256 |6297 |3557 |1158 | 0 | 4.000000e+00 | 6.710000e+02 | Large
421.51/421.64 c 422s| 2600 | 2565 | 1098k| 413.6 | 43M| 101 | 904 |6256 |5793 |6256 |6309 |3620 |1179 | 0 | 4.000000e+00 | 6.710000e+02 | Large
436.40/436.57 c time | node | left |LP iter|LP it/n| mem |mdpt |frac |vars |cons |cols |rows |cuts |confs|strbr| dualbound | primalbound | gap
436.40/436.57 c 437s| 2700 | 2665 | 1128k| 409.5 | 44M| 101 | 688 |6256 |5808 |6256 |6300 |3695 |1207 | 0 | 4.000000e+00 | 6.710000e+02 | Large
447.30/447.41 c 447s| 2800 | 2765 | 1153k| 403.8 | 44M| 101 | 651 |6256 |5802 |6256 |6299 |3725 |1208 | 0 | 4.000000e+00 | 6.710000e+02 | Large
449.60/449.73 c 450s| 2900 | 2865 | 1160k| 392.5 | 44M| 101 | 652 |6256 |5791 |6256 |6300 |3731 |1208 | 0 | 4.000000e+00 | 6.710000e+02 | Large
452.10/452.24 c 452s| 3000 | 2964 | 1170k| 382.6 | 45M| 101 | 648 |6256 |5785 |6256 |6289 |3764 |1208 | 0 | 4.000000e+00 | 6.710000e+02 | Large
464.29/464.40 c 464s| 3100 | 3061 | 1206k| 381.9 | 45M| 101 | 760 |6256 |5793 |6256 |6305 |3853 |1246 | 0 | 4.000000e+00 | 6.710000e+02 | Large
469.89/470.09 c 470s| 3200 | 3161 | 1224k| 375.7 | 45M| 101 | 649 |6256 |5785 |6256 |6289 |3894 |1247 | 0 | 4.000000e+00 | 6.710000e+02 | Large
482.80/482.97 c 483s| 3300 | 3258 | 1258k| 374.6 | 46M| 101 | 745 |6256 |5784 |6256 |6296 |3980 |1290 | 0 | 4.000000e+00 | 6.710000e+02 | Large
485.80/485.99 c 486s| 3400 | 3358 | 1269k| 366.7 | 46M| 101 | 655 |6256 |5770 |6256 |6294 |4000 |1290 | 0 | 4.000000e+00 | 6.710000e+02 | Large
499.59/499.79 c 500s| 3500 | 3458 | 1304k| 366.2 | 46M| 101 | 694 |6256 |5757 |6256 |6301 |4050 |1325 | 0 | 4.000000e+00 | 6.710000e+02 | Large
502.70/502.80 c 503s| 3600 | 3558 | 1315k| 359.1 | 47M| 101 | 699 |6256 |5749 |6256 |6312 |4075 |1325 | 0 | 4.000000e+00 | 6.710000e+02 | Large
517.39/517.59 c 518s| 3700 | 3656 | 1357k| 360.8 | 47M| 101 | 564 |6256 |5713 |6256 |6303 |4108 |1352 | 0 | 4.000000e+00 | 6.710000e+02 | Large
520.20/520.36 c 520s| 3800 | 3752 | 1369k| 354.4 | 47M| 101 | 550 |6256 |5702 |6256 |6305 |4129 |1355 | 0 | 4.000000e+00 | 6.710000e+02 | Large
526.80/526.95 c 527s| 3900 | 3852 | 1382k| 348.8 | 48M| 101 | 601 |6256 |5688 |6256 |6305 |4153 |1394 | 0 | 4.000000e+00 | 6.710000e+02 | Large
537.69/537.85 c 538s| 4000 | 3948 | 1403k| 345.2 | 48M| 101 | 605 |6256 |5674 |6256 |6303 |4159 |1409 | 0 | 4.000000e+00 | 6.710000e+02 | Large
550.89/551.08 c 551s| 4100 | 4046 | 1436k| 344.8 | 49M| 101 | 678 |6256 |5628 |6256 |6302 |4194 |1429 | 0 | 4.000000e+00 | 6.710000e+02 | Large
553.79/553.98 c time | node | left |LP iter|LP it/n| mem |mdpt |frac |vars |cons |cols |rows |cuts |confs|strbr| dualbound | primalbound | gap
553.79/553.98 c 554s| 4200 | 4144 | 1447k| 339.3 | 49M| 101 | 700 |6256 |5625 |6256 |6301 |4208 |1431 | 0 | 4.000000e+00 | 6.710000e+02 | Large
559.79/559.99 c 560s| 4300 | 4244 | 1460k| 334.3 | 49M| 101 | 589 |6256 |5629 |6256 |6300 |4226 |1446 | 0 | 4.000000e+00 | 6.710000e+02 | Large
562.99/563.16 c 563s| 4400 | 4344 | 1471k| 329.4 | 50M| 101 | 641 |6256 |5621 |6256 |6301 |4261 |1446 | 0 | 4.000000e+00 | 6.710000e+02 | Large
567.78/567.92 c 568s| 4500 | 4444 | 1483k| 324.7 | 50M| 101 | 565 |6256 |5624 |6256 |6304 |4277 |1466 | 0 | 4.000000e+00 | 6.710000e+02 | Large
570.69/570.81 c 571s| 4600 | 4544 | 1494k| 319.9 | 50M| 118 | 977 |6256 |5614 |6256 |6310 |4309 |1466 | 0 | 4.000000e+00 | 6.710000e+02 | Large
578.98/579.19 c 579s| 4700 | 4644 | 1512k| 317.0 | 51M| 118 | 607 |6256 |5601 |6256 |6303 |4332 |1466 | 0 | 4.000000e+00 | 6.710000e+02 | Large
589.98/590.12 c 590s| 4800 | 4744 | 1540k| 316.3 | 51M| 118 |1044 |6256 |5545 |6256 |6307 |4376 |1515 | 0 | 4.000000e+00 | 6.710000e+02 | Large
591.68/591.83 c 592s| 4900 | 4840 | 1546k| 310.9 | 51M| 118 | 571 |6256 |5542 |6256 |6296 |4396 |1517 | 0 | 4.000000e+00 | 6.710000e+02 | Large
595.48/595.66 c 596s| 5000 | 4940 | 1561k| 307.7 | 52M| 118 | 668 |6256 |5536 |6256 |6300 |4435 |1517 | 0 | 4.000000e+00 | 6.710000e+02 | Large
604.89/605.09 c 605s| 5100 | 5040 | 1584k| 306.2 | 52M| 118 | 505 |6256 |5573 |6256 |6303 |4464 |1579 | 0 | 4.000000e+00 | 6.710000e+02 | Large
613.78/613.94 c 614s| 5200 | 5138 | 1604k| 304.1 | 52M| 118 | 676 |6256 |5563 |6256 |6293 |4475 |1625 | 0 | 4.000000e+00 | 6.710000e+02 | Large
617.18/617.34 c 617s| 5300 | 5238 | 1617k| 300.8 | 53M| 118 | 741 |6256 |5558 |6256 |6302 |4503 |1625 | 0 | 4.000000e+00 | 6.710000e+02 | Large
621.17/621.36 c 621s| 5400 | 5336 | 1632k| 298.0 | 53M| 118 | 681 |6256 |5548 |6256 |6296 |4535 |1626 | 0 | 4.000000e+00 | 6.710000e+02 | Large
634.88/635.03 c 635s| 5500 | 5434 | 1668k| 299.3 | 53M| 118 | 614 |6256 |5571 |6256 |6305 |4567 |1665 | 0 | 4.000000e+00 | 6.710000e+02 | Large
640.67/640.87 c 641s| 5600 | 5534 | 1686k| 297.0 | 54M| 118 | 606 |6256 |5569 |6256 |6292 |4588 |1679 | 0 | 4.000000e+00 | 6.710000e+02 | Large
643.28/643.48 c time | node | left |LP iter|LP it/n| mem |mdpt |frac |vars |cons |cols |rows |cuts |confs|strbr| dualbound | primalbound | gap
643.28/643.48 c 643s| 5700 | 5632 | 1696k| 293.6 | 54M| 118 | 650 |6256 |5567 |6256 |6300 |4618 |1684 | 0 | 4.000000e+00 | 6.710000e+02 | Large
660.17/660.32 c 660s| 5800 | 5732 | 1735k| 295.3 | 54M| 118 | 596 |6256 |5542 |6256 |6297 |4642 |1719 | 0 | 4.000000e+00 | 6.710000e+02 | Large
667.17/667.32 c 667s| 5900 | 5832 | 1767k| 295.7 | 55M| 118 | 942 |6256 |5589 |6256 |6311 |4694 |1789 | 0 | 4.000000e+00 | 6.710000e+02 | Large
678.97/679.17 c 679s| 6000 | 5932 | 1798k| 295.9 | 55M| 118 | 626 |6256 |5570 |6256 |6306 |4736 |1790 | 0 | 4.000000e+00 | 6.710000e+02 | Large
681.47/681.62 c 682s| 6100 | 6030 | 1807k| 292.6 | 55M| 118 | 601 |6256 |5564 |6256 |6301 |4768 |1791 | 0 | 4.000000e+00 | 6.710000e+02 | Large
687.06/687.20 c 687s| 6200 | 6130 | 1821k| 290.2 | 56M| 118 | 715 |6256 |5563 |6256 |6302 |4789 |1814 | 0 | 4.000000e+00 | 6.710000e+02 | Large
695.66/695.89 c 696s| 6300 | 6230 | 1851k| 290.3 | 56M| 118 | 832 |6256 |5556 |6256 |6300 |4846 |1820 | 0 | 4.000000e+00 | 6.710000e+02 | Large
708.16/708.34 c 708s| 6400 | 6330 | 1886k| 291.3 | 57M| 118 | 693 |6256 |5540 |6256 |6296 |4887 |1858 | 0 | 4.000000e+00 | 6.710000e+02 | Large
717.86/718.08 c 718s| 6500 | 6430 | 1913k| 290.9 | 57M| 118 | 608 |6256 |5534 |6256 |6310 |4909 |1862 | 0 | 4.000000e+00 | 6.710000e+02 | Large
719.56/719.73 c 720s| 6600 | 6528 | 1919k| 287.4 | 57M| 118 | 570 |6256 |5531 |6256 |6305 |4914 |1863 | 0 | 4.000000e+00 | 6.710000e+02 | Large
721.36/721.53 c 722s| 6700 | 6628 | 1926k| 284.1 | 58M| 118 | 658 |6256 |5528 |6256 |6305 |4922 |1863 | 0 | 4.000000e+00 | 6.710000e+02 | Large
725.66/725.80 c 726s| 6800 | 6728 | 1939k| 281.9 | 58M| 118 | 655 |6256 |5522 |6256 |6303 |4934 |1871 | 0 | 4.000000e+00 | 6.710000e+02 | Large
730.35/730.57 c 731s| 6900 | 6828 | 1953k| 279.9 | 58M| 118 | 600 |6256 |5522 |6256 |6303 |4948 |1876 | 0 | 4.000000e+00 | 6.710000e+02 | Large
733.65/733.81 c 734s| 7000 | 6926 | 1963k| 277.3 | 59M| 118 | 609 |6256 |5519 |6256 |6302 |4959 |1880 | 0 | 4.000000e+00 | 6.710000e+02 | Large
735.45/735.61 c 736s| 7100 | 7026 | 1970k| 274.3 | 59M| 118 | 586 |6256 |5512 |6256 |6303 |4968 |1880 | 0 | 4.000000e+00 | 6.710000e+02 | Large
737.25/737.44 c time | node | left |LP iter|LP it/n| mem |mdpt |frac |vars |cons |cols |rows |cuts |confs|strbr| dualbound | primalbound | gap
737.25/737.44 c 737s| 7200 | 7126 | 1977k| 271.5 | 59M| 118 | 552 |6256 |5509 |6256 |6302 |4972 |1880 | 0 | 4.000000e+00 | 6.710000e+02 | Large
739.56/739.71 c 740s| 7300 | 7226 | 1986k| 269.0 | 60M| 118 | 724 |6256 |5496 |6256 |6304 |4995 |1880 | 0 | 4.000000e+00 | 6.710000e+02 | Large
741.55/741.76 c 742s| 7400 | 7324 | 1994k| 266.4 | 60M| 118 | 566 |6256 |5496 |6256 |6303 |5019 |1881 | 0 | 4.000000e+00 | 6.710000e+02 | Large
751.45/751.61 c 752s| 7500 | 7424 | 2019k| 266.2 | 60M| 118 | 587 |6256 |5537 |6256 |6304 |5030 |1975 | 0 | 4.000000e+00 | 6.710000e+02 | Large
759.45/759.68 c 760s| 7600 | 7524 | 2044k| 266.0 | 61M| 118 | 633 |6256 |5533 |6256 |6305 |5073 |1987 | 0 | 4.000000e+00 | 6.710000e+02 | Large
762.95/763.14 c 763s| 7700 | 7624 | 2057k| 264.2 | 61M| 118 | 993 |6256 |5520 |6256 |6310 |5104 |1987 | 0 | 4.000000e+00 | 6.710000e+02 | Large
777.75/777.96 c 778s| 7800 | 7724 | 2092k| 265.4 | 61M| 118 | 608 |6256 |5519 |6256 |6303 |5144 |2028 | 0 | 4.000000e+00 | 6.710000e+02 | Large
782.25/782.41 o 412
782.25/782.41 c C 782s| 7818 | 7742 | 2099k| 265.7 | 62M| 118 | 961 |6256 |5508 |6256 |6304 |5145 |2028 | 0 | 4.000000e+00 | 4.120000e+02 | Large
782.25/782.48 o 391
782.25/782.48 c 6 782s| 7819 | 7741 | 2099k| 265.6 | 62M| 118 | - |6256 |5508 | 0 | 0 |5145 |2028 | 0 | 4.000000e+00 | 3.910000e+02 |9675.00%
788.46/788.69 c 789s| 7900 | 7824 | 2121k| 265.7 | 62M| 118 | 875 |6256 |5493 |6256 |6295 |5171 |2032 | 0 | 4.000000e+00 | 3.910000e+02 |9675.00%
792.45/792.61 c 793s| 8000 | 7924 | 2137k| 264.4 | 62M| 118 | 932 |6256 |5489 |6256 |6321 |5197 |2032 | 0 | 4.000000e+00 | 3.910000e+02 |9675.00%
795.75/795.92 c 796s| 8100 | 8024 | 2150k| 262.7 | 63M| 118 | 652 |6256 |5482 |6256 |6302 |5221 |2032 | 0 | 4.000000e+00 | 3.910000e+02 |9675.00%
800.85/801.04 c 801s| 8200 | 8124 | 2163k| 261.0 | 63M| 118 | 706 |6256 |5469 |6256 |6302 |5256 |2049 | 0 | 4.000000e+00 | 3.910000e+02 |9675.00%
802.95/803.10 c 803s| 8300 | 8224 | 2170k| 258.8 | 63M| 118 | 620 |6256 |5464 |6256 |6306 |5279 |2049 | 0 | 4.000000e+00 | 3.910000e+02 |9675.00%
805.65/805.83 c 806s| 8400 | 8324 | 2181k| 257.0 | 64M| 118 | 681 |6256 |5450 |6256 |6303 |5303 |2049 | 0 | 4.000000e+00 | 3.910000e+02 |9675.00%
806.64/806.81 o 357
806.64/806.81 c time | node | left |LP iter|LP it/n| mem |mdpt |frac |vars |cons |cols |rows |cuts |confs|strbr| dualbound | primalbound | gap
806.64/806.81 c C 807s| 8419 | 8336 | 2184k| 256.8 | 64M| 118 | 974 |6256 |5440 |6256 |6313 |5306 |2049 | 0 | 4.000000e+00 | 3.570000e+02 |8825.00%
809.45/809.62 c 810s| 8500 | 8417 | 2195k| 255.6 | 64M| 118 | 587 |6256 |5430 |6256 |6303 |5324 |2049 | 0 | 4.000000e+00 | 3.570000e+02 |8825.00%
814.54/814.73 c 815s| 8600 | 8517 | 2209k| 254.3 | 65M| 118 | 623 |6256 |5460 |6256 |6305 |5338 |2087 | 0 | 4.000000e+00 | 3.570000e+02 |8825.00%
823.75/823.94 c 824s| 8700 | 8617 | 2237k| 254.5 | 65M| 118 | 599 |6256 |5423 |6256 |6305 |5366 |2101 | 0 | 4.000000e+00 | 3.570000e+02 |8825.00%
826.45/826.69 c 827s| 8800 | 8717 | 2247k| 252.8 | 66M| 118 | 962 |6256 |5418 |6256 |6308 |5387 |2101 | 0 | 4.000000e+00 | 3.570000e+02 |8825.00%
833.54/833.78 c 834s| 8900 | 8817 | 2268k| 252.4 | 66M| 118 | 628 |6256 |5409 |6256 |6302 |5416 |2112 | 0 | 4.000000e+00 | 3.570000e+02 |8825.00%
842.35/842.54 c 843s| 9000 | 8917 | 2291k| 252.1 | 67M| 118 | 694 |6256 |5440 |6256 |6300 |5441 |2153 | 0 | 4.000000e+00 | 3.570000e+02 |8825.00%
844.34/844.59 c 845s| 9100 | 9017 | 2297k| 250.0 | 67M| 118 | 572 |6256 |5429 |6256 |6305 |5467 |2153 | 0 | 4.000000e+00 | 3.570000e+02 |8825.00%
847.14/847.39 c 847s| 9200 | 9117 | 2308k| 248.4 | 67M| 118 | 560 |6256 |5422 |6256 |6305 |5483 |2153 | 0 | 4.000000e+00 | 3.570000e+02 |8825.00%
850.94/851.19 c 851s| 9300 | 9217 | 2324k| 247.5 | 68M| 118 | 604 |6256 |5421 |6256 |6307 |5514 |2153 | 0 | 4.000000e+00 | 3.570000e+02 |8825.00%
858.85/859.10 c 859s| 9400 | 9317 | 2347k| 247.3 | 68M| 118 | 727 |6256 |5426 |6256 |6293 |5529 |2179 | 0 | 4.000000e+00 | 3.570000e+02 |8825.00%
861.34/861.58 c 862s| 9500 | 9417 | 2355k| 245.5 | 68M| 118 | 734 |6256 |5417 |6256 |6302 |5539 |2179 | 0 | 4.000000e+00 | 3.570000e+02 |8825.00%
863.35/863.50 c 864s| 9600 | 9517 | 2361k| 243.6 | 69M| 118 | 630 |6256 |5412 |6256 |6297 |5557 |2179 | 0 | 4.000000e+00 | 3.570000e+02 |8825.00%
865.14/865.35 c 865s| 9700 | 9617 | 2367k| 241.7 | 69M| 118 | 595 |6256 |5410 |6256 |6305 |5576 |2179 | 0 | 4.000000e+00 | 3.570000e+02 |8825.00%
868.23/868.41 c 868s| 9800 | 9717 | 2379k| 240.5 | 69M| 118 | 938 |6256 |5401 |6256 |6313 |5590 |2179 | 0 | 4.000000e+00 | 3.570000e+02 |8825.00%
880.94/881.18 c time | node | left |LP iter|LP it/n| mem |mdpt |frac |vars |cons |cols |rows |cuts |confs|strbr| dualbound | primalbound | gap
880.94/881.18 c 881s| 9900 | 9817 | 2408k| 241.0 | 70M| 118 | 524 |6256 |5405 |6256 |6304 |5619 |2190 | 0 | 4.000000e+00 | 3.570000e+02 |8825.00%
890.03/890.23 c 890s| 10000 | 9917 | 2445k| 242.2 | 70M| 118 | 573 |6256 |5448 |6256 |6305 |5655 |2244 | 0 | 4.000000e+00 | 3.570000e+02 |8825.00%
894.63/894.89 c 895s| 10100 | 10017 | 2461k| 241.4 | 71M| 118 | 684 |6256 |5445 |6256 |6295 |5682 |2245 | 0 | 4.000000e+00 | 3.570000e+02 |8825.00%
898.23/898.47 c 898s| 10200 | 10117 | 2476k| 240.6 | 71M| 118 | 617 |6256 |5445 |6256 |6304 |5710 |2245 | 0 | 4.000000e+00 | 3.570000e+02 |8825.00%
900.33/900.59 c 901s| 10300 | 10217 | 2485k| 239.1 | 71M| 118 | 607 |6256 |5443 |6256 |6304 |5720 |2245 | 0 | 4.000000e+00 | 3.570000e+02 |8825.00%
908.63/908.84 c 909s| 10400 | 10317 | 2506k| 238.8 | 72M| 118 | 612 |6256 |5492 |6256 |6304 |5735 |2314 | 0 | 4.000000e+00 | 3.570000e+02 |8825.00%
914.13/914.30 c 914s| 10500 | 10417 | 2523k| 238.2 | 72M| 118 | 788 |6256 |5491 |6256 |6323 |5759 |2321 | 0 | 4.000000e+00 | 3.570000e+02 |8825.00%
915.93/916.19 c 916s| 10600 | 10517 | 2530k| 236.5 | 72M| 118 | 610 |6256 |5490 |6256 |6304 |5770 |2321 | 0 | 4.000000e+00 | 3.570000e+02 |8825.00%
919.44/919.61 c 920s| 10700 | 10617 | 2543k| 235.6 | 73M| 118 | 506 |6256 |5490 |6256 |6307 |5789 |2329 | 0 | 4.000000e+00 | 3.570000e+02 |8825.00%
921.03/921.24 c 921s| 10800 | 10713 | 2548k| 233.8 | 73M| 118 | 605 |6256 |5486 |6256 |6303 |5804 |2331 | 0 | 4.000000e+00 | 3.570000e+02 |8825.00%
926.53/926.73 c 927s| 10900 | 10813 | 2561k| 232.9 | 74M| 118 | 609 |6256 |5491 |6256 |6305 |5824 |2345 | 0 | 4.000000e+00 | 3.570000e+02 |8825.00%
928.14/928.40 c 928s| 11000 | 10913 | 2567k| 231.3 | 74M| 118 | 507 |6256 |5489 |6256 |6308 |5835 |2345 | 0 | 4.000000e+00 | 3.570000e+02 |8825.00%
937.92/938.12 c 938s| 11100 | 11011 | 2585k| 230.9 | 75M| 118 | 612 |6256 |5486 |6256 |6305 |5852 |2357 | 0 | 4.000000e+00 | 3.570000e+02 |8825.00%
939.72/939.97 c 940s| 11200 | 11111 | 2593k| 229.5 | 75M| 118 | 625 |6256 |5480 |6256 |6305 |5868 |2357 | 0 | 4.000000e+00 | 3.570000e+02 |8825.00%
944.33/944.54 c 945s| 11300 | 11211 | 2602k| 228.3 | 76M| 118 | 568 |6256 |5505 |6256 |6304 |5878 |2385 | 0 | 4.000000e+00 | 3.570000e+02 |8825.00%
946.23/946.48 c time | node | left |LP iter|LP it/n| mem |mdpt |frac |vars |cons |cols |rows |cuts |confs|strbr| dualbound | primalbound | gap
946.23/946.48 c 946s| 11400 | 11309 | 2608k| 226.8 | 76M| 118 | 543 |6256 |5502 |6256 |6306 |5903 |2386 | 0 | 4.000000e+00 | 3.570000e+02 |8825.00%
948.22/948.41 c 948s| 11500 | 11396 | 2617k| 225.6 | 77M| 118 | 589 |6256 |5501 |6256 |6305 |5914 |2398 | 0 | 4.000000e+00 | 3.570000e+02 |8825.00%
958.83/959.08 c 959s| 11600 | 11496 | 2645k| 226.1 | 77M| 118 | 553 |6256 |5515 |6256 |6304 |5937 |2417 | 0 | 4.000000e+00 | 3.570000e+02 |8825.00%
961.43/961.69 c 962s| 11700 | 11596 | 2655k| 225.0 | 78M| 118 | 635 |6256 |5512 |6256 |6305 |5958 |2417 | 0 | 4.000000e+00 | 3.570000e+02 |8825.00%
963.22/963.49 c 963s| 11800 | 11694 | 2660k| 223.5 | 78M| 118 | 664 |6256 |5510 |6256 |6303 |5987 |2418 | 0 | 4.000000e+00 | 3.570000e+02 |8825.00%
973.12/973.36 c 973s| 11900 | 11794 | 2684k| 223.7 | 78M| 118 | 807 |6256 |5513 |6256 |6323 |6003 |2434 | 0 | 4.000000e+00 | 3.570000e+02 |8825.00%
980.52/980.74 c 981s| 12000 | 11892 | 2708k| 223.8 | 79M| 118 | 514 |6256 |5509 |6256 |6307 |6048 |2445 | 0 | 4.000000e+00 | 3.570000e+02 |8825.00%
982.32/982.55 c 983s| 12100 | 11992 | 2714k| 222.5 | 79M| 118 | 613 |6256 |5500 |6256 |6305 |6058 |2445 | 0 | 4.000000e+00 | 3.570000e+02 |8825.00%
984.62/984.88 c 985s| 12200 | 12090 | 2723k| 221.4 | 80M| 118 | 585 |6256 |5473 |6256 |6304 |6077 |2452 | 0 | 4.000000e+00 | 3.570000e+02 |8825.00%
994.72/994.98 c 995s| 12300 | 12190 | 2753k| 222.0 | 80M| 118 | 543 |6256 |5437 |6256 |6304 |6103 |2463 | 0 | 4.000000e+00 | 3.570000e+02 |8825.00%
1001.02/1001.25 c 1001s| 12400 | 12290 | 2776k| 222.1 | 81M| 118 | 953 |6256 |5430 |6256 |6313 |6143 |2467 | 0 | 4.000000e+00 | 3.570000e+02 |8825.00%
1003.21/1003.47 c 1003s| 12500 | 12390 | 2784k| 220.9 | 81M| 118 | 641 |6256 |5430 |6256 |6305 |6157 |2467 | 0 | 4.000000e+00 | 3.570000e+02 |8825.00%
1011.22/1011.44 c 1011s| 12600 | 12490 | 2809k| 221.2 | 81M| 118 | 651 |6256 |5428 |6256 |6301 |6201 |2471 | 0 | 4.000000e+00 | 3.570000e+02 |8825.00%
1014.81/1015.10 c 1015s| 12700 | 12590 | 2822k| 220.5 | 82M| 118 | 953 |6256 |5420 |6256 |6314 |6228 |2471 | 0 | 4.000000e+00 | 3.570000e+02 |8825.00%
1020.21/1020.43 c 1020s| 12800 | 12686 | 2835k| 219.7 | 82M| 118 | 530 |6256 |5417 |6256 |6305 |6247 |2478 | 0 | 4.000000e+00 | 3.570000e+02 |8825.00%
1026.71/1026.93 c time | node | left |LP iter|LP it/n| mem |mdpt |frac |vars |cons |cols |rows |cuts |confs|strbr| dualbound | primalbound | gap
1026.71/1026.93 c 1027s| 12900 | 12782 | 2851k| 219.3 | 83M| 118 | 875 |6256 |5441 |6256 |6318 |6270 |2514 | 0 | 4.000000e+00 | 3.570000e+02 |8825.00%
1029.21/1029.43 c 1029s| 13000 | 12882 | 2860k| 218.3 | 83M| 118 | 538 |6256 |5438 |6256 |6304 |6295 |2514 | 0 | 4.000000e+00 | 3.570000e+02 |8825.00%
1034.92/1035.15 c 1035s| 13100 | 12982 | 2881k| 218.2 | 84M| 118 | 575 |6256 |5437 |6256 |6304 |6320 |2518 | 0 | 4.000000e+00 | 3.570000e+02 |8825.00%
1038.31/1038.50 c 1039s| 13200 | 13082 | 2891k| 217.4 | 84M| 118 | 596 |6256 |5461 |6256 |6304 |6343 |2553 | 0 | 4.000000e+00 | 3.570000e+02 |8825.00%
1040.71/1040.94 c 1041s| 13300 | 13180 | 2901k| 216.4 | 85M| 118 | 542 |6256 |5461 |6256 |6304 |6357 |2555 | 0 | 4.000000e+00 | 3.570000e+02 |8825.00%
1043.01/1043.25 c 1043s| 13400 | 13276 | 2909k| 215.4 | 85M| 118 | 617 |6256 |5455 |6256 |6304 |6377 |2558 | 0 | 4.000000e+00 | 3.570000e+02 |8825.00%
1049.01/1049.21 c 1049s| 13500 | 13376 | 2925k| 215.0 | 86M| 118 | 889 |6256 |5449 |6256 |6308 |6389 |2560 | 0 | 4.000000e+00 | 3.570000e+02 |8825.00%
1053.91/1054.15 c 1054s| 13600 | 13476 | 2939k| 214.5 | 86M| 118 | 607 |6256 |5487 |6256 |6306 |6402 |2606 | 0 | 4.000000e+00 | 3.570000e+02 |8825.00%
1057.51/1057.71 c 1058s| 13700 | 13576 | 2953k| 213.9 | 87M| 118 | 848 |6256 |5484 |6256 |6324 |6426 |2606 | 0 | 4.000000e+00 | 3.570000e+02 |8825.00%
1062.70/1062.91 c 1063s| 13800 | 13674 | 2969k| 213.5 | 87M| 118 | 662 |6256 |5483 |6256 |6305 |6447 |2614 | 0 | 4.000000e+00 | 3.570000e+02 |8825.00%
1064.91/1065.11 c 1065s| 13900 | 13773 | 2977k| 212.5 | 88M| 118 | 519 |6256 |5478 |6256 |6304 |6466 |2614 | 0 | 4.000000e+00 | 3.570000e+02 |8825.00%
1069.31/1069.52 c 1070s| 14000 | 13873 | 2993k| 212.2 | 88M| 118 | 891 |6256 |5465 |6256 |6327 |6514 |2614 | 0 | 4.000000e+00 | 3.570000e+02 |8825.00%
1077.81/1078.02 c 1078s| 14100 | 13973 | 3013k| 212.1 | 89M| 118 | 600 |6256 |5474 |6256 |6305 |6548 |2645 | 0 | 4.000000e+00 | 3.570000e+02 |8825.00%
1079.91/1080.13 c 1080s| 14200 | 14071 | 3021k| 211.1 | 89M| 118 | 542 |6256 |5477 |6256 |6304 |6562 |2651 | 0 | 4.000000e+00 | 3.570000e+02 |8825.00%
1083.91/1084.18 c 1084s| 14300 | 14171 | 3028k| 210.2 | 90M| 118 | 559 |6256 |5471 |6256 |6305 |6579 |2651 | 0 | 4.000000e+00 | 3.570000e+02 |8825.00%
1092.91/1093.11 o 355
1092.91/1093.11 c time | node | left |LP iter|LP it/n| mem |mdpt |frac |vars |cons |cols |rows |cuts |confs|strbr| dualbound | primalbound | gap
1092.91/1093.11 c g1093s| 14342 | 14209 | 3047k| 210.9 | 93M| 118 | - |6256 |5503 |6256 |6304 |6599 |2690 | 0 | 4.000000e+00 | 3.550000e+02 |8775.00%
1092.91/1093.17 o 263
1092.91/1093.17 c 61093s| 14343 | 13772 | 3047k| 210.9 | 84M| 118 | - |6256 |5503 | 0 | 0 |6599 |2690 | 0 | 4.000000e+00 | 2.630000e+02 |6475.00%
1098.90/1099.18 c 1099s| 14400 | 13829 | 3062k| 211.1 | 84M| 118 | 940 |6256 |5519 |6256 |6319 |6605 |2717 | 0 | 4.000000e+00 | 2.630000e+02 |6475.00%
1114.50/1114.71 o 259
1114.50/1114.71 c g1115s| 14426 | 13815 | 3089k| 212.6 | 88M| 118 | - |6256 |5559 |6256 |6306 |6610 |2785 | 0 | 4.000000e+00 | 2.590000e+02 |6375.00%
1114.50/1114.76 o 175
1114.50/1114.76 c 61115s| 14427 | 12677 | 3089k| 212.6 | 81M| 118 | - |6256 |5559 | 0 | 0 |6610 |2785 | 0 | 4.000000e+00 | 1.750000e+02 |4275.00%
1119.60/1119.82 o 174
1119.60/1119.82 c g1120s| 14451 | 12675 | 3097k| 212.8 | 84M| 118 | - |6256 |5562 |6256 |6304 |6611 |2792 | 0 | 4.000000e+00 | 1.740000e+02 |4250.00%
1119.60/1119.87 o 76
1119.60/1119.87 c 61120s| 14452 | 9275 | 3097k| 212.7 | 69M| 118 | - |6256 |5562 | 0 | 0 |6611 |2792 | 0 | 4.000000e+00 | 7.600000e+01 |1800.00%
1124.29/1124.53 o 66
1124.29/1124.53 c g1125s| 14463 | 8436 | 3104k| 213.1 | 70M| 118 | - |6256 |5139 |6256 |6305 |6612 |2792 | 0 | 4.000000e+00 | 6.600000e+01 |1550.00%
1126.70/1126.90 c 1127s| 14500 | 8471 | 3111k| 213.0 | 67M| 118 | 567 |6256 |4992 |6256 |6303 |6618 |2793 | 0 | 4.000000e+00 | 6.600000e+01 |1550.00%
1149.89/1150.15 c 1150s| 14600 | 8550 | 3170k| 215.6 | 68M| 118 | 619 |6256 |5085 |6256 |6289 |6648 |2964 | 0 | 4.000000e+00 | 6.600000e+01 |1550.00%
1169.58/1169.86 o 62
1169.58/1169.86 c g1170s| 14682 | 8483 | 3210k| 217.1 | 71M| 118 | - |6256 |5157 |6256 |6303 |6659 |3072 | 0 | 4.000000e+00 | 6.200000e+01 |1450.00%
1169.68/1169.90 o 57
1169.68/1169.90 c 61170s| 14683 | 8083 | 3210k| 217.1 | 67M| 118 | - |6256 |5157 | 0 | 0 |6659 |3072 | 0 | 4.000000e+00 | 5.700000e+01 |1325.00%
1170.10/1170.32 c 1170s| 14700 | 8102 | 3211k| 216.9 | 67M| 118 | 541 |6256 |5013 |6256 |6303 |6659 |3072 | 0 | 4.000000e+00 | 5.700000e+01 |1325.00%
1178.09/1178.37 c 1178s| 14800 | 8192 | 3235k| 217.1 | 68M| 118 | - |6256 |5063 | 0 | 0 |6673 |3132 | 0 | 4.000000e+00 | 5.700000e+01 |1325.00%
1183.99/1184.26 o 56
1183.99/1184.26 c g1184s| 14842 | 8218 | 3245k| 217.2 | 71M| 118 | - |6256 |5085 |6256 |6305 |6674 |3157 | 0 | 4.000000e+00 | 5.600000e+01 |1300.00%
1184.09/1184.31 o 43
1184.09/1184.31 c time | node | left |LP iter|LP it/n| mem |mdpt |frac |vars |cons |cols |rows |cuts |confs|strbr| dualbound | primalbound | gap
1184.09/1184.31 c 61184s| 14843 | 7559 | 3245k| 217.1 | 65M| 118 | - |6256 |5076 | 0 | 0 |6674 |3157 | 0 | 4.000000e+00 | 4.300000e+01 | 975.00%
1189.89/1190.15 c 1190s| 14900 | 7609 | 3262k| 217.4 | 66M| 118 | 526 |6256 |4899 |6256 |6304 |6685 |3202 | 0 | 4.000000e+00 | 4.300000e+01 | 975.00%
1197.29/1197.56 o 42
1197.29/1197.56 c g1198s| 14912 | 7563 | 3277k| 218.3 | 69M| 118 | - |6256 |4907 |6256 |6311 |6689 |3216 | 0 | 4.000000e+00 | 4.200000e+01 | 950.00%
1202.89/1203.12 c 1203s| 15000 | 7645 | 3293k| 218.0 | 66M| 118 | 555 |6256 |4845 |6256 |6304 |6705 |3232 | 0 | 4.000000e+00 | 4.200000e+01 | 950.00%
1211.58/1211.80 o 37
1211.58/1211.80 c g1212s| 15044 | 7111 | 3315k| 218.9 | 67M| 118 | - |6256 |4834 |6256 |6304 |6710 |3237 | 0 | 4.000000e+00 | 3.700000e+01 | 825.00%
1217.88/1218.13 o 28
1217.88/1218.13 c g1218s| 15056 | 5721 | 3327k| 219.5 | 62M| 118 | - |6256 |4790 |6256 |6305 |6714 |3255 | 0 | 4.000000e+00 | 2.800000e+01 | 600.00%
1225.38/1225.63 o 24
1225.38/1225.63 c g1226s| 15076 | 5595 | 3343k| 220.3 | 61M| 118 | - |6256 |4663 |6256 |6320 |6722 |3290 | 0 | 4.000000e+00 | 2.400000e+01 | 500.00%
1231.88/1232.19 o 23
1231.88/1232.19 c g1232s| 15088 | 5596 | 3357k| 221.0 | 62M| 118 | - |6256 |4565 |6256 |6324 |6732 |3297 | 0 | 4.000000e+00 | 2.300000e+01 | 475.00%
1232.58/1232.85 c 1233s| 15100 | 5608 | 3360k| 221.0 | 58M| 118 | 964 |6256 |4558 |6256 |6316 |6734 |3307 | 0 | 4.000000e+00 | 2.300000e+01 | 475.00%
1255.67/1255.94 o 21
1255.67/1255.94 c g1256s| 15173 | 5559 | 3414k| 223.6 | 61M| 118 | - |6256 |4583 |6256 |6297 |6745 |3357 | 0 | 4.000000e+00 | 2.100000e+01 | 425.00%
1255.67/1255.97 o 20
1255.67/1255.97 c 61256s| 15174 | 5537 | 3414k| 223.5 | 59M| 118 | - |6256 |4583 | 0 | 0 |6745 |3357 | 0 | 4.000000e+00 | 2.000000e+01 | 400.00%
1256.98/1257.28 c 1257s| 15200 | 5552 | 3420k| 223.5 | 59M| 118 | 692 |6256 |4521 |6256 |6290 |6746 |3357 | 0 | 4.000000e+00 | 2.000000e+01 | 400.00%
1272.48/1272.75 o 18
1272.48/1272.75 c g1273s| 15282 | 4632 | 3463k| 225.1 | 58M| 118 | - |6256 |4503 |6256 |6318 |6768 |3378 | 0 | 4.000000e+00 | 1.800000e+01 | 350.00%
1277.17/1277.40 c 1277s| 15300 | 4593 | 3477k| 225.8 | 55M| 118 | 622 |6256 |4468 |6256 |6293 |6777 |3387 | 0 | 4.000000e+00 | 1.800000e+01 | 350.00%
1289.37/1289.69 o 15
1289.37/1289.69 c v1290s| 15354 | 4304 | 3516k| 227.5 | 57M| 118 | - |6256 |4502 |6256 |6290 |6788 |3430 | 0 | 4.000000e+00 | 1.500000e+01 | 275.00%
1289.47/1289.70 c Forcing restart, since 1203 binary variables among 1336 have been fixed.
1289.57/1289.87 c (run 1, node 15355) performing user restart
1289.57/1289.87 c
1289.57/1289.87 c (restart) converted 1873 cuts from the global cut pool into linear constraints
1289.57/1289.87 c
1289.67/1289.91 c presolving:
1289.67/1289.94 c (round 1) 2546 del vars, 1353 del conss, 21 add conss, 0 chg bounds, 399 chg sides, 330 chg coeffs, 0 upgd conss, 18728 impls, 3 clqs
1289.67/1289.97 c (round 2) 2563 del vars, 1537 del conss, 52 add conss, 0 chg bounds, 422 chg sides, 368 chg coeffs, 75 upgd conss, 18758 impls, 3 clqs
1289.67/1289.97 c (round 3) 2568 del vars, 1553 del conss, 62 add conss, 0 chg bounds, 432 chg sides, 388 chg coeffs, 76 upgd conss, 18768 impls, 18 clqs
1289.67/1289.99 c (round 4) 2573 del vars, 1574 del conss, 77 add conss, 1 chg bounds, 447 chg sides, 418 chg coeffs, 76 upgd conss, 18798 impls, 18 clqs
1289.77/1290.00 c (round 5) 2590 del vars, 1593 del conss, 87 add conss, 1 chg bounds, 457 chg sides, 439 chg coeffs, 76 upgd conss, 18814 impls, 18 clqs
1289.77/1290.00 c (round 6) 2595 del vars, 1604 del conss, 102 add conss, 1 chg bounds, 472 chg sides, 469 chg coeffs, 80 upgd conss, 18844 impls, 18 clqs
1289.77/1290.01 c (round 7) 2600 del vars, 1624 del conss, 112 add conss, 1 chg bounds, 482 chg sides, 489 chg coeffs, 80 upgd conss, 18854 impls, 18 clqs
1289.77/1290.04 c (round 8) 2605 del vars, 1634 del conss, 127 add conss, 1 chg bounds, 497 chg sides, 519 chg coeffs, 1797 upgd conss, 18884 impls, 18 clqs
1289.77/1290.06 c (round 9) 2612 del vars, 1649 del conss, 145 add conss, 1 chg bounds, 676 chg sides, 1597 chg coeffs, 1806 upgd conss, 18906 impls, 18 clqs
1289.77/1290.07 c (round 10) 2619 del vars, 1664 del conss, 166 add conss, 1 chg bounds, 700 chg sides, 1655 chg coeffs, 1806 upgd conss, 18948 impls, 18 clqs
1289.77/1290.08 c (round 11) 2626 del vars, 1691 del conss, 192 add conss, 1 chg bounds, 715 chg sides, 1686 chg coeffs, 1806 upgd conss, 18962 impls, 18 clqs
1289.87/1290.10 c (round 12) 2633 del vars, 1717 del conss, 208 add conss, 1 chg bounds, 726 chg sides, 1708 chg coeffs, 1806 upgd conss, 18984 impls, 18 clqs
1289.87/1290.11 c (round 13) 2635 del vars, 1743 del conss, 212 add conss, 1 chg bounds, 730 chg sides, 1716 chg coeffs, 1806 upgd conss, 18988 impls, 18 clqs
1289.87/1290.12 c (round 14) 2637 del vars, 1748 del conss, 218 add conss, 1 chg bounds, 736 chg sides, 1728 chg coeffs, 1806 upgd conss, 19000 impls, 18 clqs
1289.87/1290.13 c (round 15) 2639 del vars, 1754 del conss, 222 add conss, 1 chg bounds, 740 chg sides, 1736 chg coeffs, 1806 upgd conss, 19004 impls, 18 clqs
1289.87/1290.14 c (round 16) 2641 del vars, 1758 del conss, 228 add conss, 1 chg bounds, 746 chg sides, 1748 chg coeffs, 1806 upgd conss, 19016 impls, 18 clqs
1289.87/1290.16 c (round 17) 2643 del vars, 1764 del conss, 232 add conss, 1 chg bounds, 750 chg sides, 1756 chg coeffs, 1806 upgd conss, 19020 impls, 18 clqs
1289.87/1290.17 c (round 18) 2645 del vars, 1768 del conss, 238 add conss, 1 chg bounds, 756 chg sides, 1768 chg coeffs, 1806 upgd conss, 19032 impls, 18 clqs
1289.87/1290.18 c (round 19) 2647 del vars, 1776 del conss, 246 add conss, 1 chg bounds, 760 chg sides, 1776 chg coeffs, 1806 upgd conss, 19036 impls, 18 clqs
1289.87/1290.19 c (round 20) 2649 del vars, 1784 del conss, 250 add conss, 1 chg bounds, 762 chg sides, 1780 chg coeffs, 1806 upgd conss, 19040 impls, 18 clqs
1289.87/1290.19 c (round 21) 2649 del vars, 1794 del conss, 250 add conss, 1 chg bounds, 762 chg sides, 1780 chg coeffs, 1806 upgd conss, 19040 impls, 18 clqs
1289.87/1290.20 c (round 22) 2649 del vars, 1799 del conss, 250 add conss, 1 chg bounds, 762 chg sides, 1780 chg coeffs, 1806 upgd conss, 19040 impls, 18 clqs
1289.98/1290.20 c (round 23) 2649 del vars, 1812 del conss, 250 add conss, 1 chg bounds, 762 chg sides, 1780 chg coeffs, 1806 upgd conss, 19040 impls, 18 clqs
1289.98/1290.21 c (round 24) 2649 del vars, 3450 del conss, 784 add conss, 1 chg bounds, 762 chg sides, 1780 chg coeffs, 1806 upgd conss, 19040 impls, 18 clqs
1289.98/1290.22 c (round 25) 2650 del vars, 3465 del conss, 795 add conss, 1 chg bounds, 762 chg sides, 1780 chg coeffs, 1806 upgd conss, 19040 impls, 53 clqs
1289.98/1290.27 c (round 26) 2650 del vars, 3466 del conss, 796 add conss, 1 chg bounds, 762 chg sides, 1780 chg coeffs, 1806 upgd conss, 19040 impls, 64 clqs
1289.98/1290.29 c presolving (27 rounds):
1289.98/1290.29 c 2650 deleted vars, 3466 deleted constraints, 796 added constraints, 1 tightened bounds, 0 added holes, 762 changed sides, 1780 changed coefficients
1289.98/1290.29 c 19040 implications, 65 cliques
1289.98/1290.29 c presolved problem has 3606 variables (3477 bin, 0 int, 129 impl, 0 cont) and 3529 constraints
1289.98/1290.29 c 129 constraints of type <varbound>
1289.98/1290.29 c 1248 constraints of type <knapsack>
1289.98/1290.29 c 365 constraints of type <setppc>
1289.98/1290.29 c 713 constraints of type <and>
1289.98/1290.29 c 160 constraints of type <linear>
1289.98/1290.29 c 129 constraints of type <indicator>
1289.98/1290.29 c 468 constraints of type <logicor>
1289.98/1290.29 c 317 constraints of type <bounddisjunction>
1289.98/1290.29 c transformed objective value is always integral (scale: 1)
1289.98/1290.29 c Presolving Time: 0.61
1289.98/1290.29 c
1290.17/1290.41 c time | node | left |LP iter|LP it/n| mem |mdpt |frac |vars |cons |cols |rows |cuts |confs|strbr| dualbound | primalbound | gap
1290.17/1290.41 c 1290s| 1 | 0 | 3517k| - | 36M| 0 | 588 |3606 |3529 |3606 |3539 | 0 |3430 | 0 | 4.000000e+00 | 1.500000e+01 | 275.00%
1290.67/1290.96 c 1291s| 1 | 0 | 3520k| - | 36M| 0 | 951 |3606 |3529 |3606 |4092 | 553 |3430 | 0 | 4.000000e+00 | 1.500000e+01 | 275.00%
1291.57/1291.89 c 1292s| 1 | 2 | 3524k| - | 36M| 0 | 951 |3606 |3540 |3606 |4092 | 553 |3441 | 0 | 4.000000e+00 | 1.500000e+01 | 275.00%
1298.88/1299.18 o 14
1298.88/1299.18 c v1299s| 29 | 30 | 3557k| 229.5 | 38M| 17 | - |3606 |3560 |3606 |3984 |2551 |3461 | 0 | 4.000000e+00 | 1.400000e+01 | 250.00%
1301.17/1301.48 o 9
1301.17/1301.48 c g1301s| 32 | 33 | 3562k| 229.9 | 38M| 19 | - |3606 |3562 |3606 |3998 |2559 |3465 | 0 | 4.000000e+00 | 9.000000e+00 | 125.00%
1304.87/1305.16 o 8
1304.87/1305.16 c g1305s| 41 | 42 | 3573k| 230.4 | 39M| 19 | - |3606 |3514 |3606 |3980 |2595 |3485 | 0 | 4.000000e+00 | 8.000000e+00 | 100.00%
1307.27/1307.54 o 5
1307.27/1307.54 c Forcing restart, since the absolute gap is 1.000000.
1307.27/1307.54 c g1308s| 43 | 44 | 3579k| 230.8 | 39M| 19 | - |3606 |3459 |3606 |3986 |2611 |3485 | 0 | 4.000000e+00 | 5.000000e+00 | 25.00%
1307.27/1307.55 c (run 2, node 43) performing user restart
1307.27/1307.55 c
1307.27/1307.55 c (restart) converted 257 cuts from the global cut pool into linear constraints
1307.27/1307.55 c
1307.27/1307.56 c presolving:
1307.27/1307.57 c (round 1) 130 del vars, 81 del conss, 17 add conss, 0 chg bounds, 18 chg sides, 35 chg coeffs, 0 upgd conss, 19820 impls, 66 clqs
1307.27/1307.59 c (round 2) 133 del vars, 96 del conss, 33 add conss, 0 chg bounds, 38 chg sides, 71 chg coeffs, 0 upgd conss, 19854 impls, 66 clqs
1307.36/1307.64 c (round 3) 137 del vars, 108 del conss, 42 add conss, 0 chg bounds, 46 chg sides, 87 chg coeffs, 233 upgd conss, 19862 impls, 68 clqs
1307.36/1307.65 c (round 4) 143 del vars, 201 del conss, 72 add conss, 0 chg bounds, 104 chg sides, 327 chg coeffs, 233 upgd conss, 19890 impls, 68 clqs
1307.36/1307.67 c (round 5) 149 del vars, 221 del conss, 86 add conss, 0 chg bounds, 117 chg sides, 354 chg coeffs, 234 upgd conss, 19908 impls, 68 clqs
1307.36/1307.68 c (round 6) 155 del vars, 238 del conss, 99 add conss, 0 chg bounds, 131 chg sides, 383 chg coeffs, 234 upgd conss, 19930 impls, 68 clqs
1307.36/1307.69 c (round 7) 161 del vars, 251 del conss, 111 add conss, 0 chg bounds, 143 chg sides, 409 chg coeffs, 236 upgd conss, 19948 impls, 68 clqs
1307.47/1307.70 c (round 8) 167 del vars, 265 del conss, 124 add conss, 0 chg bounds, 157 chg sides, 437 chg coeffs, 236 upgd conss, 19970 impls, 68 clqs
1307.47/1307.71 c (round 9) 173 del vars, 278 del conss, 136 add conss, 0 chg bounds, 169 chg sides, 462 chg coeffs, 236 upgd conss, 19988 impls, 68 clqs
1307.47/1307.72 c (round 10) 179 del vars, 290 del conss, 149 add conss, 0 chg bounds, 182 chg sides, 489 chg coeffs, 236 upgd conss, 20010 impls, 68 clqs
1307.47/1307.73 c (round 11) 185 del vars, 306 del conss, 167 add conss, 0 chg bounds, 194 chg sides, 514 chg coeffs, 236 upgd conss, 20028 impls, 68 clqs
1307.47/1307.74 c (round 12) 191 del vars, 324 del conss, 177 add conss, 0 chg bounds, 201 chg sides, 529 chg coeffs, 236 upgd conss, 20038 impls, 68 clqs
1307.47/1307.75 c (round 13) 194 del vars, 341 del conss, 185 add conss, 0 chg bounds, 216 chg sides, 551 chg coeffs, 236 upgd conss, 20048 impls, 68 clqs
1307.47/1307.76 c (round 14) 197 del vars, 349 del conss, 191 add conss, 0 chg bounds, 220 chg sides, 558 chg coeffs, 236 upgd conss, 20052 impls, 68 clqs
1307.47/1307.77 c (round 15) 198 del vars, 359 del conss, 195 add conss, 0 chg bounds, 226 chg sides, 566 chg coeffs, 236 upgd conss, 20054 impls, 68 clqs
1307.47/1307.78 c (round 16) 198 del vars, 365 del conss, 195 add conss, 0 chg bounds, 226 chg sides, 566 chg coeffs, 236 upgd conss, 20054 impls, 68 clqs
1307.47/1307.78 c (round 17) 198 del vars, 366 del conss, 195 add conss, 0 chg bounds, 226 chg sides, 566 chg coeffs, 236 upgd conss, 20054 impls, 68 clqs
1307.47/1307.79 c (round 18) 198 del vars, 366 del conss, 195 add conss, 26 chg bounds, 226 chg sides, 566 chg coeffs, 236 upgd conss, 20054 impls, 68 clqs
1307.47/1307.79 c (round 19) 258 del vars, 433 del conss, 195 add conss, 56 chg bounds, 226 chg sides, 566 chg coeffs, 236 upgd conss, 20350 impls, 68 clqs
1307.47/1307.80 c (round 20) 265 del vars, 446 del conss, 197 add conss, 56 chg bounds, 228 chg sides, 570 chg coeffs, 236 upgd conss, 20354 impls, 67 clqs
1307.57/1307.80 c (round 21) 274 del vars, 453 del conss, 199 add conss, 56 chg bounds, 230 chg sides, 574 chg coeffs, 236 upgd conss, 20374 impls, 67 clqs
1307.57/1307.81 c (round 22) 288 del vars, 467 del conss, 208 add conss, 56 chg bounds, 239 chg sides, 594 chg coeffs, 256 upgd conss, 20406 impls, 67 clqs
1307.57/1307.82 c (round 23) 325 del vars, 498 del conss, 216 add conss, 56 chg bounds, 247 chg sides, 614 chg coeffs, 257 upgd conss, 20468 impls, 66 clqs
1307.57/1307.82 c (round 24) 366 del vars, 529 del conss, 224 add conss, 56 chg bounds, 255 chg sides, 633 chg coeffs, 260 upgd conss, 20660 impls, 64 clqs
1307.57/1307.83 c (round 25) 400 del vars, 568 del conss, 243 add conss, 56 chg bounds, 274 chg sides, 673 chg coeffs, 260 upgd conss, 20778 impls, 62 clqs
1307.57/1307.84 c (round 26) 435 del vars, 607 del conss, 290 add conss, 56 chg bounds, 316 chg sides, 755 chg coeffs, 262 upgd conss, 20892 impls, 61 clqs
1307.57/1307.84 c (round 27) 465 del vars, 660 del conss, 332 add conss, 56 chg bounds, 364 chg sides, 845 chg coeffs, 263 upgd conss, 20978 impls, 60 clqs
1307.57/1307.85 c (round 28) 487 del vars, 714 del conss, 367 add conss, 56 chg bounds, 397 chg sides, 911 chg coeffs, 264 upgd conss, 21094 impls, 59 clqs
1307.57/1307.86 c (round 29) 515 del vars, 770 del conss, 408 add conss, 56 chg bounds, 434 chg sides, 985 chg coeffs, 266 upgd conss, 21176 impls, 58 clqs
1307.57/1307.86 c (round 30) 546 del vars, 829 del conss, 449 add conss, 56 chg bounds, 471 chg sides, 1061 chg coeffs, 266 upgd conss, 21284 impls, 58 clqs
1307.57/1307.87 c (round 31) 570 del vars, 880 del conss, 507 add conss, 56 chg bounds, 524 chg sides, 1166 chg coeffs, 266 upgd conss, 21384 impls, 58 clqs
1307.57/1307.88 c (round 32) 594 del vars, 943 del conss, 560 add conss, 57 chg bounds, 578 chg sides, 1268 chg coeffs, 266 upgd conss, 21486 impls, 57 clqs
1307.57/1307.89 c (round 33) 627 del vars, 1037 del conss, 603 add conss, 57 chg bounds, 633 chg sides, 1362 chg coeffs, 266 upgd conss, 21560 impls, 57 clqs
1307.57/1307.90 c (round 34) 654 del vars, 1103 del conss, 651 add conss, 57 chg bounds, 688 chg sides, 1476 chg coeffs, 267 upgd conss, 21718 impls, 54 clqs
1307.68/1307.90 c (round 35) 680 del vars, 1169 del conss, 701 add conss, 57 chg bounds, 735 chg sides, 1573 chg coeffs, 267 upgd conss, 21796 impls, 54 clqs
1307.68/1307.91 c (round 36) 703 del vars, 1239 del conss, 757 add conss, 57 chg bounds, 787 chg sides, 1666 chg coeffs, 267 upgd conss, 21888 impls, 54 clqs
1307.68/1307.93 c (round 37) 725 del vars, 1310 del conss, 793 add conss, 57 chg bounds, 815 chg sides, 1720 chg coeffs, 286 upgd conss, 21934 impls, 54 clqs
1307.68/1307.93 c (round 38) 751 del vars, 1362 del conss, 817 add conss, 57 chg bounds, 837 chg sides, 1764 chg coeffs, 287 upgd conss, 22008 impls, 54 clqs
1307.68/1307.94 c (round 39) 774 del vars, 1404 del conss, 846 add conss, 57 chg bounds, 873 chg sides, 1826 chg coeffs, 287 upgd conss, 22050 impls, 53 clqs
1307.68/1307.95 c (round 40) 800 del vars, 1448 del conss, 886 add conss, 58 chg bounds, 908 chg sides, 1897 chg coeffs, 288 upgd conss, 22153 impls, 53 clqs
1307.68/1307.95 c (round 41) 823 del vars, 1514 del conss, 929 add conss, 58 chg bounds, 944 chg sides, 1968 chg coeffs, 288 upgd conss, 22209 impls, 53 clqs
1307.68/1307.96 c (round 42) 865 del vars, 1589 del conss, 958 add conss, 58 chg bounds, 966 chg sides, 2013 chg coeffs, 290 upgd conss, 22296 impls, 51 clqs
1307.68/1307.96 c (round 43) 889 del vars, 1642 del conss, 977 add conss, 58 chg bounds, 983 chg sides, 2047 chg coeffs, 294 upgd conss, 22474 impls, 51 clqs
1307.77/1308.00 c (round 44) 898 del vars, 1682 del conss, 998 add conss, 58 chg bounds, 998 chg sides, 2077 chg coeffs, 302 upgd conss, 22506 impls, 51 clqs
1307.77/1308.01 c (round 45) 907 del vars, 1697 del conss, 1013 add conss, 58 chg bounds, 1013 chg sides, 2107 chg coeffs, 302 upgd conss, 22530 impls, 52 clqs
1307.77/1308.02 c (round 46) 916 del vars, 1712 del conss, 1028 add conss, 58 chg bounds, 1028 chg sides, 2137 chg coeffs, 302 upgd conss, 22554 impls, 52 clqs
1307.77/1308.02 c (round 47) 925 del vars, 1727 del conss, 1043 add conss, 58 chg bounds, 1043 chg sides, 2167 chg coeffs, 302 upgd conss, 22578 impls, 52 clqs
1307.77/1308.03 c (round 48) 934 del vars, 1742 del conss, 1058 add conss, 58 chg bounds, 1058 chg sides, 2197 chg coeffs, 302 upgd conss, 22602 impls, 52 clqs
1307.77/1308.04 c (round 49) 943 del vars, 1760 del conss, 1078 add conss, 58 chg bounds, 1072 chg sides, 2225 chg coeffs, 302 upgd conss, 22624 impls, 52 clqs
1307.77/1308.04 c (round 50) 952 del vars, 1782 del conss, 1095 add conss, 58 chg bounds, 1082 chg sides, 2245 chg coeffs, 302 upgd conss, 22640 impls, 52 clqs
1307.77/1308.05 c (round 51) 958 del vars, 1806 del conss, 1103 add conss, 58 chg bounds, 1086 chg sides, 2253 chg coeffs, 302 upgd conss, 22646 impls, 52 clqs
1307.77/1308.05 c (round 52) 962 del vars, 1818 del conss, 1105 add conss, 58 chg bounds, 1087 chg sides, 2255 chg coeffs, 302 upgd conss, 22648 impls, 52 clqs
1307.77/1308.06 c (round 53) 962 del vars, 1823 del conss, 1105 add conss, 58 chg bounds, 1087 chg sides, 2255 chg coeffs, 302 upgd conss, 22648 impls, 52 clqs
1307.77/1308.06 c (round 54) 962 del vars, 1830 del conss, 1105 add conss, 58 chg bounds, 1087 chg sides, 2255 chg coeffs, 302 upgd conss, 22648 impls, 52 clqs
1307.77/1308.07 c (round 55) 962 del vars, 1932 del conss, 1139 add conss, 58 chg bounds, 1087 chg sides, 2255 chg coeffs, 302 upgd conss, 22648 impls, 52 clqs
1307.77/1308.07 c presolving (56 rounds):
1307.77/1308.07 c 962 deleted vars, 1932 deleted constraints, 1139 added constraints, 58 tightened bounds, 0 added holes, 1087 changed sides, 2255 changed coefficients
1307.77/1308.07 c 22648 implications, 52 cliques
1307.77/1308.07 c presolved problem has 2644 variables (2599 bin, 0 int, 45 impl, 0 cont) and 2805 constraints
1307.77/1308.07 c 45 constraints of type <varbound>
1307.77/1308.07 c 1059 constraints of type <knapsack>
1307.77/1308.07 c 314 constraints of type <setppc>
1307.77/1308.07 c 576 constraints of type <and>
1307.77/1308.07 c 81 constraints of type <linear>
1307.77/1308.07 c 45 constraints of type <indicator>
1307.77/1308.07 c 383 constraints of type <logicor>
1307.77/1308.07 c 302 constraints of type <bounddisjunction>
1307.77/1308.07 c transformed objective value is always integral (scale: 1)
1307.77/1308.07 c Presolving Time: 1.12
1307.77/1308.08 c
1307.87/1308.16 c time | node | left |LP iter|LP it/n| mem |mdpt |frac |vars |cons |cols |rows |cuts |confs|strbr| dualbound | primalbound | gap
1307.87/1308.16 c 1308s| 1 | 0 | 3580k| - | 35M| 0 | 566 |2644 |2805 |2644 |2741 | 0 |3485 | 0 | 4.000000e+00 | 5.000000e+00 | 25.00%
1307.87/1308.16 c 1308s| 1 | 0 | 3580k| - | 35M| 0 | 566 |2644 |2805 |2644 |2741 | 0 |3485 | 0 | 4.000000e+00 | 5.000000e+00 | 25.00%
1308.27/1308.56 c 1309s| 1 | 0 | 3581k| - | 35M| 0 | 828 |2644 |2785 |2644 |3308 | 589 |3485 | 0 | 4.000000e+00 | 5.000000e+00 | 25.00%
1308.27/1308.56 c 1309s| 1 | 0 | 3581k| - | 35M| 0 | 828 |2644 |2785 |2644 |3308 | 589 |3485 | 0 | 4.000000e+00 | 5.000000e+00 | 25.00%
1308.27/1308.56 c 1309s| 1 | 2 | 3581k| - | 35M| 0 | 828 |2644 |2785 |2644 |3308 | 589 |3485 | 0 | 4.000000e+00 | 5.000000e+00 | 25.00%
1311.67/1311.95 o 4
1311.67/1311.95 c v1312s| 35 | 0 | 3600k| 231.5 | 36M| 26 | - |2644 |2788 |2644 |3078 |1543 |3488 | 0 | 4.000000e+00 | 4.000000e+00 | 0.00%
1311.67/1311.96 c
1311.67/1311.96 c SCIP Status : problem is solved [optimal solution found]
1311.67/1311.96 c Solving Time (sec) : 1311.96
1311.67/1311.96 c Solving Nodes : 35 (total of 15433 nodes in 3 runs)
1311.67/1311.96 c Primal Bound : +4.00000000000000e+00 (63 solutions)
1311.67/1311.96 c Dual Bound : +4.00000000000000e+00
1311.67/1311.96 c Gap : 0.00 %
1311.67/1311.96 s OPTIMUM FOUND
1311.67/1311.97 v x3618 x3617 x3616 x3615 x3614 x3613 x3612 x3611 x3610 x3609 x3608 x3607 -x3606 -x3605 -x3604 x3603 -x3602 -x3601 -x3600 -x3599
1311.67/1311.97 v -x3598 -x3597 x3596 -x3595 -x3594 x3593 x3592 x3591 x3590 x3589 x3588 x3587 x3586 x3585 x3584 x3583 -x3582 x3581 x3580 x3579
1311.67/1311.97 v x3578 x3577 x3576 x3575 x3574 x3573 x3572 x3571 x3570 x3569 x3568 x3567 x3566 x3565 x3564 x3563 x3562 x3561 x3560 x3559 -x3558
1311.67/1311.97 v -x3557 -x3556 -x3555 -x3554 -x3553 -x3552 -x3551 -x3550 -x3549 -x3548 -x3547 -x3546 -x3545 -x3544 -x3543 -x3542 -x3541 -x3540
1311.67/1311.97 v -x3539 -x3538 -x3537 -x3536 -x3535 -x3534 -x3533 -x3532 -x3531 -x3530 -x3529 -x3528 -x3527 -x3526 -x3525 -x3524 -x3523 -x3522
1311.67/1311.97 v -x3521 -x3520 -x3519 -x3518 -x3517 -x3516 -x3515 -x3514 -x3513 -x3512 -x3511 -x3510 x3509 x3508 x3507 x3506 x3505 x3504 x3503
1311.67/1311.97 v x3502 x3501 x3500 x3499 x3498 x3497 x3496 x3495 x3494 x3493 x3492 x3491 x3490 x3489 x3488 x3487 -x3486 -x3485 -x3484 -x3483
1311.67/1311.97 v x3482 x3481 x3480 x3479 x3478 x3477 x3476 x3475 x3474 x3473 x3472 x3471 -x3470 -x3469 -x3468 -x3467 -x3466 -x3465 -x3464
1311.67/1311.97 v -x3463 -x3462 -x3461 -x3460 -x3459 -x3458 -x3457 -x3456 -x3455 -x3454 -x3453 -x3452 -x3451 -x3450 -x3449 -x3448 -x3447 -x3446
1311.67/1311.97 v -x3445 -x3444 -x3443 -x3442 -x3441 -x3440 -x3439 -x3438 -x3437 -x3436 -x3435 x3434 x3433 x3432 x3431 x3430 x3429 x3428 x3427
1311.67/1311.97 v x3426 x3425 x3424 -x3423 x3422 x3421 x3420 x3419 x3418 x3417 x3416 x3415 x3414 x3413 x3412 -x3411 x3410 x3409 x3408 x3407 x3406
1311.67/1311.97 v x3405 x3404 x3403 x3402 x3401 x3400 x3399 -x3398 -x3397 x3396 x3395 x3394 x3393 x3392 x3391 x3390 x3389 x3388 x3387 -x3386
1311.67/1311.97 v -x3385 x3384 x3383 x3382 x3381 x3380 x3379 x3378 x3377 x3376 x3375 -x3374 -x3373 -x3372 -x3371 -x3370 -x3369 -x3368 -x3367
1311.67/1311.97 v -x3366 -x3365 -x3364 x3363 -x3362 -x3361 -x3360 -x3359 -x3358 x3357 x3356 x3355 -x3354 x3353 x3352 -x3351 x3350 x3349 x3348 x3347
1311.67/1311.97 v x3346 x3345 x3344 x3343 x3342 x3341 x3340 x3339 -x3338 -x3337 -x3336 -x3335 -x3334 -x3333 -x3332 -x3331 -x3330 -x3329 -x3328
1311.67/1311.97 v x3327 -x3326 x3325 x3324 x3323 x3322 x3321 x3320 x3319 x3318 x3317 x3316 x3315 -x3314 x3313 x3312 x3311 x3310 x3309 x3308
1311.67/1311.97 v x3307 x3306 x3305 x3304 x3303 -x3302 x3301 x3300 x3299 x3298 x3297 x3296 x3295 x3294 x3293 x3292 x3291 -x3290 -x3289 -x3288
1311.67/1311.97 v -x3287 -x3286 -x3285 -x3284 -x3283 -x3282 -x3281 x3280 x3279 -x3278 x3277 x3276 x3275 x3274 x3273 x3272 x3271 x3270 x3269 x3268
1311.67/1311.97 v x3267 -x3266 x3265 x3264 x3263 x3262 x3261 x3260 x3259 x3258 x3257 x3256 x3255 -x3254 x3253 x3252 x3251 x3250 x3249 x3248
1311.67/1311.97 v x3247 x3246 x3245 -x3244 x3243 -x3242 x3241 x3240 x3239 x3238 x3237 x3236 x3235 x3234 x3233 x3232 x3231 x3230 x3229 x3228 x3227
1311.67/1311.97 v x3226 x3225 x3224 x3223 x3222 x3221 x3220 x3219 x3218 -x3217 -x3216 -x3215 -x3214 x3213 x3212 x3211 -x3210 x3209 x3208 -x3207
1311.67/1311.97 v -x3206 -x3205 -x3204 -x3203 -x3202 -x3201 -x3200 -x3199 x3198 -x3197 x3196 -x3195 x3194 x3193 x3192 x3191 x3190 x3189 x3188
1311.67/1311.97 v x3187 x3186 x3185 x3184 x3183 x3182 x3181 x3180 x3179 x3178 x3177 x3176 x3175 x3174 x3173 x3172 x3171 -x3170 -x3169 -x3168
1311.67/1311.97 v -x3167 -x3166 x3165 x3164 x3163 -x3162 x3161 x3160 -x3159 -x3158 x3157 x3156 x3155 x3154 x3153 x3152 x3151 x3150 x3149 x3148
1311.67/1311.97 v x3147 -x3146 x3145 x3144 x3143 x3142 x3141 x3140 x3139 x3138 x3137 x3136 x3135 -x3134 x3133 x3132 x3131 x3130 x3129 x3128 x3127
1311.67/1311.97 v -x3126 -x3125 -x3124 x3123 -x3122 -x3121 -x3120 -x3119 -x3118 -x3117 -x3116 -x3115 -x3114 -x3113 x3112 x3111 -x3110 -x3109
1311.67/1311.97 v -x3108 -x3107 -x3106 -x3105 -x3104 -x3103 -x3102 -x3101 x3100 x3099 -x3098 x3097 x3096 x3095 x3094 x3093 x3092 x3091 x3090
1311.67/1311.97 v x3089 x3088 x3087 -x3086 x3085 x3084 x3083 x3082 x3081 x3080 x3079 x3078 x3077 x3076 x3075 x3074 x3073 x3072 x3071 x3070 -x3069
1311.67/1311.97 v x3068 x3067 -x3066 x3065 x3064 -x3063 -x3062 -x3061 -x3060 -x3059 -x3058 x3057 x3056 x3055 -x3054 x3053 x3052 -x3051 -x3050
1311.67/1311.97 v x3049 x3048 x3047 x3046 x3045 x3044 x3043 x3042 x3041 x3040 x3039 x3038 x3037 x3036 x3035 x3034 x3033 x3032 x3031 -x3030 -x3029
1311.67/1311.97 v -x3028 x3027 -x3026 -x3025 -x3024 -x3023 -x3022 x3021 x3020 x3019 -x3018 x3017 x3016 -x3015 -x3014 -x3013 -x3012 -x3011
1311.67/1311.97 v -x3010 x3009 x3008 x3007 -x3006 x3005 x3004 -x3003 -x3002 -x3001 -x3000 -x2999 -x2998 -x2997 -x2996 -x2995 -x2994 -x2993 -x2992
1311.67/1311.97 v -x2991 x2990 x2989 x2988 x2987 x2986 x2985 x2984 x2983 x2982 x2981 x2980 x2979 -x2978 -x2977 -x2976 -x2975 x2974 -x2973 x2972
1311.67/1311.97 v x2971 x2970 x2969 x2968 x2967 x2966 x2965 x2964 x2963 -x2962 -x2961 -x2960 -x2959 -x2958 -x2957 -x2956 -x2955 -x2954 -x2953
1311.67/1311.97 v -x2952 -x2951 -x2950 -x2949 -x2948 -x2947 -x2946 -x2945 -x2944 -x2943 -x2942 -x2941 -x2940 -x2939 -x2938 -x2937 -x2936 -x2935
1311.67/1311.97 v -x2934 -x2933 -x2932 -x2931 -x2930 -x2929 -x2928 -x2927 -x2926 -x2925 -x2924 -x2923 -x2922 -x2921 -x2920 -x2919 -x2918 -x2917
1311.67/1311.97 v -x2916 -x2915 x2914 -x2913 -x2912 -x2911 -x2910 -x2909 -x2908 -x2907 -x2906 -x2905 -x2904 -x2903 -x2902 -x2901 -x2900 -x2899
1311.67/1311.97 v -x2898 -x2897 -x2896 -x2895 -x2894 -x2893 -x2892 -x2891 -x2890 -x2889 -x2888 -x2887 -x2886 -x2885 -x2884 -x2883 -x2882
1311.67/1311.97 v -x2881 -x2880 -x2879 -x2878 -x2877 -x2876 -x2875 -x2874 x2873 x2872 x2871 -x2870 x2869 x2868 -x2867 -x2866 -x2865 -x2864 -x2863
1311.67/1311.97 v -x2862 -x2861 x2860 x2859 -x2858 -x2857 -x2856 x2855 x2854 x2853 x2852 x2851 x2850 -x2849 x2848 x2847 -x2846 -x2845 -x2844
1311.67/1311.97 v x2843 x2842 x2841 x2840 x2839 x2838 -x2837 x2836 x2835 -x2834 -x2833 -x2832 x2831 x2830 x2829 x2828 x2827 x2826 -x2825 x2824
1311.67/1311.97 v x2823 -x2822 -x2821 -x2820 x2819 x2818 x2817 x2816 x2815 x2814 -x2813 x2812 x2811 -x2810 -x2809 -x2808 x2807 x2806 x2805 x2804
1311.67/1311.97 v x2803 x2802 -x2801 x2800 x2799 -x2798 -x2797 -x2796 x2795 x2794 x2793 x2792 x2791 x2790 -x2789 -x2788 -x2787 -x2786 -x2785
1311.67/1311.97 v -x2784 -x2783 -x2782 -x2781 -x2780 -x2779 -x2778 -x2777 x2776 -x2775 x2774 x2773 x2772 x2771 x2770 x2769 x2768 x2767 x2766 x2765
1311.67/1311.97 v -x2764 x2763 x2762 x2761 x2760 x2759 x2758 x2757 x2756 x2755 x2754 x2753 x2752 x2751 x2750 x2749 x2748 x2747 x2746 x2745
1311.67/1311.97 v x2744 x2743 x2742 x2741 -x2740 -x2739 -x2738 -x2737 -x2736 -x2735 -x2734 -x2733 -x2732 -x2731 -x2730 -x2729 x2728 x2727 x2726
1311.67/1311.97 v x2725 x2724 x2723 x2722 x2721 x2720 x2719 x2718 x2717 -x2716 -x2715 -x2714 -x2713 -x2712 -x2711 -x2710 -x2709 -x2708 -x2707
1311.67/1311.97 v -x2706 -x2705 x2704 x2703 x2702 x2701 x2700 x2699 x2698 x2697 x2696 x2695 x2694 x2693 -x2692 -x2691 -x2690 -x2689 -x2688 -x2687
1311.67/1311.97 v -x2686 -x2685 -x2684 -x2683 -x2682 -x2681 x2680 x2679 x2678 x2677 x2676 x2675 x2674 x2673 x2672 x2671 x2670 x2669 -x2668
1311.67/1311.97 v -x2667 -x2666 -x2665 -x2664 -x2663 -x2662 -x2661 -x2660 -x2659 -x2658 -x2657 -x2656 -x2655 x2654 -x2653 -x2652 x2651 -x2650 -x2649
1311.67/1311.97 v -x2648 -x2647 -x2646 -x2645 -x2644 -x2643 -x2642 -x2641 -x2640 x2639 -x2638 -x2637 -x2636 -x2635 -x2634 -x2633 -x2632 -x2631
1311.67/1311.97 v -x2630 -x2629 -x2628 -x2627 -x2626 -x2625 -x2624 -x2623 -x2622 -x2621 -x2620 -x2619 -x2618 -x2617 -x2616 -x2615 x2614 x2613
1311.67/1311.97 v x2612 x2611 x2610 x2609 x2608 x2607 x2606 x2605 x2604 x2603 x2602 x2601 x2600 x2599 x2598 x2597 x2596 x2595 x2594 x2593
1311.67/1311.97 v x2592 x2591 x2590 x2589 x2588 x2587 x2586 x2585 x2584 x2583 x2582 x2581 x2580 x2579 x2578 -x2577 -x2576 -x2575 -x2574 x2573 x2572
1311.67/1311.97 v x2571 -x2570 x2569 x2568 -x2567 -x2566 -x2565 -x2564 -x2563 -x2562 -x2561 -x2560 -x2559 -x2558 -x2557 -x2556 -x2555 -x2554
1311.67/1311.97 v -x2553 -x2552 -x2551 -x2550 -x2549 -x2548 -x2547 -x2546 -x2545 -x2544 -x2543 -x2542 -x2541 -x2540 -x2539 -x2538 x2537 x2536
1311.67/1311.97 v x2535 -x2534 x2533 x2532 -x2531 -x2530 -x2529 -x2528 -x2527 -x2526 x2525 x2524 x2523 -x2522 x2521 x2520 -x2519 -x2518 -x2517
1311.67/1311.97 v -x2516 -x2515 -x2514 x2513 x2512 x2511 -x2510 x2509 x2508 -x2507 -x2506 -x2505 -x2504 -x2503 -x2502 x2501 x2500 x2499 -x2498
1311.67/1311.97 v x2497 x2496 -x2495 -x2494 -x2493 -x2492 -x2491 -x2490 x2489 x2488 x2487 -x2486 x2485 x2484 -x2483 -x2482 -x2481 -x2480 -x2479
1311.67/1311.97 v -x2478 x2477 x2476 x2475 -x2474 x2473 x2472 -x2471 -x2470 -x2469 -x2468 -x2467 -x2466 -x2465 -x2464 -x2463 -x2462 -x2461 -x2460
1311.67/1311.97 v x2459 x2458 x2457 -x2456 x2455 x2454 -x2453 -x2452 -x2451 -x2450 -x2449 -x2448 x2447 x2446 x2445 -x2444 x2443 x2442 -x2441
1311.67/1311.97 v x2440 -x2439 -x2438 -x2437 -x2436 x2435 x2434 x2433 -x2432 x2431 x2430 -x2429 -x2428 -x2427 -x2426 x2425 -x2424 -x2423 -x2422
1311.67/1311.97 v -x2421 -x2420 x2419 x2418 -x2417 x2416 x2415 x2414 x2413 x2412 -x2411 x2410 x2409 -x2408 x2407 x2406 -x2405 x2404 x2403
1311.67/1311.97 v x2402 x2401 x2400 x2399 x2398 x2397 x2396 x2395 x2394 x2393 x2392 x2391 x2390 x2389 x2388 x2387 x2386 x2385 x2384 x2383 x2382
1311.67/1311.97 v x2381 -x2380 -x2379 -x2378 -x2377 -x2376 x2375 x2374 x2373 -x2372 x2371 x2370 -x2369 -x2368 x2367 x2366 x2365 x2364 x2363 x2362
1311.67/1311.97 v x2361 x2360 x2359 x2358 x2357 -x2356 x2355 x2354 x2353 x2352 x2351 x2350 x2349 x2348 x2347 x2346 x2345 x2344 -x2343 -x2342
1311.67/1311.97 v -x2341 -x2340 -x2339 -x2338 -x2337 x2336 x2335 x2334 x2333 -x2332 x2331 x2330 x2329 x2328 x2327 x2326 x2325 x2324 x2323 x2322
1311.67/1311.97 v x2321 -x2320 x2319 x2318 x2317 x2316 x2315 x2314 x2313 x2312 x2311 x2310 x2309 -x2308 x2307 x2306 x2305 x2304 x2303 x2302
1311.67/1311.97 v x2301 x2300 x2299 x2298 x2297 -x2296 x2295 x2294 x2293 x2292 x2291 x2290 x2289 x2288 x2287 x2286 x2285 -x2284 x2283 x2282 x2281
1311.67/1311.97 v x2280 x2279 x2278 x2277 x2276 x2275 x2274 x2273 x2272 x2271 x2270 x2269 x2268 x2267 x2266 x2265 x2264 x2263 x2262 x2261 x2260
1311.67/1311.97 v x2259 x2258 x2257 x2256 x2255 x2254 x2253 x2252 x2251 x2250 x2249 -x2248 x2247 x2246 x2245 x2244 x2243 x2242 x2241 x2240
1311.67/1311.97 v x2239 x2238 x2237 -x2236 x2235 x2234 x2233 x2232 x2231 x2230 x2229 x2228 x2227 x2226 x2225 -x2224 -x2223 -x2222 -x2221 -x2220
1311.67/1311.97 v x2219 x2218 x2217 -x2216 x2215 x2214 -x2213 -x2212 -x2211 -x2210 -x2209 -x2208 x2207 x2206 x2205 -x2204 x2203 x2202 -x2201 -x2200
1311.67/1311.97 v x2199 x2198 x2197 x2196 x2195 x2194 x2193 x2192 x2191 x2190 x2189 -x2188 x2187 x2186 x2185 x2184 x2183 x2182 x2181 x2180
1311.67/1311.97 v x2179 x2178 x2177 x2176 -x2175 -x2174 -x2173 -x2172 x2171 x2170 x2169 -x2168 x2167 x2166 -x2165 x2164 -x2163 -x2162 -x2161
1311.67/1311.97 v -x2160 x2159 x2158 x2157 -x2156 x2155 x2154 -x2153 x2152 x2151 x2150 x2149 x2148 x2147 x2146 x2145 x2144 x2143 x2142 x2141 x2140
1311.67/1311.97 v x2139 x2138 x2137 x2136 x2135 x2134 x2133 x2132 x2131 x2130 x2129 -x2128 x2127 x2126 x2125 x2124 x2123 x2122 x2121 x2120
1311.67/1311.97 v x2119 x2118 x2117 -x2116 x2115 x2114 x2113 x2112 x2111 x2110 x2109 x2108 x2107 x2106 x2105 -x2104 -x2103 -x2102 -x2101 -x2100
1311.67/1311.97 v -x2099 x2098 -x2097 -x2096 -x2095 -x2094 x2093 -x2092 -x2091 -x2090 -x2089 -x2088 x2087 x2086 x2085 -x2084 x2083 x2082 -x2081
1311.67/1311.97 v -x2080 -x2079 -x2078 -x2077 -x2076 x2075 x2074 x2073 -x2072 x2071 x2070 -x2069 x2068 -x2067 -x2066 -x2065 -x2064 x2063 x2062
1311.67/1311.97 v x2061 -x2060 x2059 x2058 -x2057 x2056 -x2055 -x2054 -x2053 -x2052 x2051 x2050 x2049 -x2048 x2047 x2046 -x2045 -x2044 x2043
1311.67/1311.97 v x2042 x2041 x2040 x2039 x2038 x2037 x2036 x2035 x2034 x2033 -x2032 x2031 x2030 x2029 x2028 x2027 x2026 x2025 x2024 x2023 x2022
1311.67/1311.97 v x2021 x2020 -x2019 -x2018 -x2017 -x2016 -x2015 -x2014 -x2013 x2012 x2011 x2010 x2009 x2008 x2007 x2006 x2005 x2004 -x2003 x2002
1311.67/1311.97 v x2001 -x2000 x1999 x1998 -x1997 -x1996 -x1995 -x1994 -x1993 -x1992 -x1991 -x1990 -x1989 -x1988 -x1987 -x1986 -x1985 -x1984
1311.67/1311.97 v -x1983 -x1982 -x1981 -x1980 -x1979 -x1978 -x1977 -x1976 -x1975 -x1974 -x1973 -x1972 -x1971 -x1970 -x1969 -x1968 -x1967 -x1966
1311.67/1311.97 v -x1965 -x1964 -x1963 -x1962 -x1961 -x1960 -x1959 -x1958 -x1957 -x1956 -x1955 -x1954 -x1953 -x1952 -x1951 -x1950 -x1949 -x1948
1311.67/1311.97 v -x1947 -x1946 -x1945 -x1944 -x1943 -x1942 -x1941 -x1940 -x1939 -x1938 -x1937 -x1936 -x1935 -x1934 -x1933 -x1932 -x1931 -x1930
1311.67/1311.97 v -x1929 -x1928 -x1927 -x1926 -x1925 -x1924 -x1923 -x1922 -x1921 -x1920 -x1919 -x1918 -x1917 -x1916 -x1915 -x1914 -x1913
1311.67/1311.97 v x1912 x1911 x1910 x1909 x1908 x1907 x1906 x1905 x1904 x1903 -x1902 -x1901 -x1900 x1899 x1898 x1897 x1896 x1895 x1894 x1893 x1892
1311.67/1311.97 v x1891 x1890 x1889 -x1888 -x1887 -x1886 -x1885 -x1884 x1883 x1882 x1881 -x1880 x1879 x1878 -x1877 -x1876 -x1875 -x1874 -x1873
1311.67/1311.97 v -x1872 x1871 x1870 x1869 -x1868 x1867 x1866 -x1865 -x1864 x1863 x1862 x1861 x1860 x1859 x1858 x1857 x1856 x1855 x1854 x1853
1311.67/1311.97 v -x1852 x1851 x1850 x1849 x1848 x1847 x1846 x1845 x1844 x1843 x1842 x1841 -x1840 -x1839 -x1838 -x1837 -x1836 -x1835 -x1834
1311.67/1311.97 v -x1833 x1832 -x1831 x1830 x1829 -x1828 -x1827 -x1826 -x1825 -x1824 -x1823 -x1822 -x1821 -x1820 -x1819 -x1818 x1817 x1816 -x1815
1311.67/1311.97 v -x1814 -x1813 -x1812 x1811 x1810 x1809 -x1808 x1807 x1806 -x1805 x1804 x1803 x1802 x1801 x1800 x1799 x1798 x1797 x1796 x1795
1311.67/1311.97 v x1794 x1793 x1792 x1791 x1790 x1789 x1788 x1787 x1786 x1785 x1784 x1783 x1782 x1781 -x1780 -x1779 -x1778 -x1777 -x1776 -x1775
1311.67/1311.97 v -x1774 -x1773 -x1772 -x1771 -x1770 -x1769 -x1768 -x1767 -x1766 -x1765 -x1764 -x1763 -x1762 -x1761 -x1760 -x1759 -x1758 -x1757
1311.67/1311.97 v -x1756 -x1755 -x1754 -x1753 -x1752 -x1751 -x1750 -x1749 -x1748 -x1747 -x1746 -x1745 -x1744 x1743 x1742 x1741 x1740 x1739
1311.67/1311.97 v x1738 x1737 x1736 x1735 x1734 x1733 -x1732 x1731 x1730 x1729 x1728 x1727 x1726 x1725 x1724 x1723 x1722 x1721 -x1720 -x1719 -x1718
1311.67/1311.97 v -x1717 -x1716 x1715 x1714 x1713 -x1712 x1711 x1710 -x1709 -x1708 x1707 x1706 x1705 x1704 x1703 x1702 x1701 x1700 x1699
1311.67/1311.97 v x1698 x1697 -x1696 x1695 x1694 x1693 x1692 x1691 x1690 x1689 x1688 x1687 x1686 x1685 -x1684 x1683 x1682 x1681 x1680 x1679 x1678
1311.67/1311.97 v x1677 x1676 x1675 x1674 x1673 x1672 x1671 x1670 x1669 x1668 x1667 x1666 x1665 x1664 x1663 x1662 x1661 x1660 x1659 x1658 x1657
1311.67/1311.97 v x1656 x1655 x1654 x1653 x1652 x1651 x1650 x1649 x1648 -x1647 -x1646 -x1645 -x1644 x1643 x1642 x1641 -x1640 x1639 x1638 -x1637
1311.67/1311.97 v -x1636 x1635 -x1634 x1633 x1632 -x1631 x1630 x1629 x1628 -x1627 x1626 -x1625 x1624 x1623 x1622 x1621 x1620 x1619 x1618 x1617
1311.67/1311.97 v x1616 x1615 x1614 x1613 x1612 x1611 x1610 x1609 x1608 x1607 x1606 x1605 x1604 x1603 x1602 x1601 -x1600 -x1599 -x1598 -x1597
1311.67/1311.97 v -x1596 x1595 x1594 x1593 -x1592 x1591 x1590 -x1589 -x1588 -x1587 -x1586 -x1585 -x1584 x1583 x1582 x1581 -x1580 x1579 x1578
1311.67/1311.97 v -x1577 -x1576 -x1575 -x1574 -x1573 -x1572 x1571 x1570 x1569 -x1568 x1567 x1566 -x1565 -x1564 -x1563 -x1562 -x1561 -x1560 x1559
1311.67/1311.97 v x1558 x1557 -x1556 x1555 x1554 -x1553 -x1552 -x1551 -x1550 -x1549 -x1548 x1547 x1546 x1545 -x1544 x1543 x1542 -x1541 x1540
1311.67/1311.97 v x1539 x1538 x1537 x1536 x1535 x1534 x1533 x1532 x1531 -x1530 -x1529 x1528 x1527 x1526 x1525 x1524 x1523 x1522 x1521 x1520 x1519
1311.67/1311.97 v x1518 x1517 x1516 x1515 x1514 x1513 x1512 x1511 x1510 x1509 x1508 x1507 x1506 x1505 x1504 x1503 x1502 x1501 x1500 x1499
1311.67/1311.97 v x1498 x1497 x1496 x1495 x1494 x1493 x1492 x1491 x1490 x1489 x1488 x1487 x1486 x1485 x1484 x1483 x1482 x1481 x1480 x1479 x1478
1311.67/1311.97 v x1477 x1476 x1475 x1474 x1473 x1472 x1471 x1470 x1469 x1468 x1467 x1466 x1465 x1464 x1463 x1462 x1461 x1460 x1459 x1458 x1457
1311.67/1311.97 v x1456 x1455 x1454 x1453 x1452 x1451 x1450 x1449 x1448 x1447 x1446 x1445 x1444 x1443 x1442 x1441 x1440 x1439 x1438 x1437 x1436
1311.67/1311.97 v x1435 x1434 x1433 x1432 x1431 x1430 x1429 x1428 x1427 x1426 x1425 x1424 x1423 x1422 x1421 x1420 x1419 x1418 x1417 x1416 x1415
1311.67/1311.97 v x1414 x1413 x1412 x1411 x1410 x1409 x1408 x1407 x1406 x1405 x1404 x1403 x1402 x1401 x1400 x1399 -x1398 -x1397 -x1396 -x1395
1311.67/1311.97 v -x1394 -x1393 -x1392 -x1391 -x1390 -x1389 -x1388 -x1387 -x1386 -x1385 -x1384 -x1383 -x1382 -x1381 -x1380 -x1379 -x1378 -x1377
1311.67/1311.97 v -x1376 -x1375 -x1374 -x1373 -x1372 -x1371 x1370 -x1369 x1368 -x1367 -x1366 x1365 -x1364 x1363 -x1362 -x1361 -x1360 x1359
1311.67/1311.97 v -x1358 -x1357 -x1356 x1355 x1354 x1353 x1352 x1351 x1350 x1349 x1348 x1347 x1346 x1345 -x1344 x1343 -x1342 x1341 -x1340 -x1339
1311.67/1311.97 v x1338 x1337 x1336 x1335 -x1334 -x1333 x1332 -x1331 -x1330 x1329 x1328 x1327 x1326 x1325 x1324 x1323 x1322 x1321 x1320 x1319
1311.67/1311.97 v x1318 x1317 -x1316 x1315 -x1314 x1313 x1312 x1311 -x1310 x1309 x1308 x1307 x1306 x1305 x1304 x1303 -x1302 x1301 -x1300 x1299
1311.67/1311.97 v x1298 x1297 -x1296 x1295 -x1294 x1293 -x1292 -x1291 x1290 x1289 x1288 -x1287 -x1286 -x1285 -x1284 x1283 x1282 x1281 -x1280 x1279
1311.67/1311.97 v x1278 x1277 x1276 -x1275 x1274 -x1273 x1272 x1271 x1270 x1269 x1268 x1267 x1266 x1265 x1264 -x1263 -x1262 x1261 x1260 x1259
1311.67/1311.97 v -x1258 -x1257 -x1256 -x1255 -x1254 -x1253 x1252 x1251 x1250 -x1249 -x1248 -x1247 -x1246 x1245 x1244 x1243 x1242 x1241 x1240
1311.67/1311.97 v x1239 -x1238 x1237 x1236 x1235 -x1234 -x1233 -x1232 x1231 x1230 x1229 -x1228 -x1227 x1226 x1225 x1224 -x1223 x1222 x1221 x1220
1311.67/1311.97 v -x1219 -x1218 -x1217 -x1216 -x1215 -x1214 -x1213 -x1212 -x1211 x1210 -x1209 x1208 x1207 x1206 -x1205 -x1204 -x1203 -x1202
1311.67/1311.97 v -x1201 -x1200 -x1199 -x1198 -x1197 -x1196 -x1195 -x1194 x1193 -x1192 -x1191 -x1190 -x1189 -x1188 -x1187 x1186 x1185 x1184 -x1183
1311.67/1311.97 v -x1182 -x1181 -x1180 x1179 x1178 x1177 x1176 x1175 -x1174 -x1173 -x1172 x1171 -x1170 -x1169 -x1168 -x1167 -x1166 -x1165
1311.67/1311.97 v -x1164 -x1163 -x1162 x1161 -x1160 -x1159 x1158 x1157 -x1156 x1155 x1154 x1153 -x1152 -x1151 -x1150 -x1149 -x1148 -x1147 -x1146
1311.67/1311.97 v -x1145 -x1144 -x1143 x1142 x1141 x1140 -x1139 -x1138 x1137 -x1136 x1135 x1134 x1133 -x1132 -x1131 -x1130 -x1129 -x1128 -x1127
1311.67/1311.97 v -x1126 -x1125 -x1124 x1123 -x1122 -x1121 -x1120 -x1119 x1118 -x1117 -x1116 -x1115 x1114 -x1113 -x1112 -x1111 -x1110 x1109
1311.67/1311.97 v -x1108 -x1107 -x1106 x1105 x1104 x1103 -x1102 -x1101 -x1100 x1099 -x1098 -x1097 x1096 -x1095 -x1094 -x1093 x1092 -x1091 -x1090
1311.67/1311.97 v -x1089 x1088 -x1087 -x1086 -x1085 -x1084 x1083 -x1082 -x1081 -x1080 x1079 -x1078 -x1077 -x1076 -x1075 x1074 -x1073 -x1072
1311.67/1311.97 v -x1071 x1070 -x1069 -x1068 -x1067 -x1066 -x1065 -x1064 x1063 x1062 x1061 -x1060 -x1059 x1058 x1057 x1056 x1055 x1054 x1053 x1052
1311.67/1311.97 v -x1051 -x1050 -x1049 -x1048 -x1047 -x1046 x1045 x1044 x1043 -x1042 -x1041 -x1040 -x1039 -x1038 -x1037 x1036 x1035 x1034 -x1033
1311.67/1311.97 v -x1032 -x1031 -x1030 -x1029 x1028 x1027 x1026 -x1025 -x1024 -x1023 -x1022 x1021 x1020 x1019 -x1018 -x1017 -x1016 x1015
1311.67/1311.97 v x1014 x1013 -x1012 -x1011 x1010 x1009 x1008 x1007 x1006 x1005 x1004 x1003 x1002 x1001 x1000 x999 x998 x997 x996 x995 -x994 x993
1311.67/1311.97 v x992 x991 -x990 -x989 -x988 -x987 -x986 -x985 -x984 -x983 -x982 -x981 x980 -x979 -x978 -x977 x976 -x975 x974 x973 x972 -x971
1311.67/1311.97 v -x970 -x969 -x968 -x967 -x966 -x965 -x964 x963 -x962 x961 -x960 x959 x958 x957 -x956 -x955 -x954 -x953 -x952 -x951 x950 -x949
1311.67/1311.97 v -x948 x947 -x946 x945 -x944 x943 -x942 x941 -x940 x939 x938 -x937 -x936 x935 -x934 x933 -x932 x931 -x930 x929 -x928 x927
1311.67/1311.97 v x926 -x925 -x924 x923 -x922 -x921 -x920 x919 -x918 -x917 -x916 -x915 -x914 x913 x912 x911 -x910 x909 x908 x907 x906 x905 x904
1311.67/1311.97 v x903 x902 -x901 x900 -x899 -x898 -x897 x896 x895 x894 x893 x892 x891 x890 x889 x888 x887 x886 x885 x884 x883 -x882 -x881 x880
1311.67/1311.97 v x879 x878 -x877 -x876 -x875 -x874 -x873 -x872 x871 x870 x869 -x868 -x867 -x866 -x865 x864 x863 x862 x861 x860 x859 x858 -x857
1311.67/1311.97 v x856 x855 x854 -x853 -x852 -x851 x850 x849 x848 -x847 -x846 x845 x844 x843 -x842 x841 x840 x839 -x838 -x837 -x836 -x835 x834
1311.67/1311.97 v x833 x832 x831 -x830 x829 x828 x827 -x826 -x825 -x824 -x823 -x822 -x821 -x820 -x819 -x818 -x817 x816 -x815 -x814 x813 -x812
1311.67/1311.97 v x811 x810 x809 -x808 -x807 -x806 -x805 -x804 -x803 -x802 -x801 -x800 x799 -x798 -x797 x796 -x795 -x794 -x793 x792 -x791 -x790
1311.67/1311.97 v x789 -x788 -x787 -x786 x785 -x784 -x783 -x782 x781 x780 -x779 -x778 x777 -x776 -x775 -x774 x773 -x772 -x771 x770 -x769 -x768
1311.67/1311.97 v -x767 x766 -x765 -x764 x763 -x762 -x761 x760 -x759 -x758 -x757 -x756 x755 x754 x753 x752 x751 x750 x749 x748 x747 x746 -x745
1311.67/1311.97 v -x744 -x743 -x742 -x741 -x740 x739 x738 x737 x736 x735 -x734 -x733 -x732 -x731 -x730 -x729 -x728 -x727 -x726 -x725 -x724 x723
1311.67/1311.97 v x722 x721 -x720 -x719 -x718 -x717 -x716 x715 x714 -x713 -x712 -x711 -x710 -x709 -x708 -x707 x706 -x705 -x704 x703 x702 -x701
1311.67/1311.97 v -x700 -x699 x698 x697 x696 x695 x694 -x693 -x692 x691 x690 -x689 -x688 x687 x686 -x685 -x684 x683 x682 -x681 -x680 x679 x678
1311.67/1311.97 v x677 x676 x675 x674 x673 -x672 -x671 -x670 -x669 -x668 -x667 -x666 x665 x664 x663 -x662 -x661 x660 x659 x658 -x657 -x656
1311.67/1311.97 v x655 x654 x653 -x652 -x651 x650 x649 x648 -x647 -x646 x645 x644 x643 -x642 -x641 x640 x639 x638 -x637 -x636 x635 x634 x633 -x632
1311.67/1311.97 v x631 -x630 -x629 -x628 -x627 -x626 -x625 x624 x623 x622 -x621 -x620 -x619 -x618 -x617 -x616 -x615 x614 x613 x612 -x611 -x610
1311.67/1311.97 v -x609 -x608 -x607 -x606 x605 x604 x603 -x602 -x601 -x600 -x599 -x598 x597 x596 x595 -x594 -x593 -x592 -x591 x590 x589 x588
1311.67/1311.97 v -x587 -x586 -x585 x584 x583 x582 -x581 x580 x579 x578 x577 x576 x575 x574 x573 x572 x571 x570 -x569 x568 -x567 x566 -x565 x564
1311.67/1311.97 v -x563 x562 x561 -x560 -x559 x558 -x557 x556 -x555 x554 -x553 x552 -x551 x550 x549 -x548 -x547 x546 x545 x544 x543 x542 x541
1311.67/1311.97 v x540 x539 -x538 -x537 x536 -x535 x534 x533 x532 x531 x530 x529 x528 x527 x526 -x525 x524 x523 x522 x521 x520 x519 x518 x517
1311.67/1311.97 v x516 x515 x514 x513 x512 x511 x510 -x509 x508 -x507 -x506 x505 x504 x503 x502 x501 x500 x499 x498 x497 x496 x495 x494 x493
1311.67/1311.97 v x492 x491 x490 x489 x488 x487 x486 x485 x484 -x483 x482 -x481 x480 x479 x478 x477 x476 -x475 -x474 x473 x472 x471 x470 x469 x468
1311.67/1311.97 v x467 x466 x465 -x464 -x463 x462 x461 -x460 -x459 x458 -x457 x456 x455 x454 x453 x452 x451 x450 x449 x448 x447 x446 x445 x444
1311.67/1311.97 v x443 x442 x441 -x440 x439 -x438 x437 x436 x435 x434 x433 x432 x431 x430 x429 x428 x427 -x426 x425 -x424 -x423 -x422 x421
1311.67/1311.97 v -x420 -x419 -x418 x417 -x416 -x415 x414 -x413 -x412 x411 x410 x409 x408 -x407 x406 -x405 x404 -x403 x402 -x401 x400 x399 x398
1311.67/1311.97 v x397 -x396 x395 x394 x393 -x392 x391 x390 x389 x388 x387 x386 x385 x384 x383 x382 x381 x380 x379 x378 x377 x376 x375 x374 x373
1311.67/1311.97 v x372 x371 x370 x369 x368 x367 x366 x365 x364 x363 x362 x361 x360 x359 x358 x357 x356 x355 x354 x353 x352 x351 x350 x349 x348
1311.67/1311.97 v x347 x346 x345 x344 x343 -x342 -x341 -x340 x339 x338 x337 -x336 -x335 -x334 x333 x332 -x331 x330 x329 x328 -x327 -x326 -x325
1311.67/1311.97 v -x324 -x323 x322 -x321 x320 -x319 x318 x317 x316 -x315 -x314 -x313 x312 -x311 -x310 -x309 x308 x307 x306 x305 x304 x303 x302
1311.67/1311.97 v x301 x300 x299 -x298 x297 x296 x295 -x294 -x293 x292 -x291 x290 -x289 x288 x287 x286 -x285 x284 -x283 x282 x281 x280 x279
1311.67/1311.97 v x278 x277 x276 x275 x274 x273 x272 x271 -x270 x269 x268 x267 -x266 -x265 -x264 x263 -x262 -x261 x260 -x259 x258 x257 x256 -x255
1311.67/1311.97 v -x254 x253 -x252 -x251 x250 -x249 x248 x247 x246 -x245 -x244 x243 -x242 x241 -x240 x239 x238 x237 -x236 x235 -x234 x233 -x232
1311.67/1311.97 v -x231 x230 x229 x228 -x227 -x226 x225 x224 x223 -x222 -x221 x220 -x219 x218 x217 x216 -x215 -x214 x213 x212 x211 x210 x209
1311.67/1311.97 v x208 x207 x206 x205 x204 x203 x202 x201 x200 x199 x198 x197 x196 x195 x194 x193 -x192 x191 x190 x189 -x188 x187 x186 x185 x184
1311.67/1311.97 v x183 x182 x181 x180 x179 x178 x177 x176 x175 x174 -x173 x172 x171 x170 -x169 -x168 -x167 x166 -x165 x164 -x163 x162 x161
1311.67/1311.97 v x160 -x159 x158 -x157 -x156 x155 -x154 x153 x152 x151 -x150 x149 -x148 x147 x146 x145 x144 x143 x142 x141 x140 x139 x138 x137
1311.67/1311.97 v x136 x135 x134 x133 x132 x131 x130 x129 x128 -x127 x126 x125 x124 -x123 -x122 x121 -x120 x119 -x118 x117 x116 x115 -x114 x113
1311.67/1311.97 v -x112 x111 x110 x109 x108 x107 x106 x105 x104 x103 x102 x101 x100 x99 x98 x97 x96 x95 x94 x93 x92 x91 x90 x89 -x88 x87 x86
1311.67/1311.97 v x85 x84 -x83 -x82 x81 x80 x79 x78 x77 x76 x75 x74 x73 x72 x71 x70 x69 x68 x67 x66 -x65 x64 x63 x62 x61 -x60 -x59 x58 x57 x56
1311.67/1311.97 v x55 x54 x53 x52 x51 x50 x49 x48 x47 x46 x45 x44 x43 x42 x41 x40 x39 x38 x37 x36 x35 x34 x33 x32 x31 x30 x29 x28 x27 x26 x25 x24
1311.67/1311.97 v x23 x22 -x21 x20 x19 x18 x17 x16 x15 x14 x13 x12 x11 x10 x9 x8 x7 x6 x5 x4 x3 x2 -x1
1311.67/1311.97 c SCIP Status : problem is solved [optimal solution found]
1311.67/1311.97 c Total Time : 1311.96
1311.67/1311.97 c solving : 1311.96
1311.67/1311.97 c presolving : 1.12 (included in solving)
1311.67/1311.97 c reading : 0.02 (included in solving)
1311.67/1311.97 c copying : 0.41 (16 #copies) (minimal 0.02, maximal 0.03, average 0.03)
1311.67/1311.97 c Original Problem :
1311.67/1311.97 c Problem name : HOME/instance-3717537-1338196039.wbo
1311.67/1311.97 c Variables : 4954 (4954 binary, 0 integer, 0 implicit integer, 0 continuous)
1311.67/1311.97 c Constraints : 3932 initial, 3932 maximal
1311.67/1311.97 c Objective sense : minimize
1311.67/1311.97 c Presolved Problem :
1311.67/1311.97 c Problem name : t_HOME/instance-3717537-1338196039.wbo
1311.67/1311.97 c Variables : 2644 (2599 binary, 0 integer, 45 implicit integer, 0 continuous)
1311.67/1311.97 c Constraints : 2805 initial, 2805 maximal
1311.67/1311.97 c Presolvers : ExecTime SetupTime FixedVars AggrVars ChgTypes ChgBounds AddHoles DelCons AddCons ChgSides ChgCoefs
1311.67/1311.97 c domcol : 0.00 0.00 0 0 0 0 0 0 0 0 0
1311.67/1311.97 c trivial : 0.02 0.00 2638 0 0 0 0 0 0 0 0
1311.67/1311.97 c dualfix : 0.01 0.00 111 0 0 0 0 0 0 0 0
1311.67/1311.97 c boundshift : 0.00 0.00 0 0 0 0 0 0 0 0 0
1311.67/1311.97 c inttobinary : 0.00 0.00 0 0 0 0 0 0 0 0 0
1311.67/1311.97 c convertinttobin : 0.00 0.00 0 0 0 0 0 0 0 0 0
1311.67/1311.97 c gateextraction : 0.01 0.00 0 0 0 0 0 2514 826 0 0
1311.67/1311.97 c implics : 0.01 0.00 0 530 0 0 0 0 0 0 0
1311.67/1311.97 c components : 0.00 0.00 0 0 0 0 0 0 0 0 0
1311.67/1311.97 c pseudoobj : 0.00 0.00 0 0 0 26 0 0 0 0 0
1311.67/1311.97 c probing : 0.03 0.00 0 0 0 0 0 0 0 0 0
1311.67/1311.97 c varbound : 0.00 0.00 0 0 0 26 0 113 0 0 0
1311.67/1311.97 c knapsack : 0.29 0.00 0 0 0 0 0 301 1338 1466 3729
1311.67/1311.97 c setppc : 0.05 0.00 72 9 0 0 0 1502 0 0 0
1311.67/1311.97 c and : 0.20 0.00 211 22 0 0 0 58 39 0 19
1311.67/1311.97 c linear : 0.17 0.01 30 12 0 1341 0 1422 0 928 1377
1311.67/1311.97 c indicator : 0.00 0.00 11 0 0 0 0 37 0 0 0
1311.67/1311.97 c logicor : 0.22 0.00 0 0 0 1 0 244 0 0 0
1311.67/1311.97 c bounddisjunction : 0.02 0.00 0 0 0 1 0 50 0 0 0
1311.67/1311.97 c root node : - - 2664 - - 2666 - - - - -
1311.67/1311.97 c Constraints : Number MaxNumber #Separate #Propagate #EnfoLP #EnfoPS #Check #ResProp Cutoffs DomReds Cuts Conss Children
1311.67/1311.97 c integral : 0 0 0 0 15342 0 18124 0 0 0 0 0 30684
1311.67/1311.97 c varbound : 45 45 2 6362 0 0 0 0 0 164 0 0 0
1311.67/1311.97 c knapsack : 1059 1059 11 178205 0 0 18119 9618 314 21983 2205 0 0
1311.67/1311.97 c setppc : 314 314 11 177891 0 0 738 3577 30 16712 1 0 0
1311.67/1311.97 c and : 576 576 17851 177861 0 0 474 4099 17 9389 8208 0 0
1311.67/1311.97 c linear : 81 81 12 177844 0 0 297 7884 390 14642 35 0 0
1311.67/1311.97 c indicator : 45 45 0 173007 0 0 280 5211 0 11292 0 0 0
1311.67/1311.97 c logicor : 383+ 386 11 34150 0 0 280 844 41 4394 25 0 0
1311.67/1311.97 c bounddisjunction : 302 302 0 8727 0 0 0 178 5 521 0 0 0
1311.67/1311.97 c countsols : 0 0 0 0 0 0 176 0 0 0 0 0 0
1311.67/1311.97 c Constraint Timings : TotalTime SetupTime Separate Propagate EnfoLP EnfoPS Check ResProp
1311.67/1311.97 c integral : 4.17 0.00 0.00 0.00 1.34 0.00 2.83 0.00
1311.67/1311.97 c varbound : 0.01 0.00 0.00 0.01 0.00 0.00 0.00 0.00
1311.67/1311.97 c knapsack : 7.42 0.00 0.06 6.53 0.00 0.00 0.82 0.01
1311.67/1311.97 c setppc : 4.36 0.00 0.00 4.28 0.00 0.00 0.08 0.00
1311.67/1311.97 c and : 2.88 0.00 1.34 1.52 0.00 0.00 0.02 0.00
1311.67/1311.97 c linear : 5.56 0.01 0.04 5.32 0.00 0.00 0.18 0.02
1311.67/1311.97 c indicator : 13.78 0.00 0.00 13.54 0.00 0.00 0.23 0.00
1311.67/1311.97 c logicor : 0.26 0.00 0.00 0.23 0.00 0.00 0.02 0.00
1311.67/1311.97 c bounddisjunction : 0.07 0.00 0.00 0.07 0.00 0.00 0.00 0.00
1311.67/1311.97 c countsols : 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
1311.67/1311.97 c Propagators : #Propagate #ResProp Cutoffs DomReds
1311.67/1311.97 c rootredcost : 23 0 0 1178
1311.67/1311.97 c pseudoobj : 193498 1680 55 17552
1311.67/1311.97 c vbounds : 3229 2005 6 74306
1311.67/1311.97 c redcost : 18097 0 0 64633
1311.67/1311.97 c probing : 0 0 0 0
1311.67/1311.97 c Propagator Timings : TotalTime SetupTime Presolve Propagate ResProp
1311.67/1311.97 c rootredcost : 0.14 0.00 0.00 0.14 0.00
1311.67/1311.97 c pseudoobj : 1.56 0.00 0.00 1.36 0.19
1311.67/1311.97 c vbounds : 1.21 0.00 0.00 1.20 0.00
1311.67/1311.97 c redcost : 2.45 0.00 0.00 2.45 0.00
1311.67/1311.97 c probing : 0.03 0.00 0.03 0.00 0.00
1311.67/1311.97 c Conflict Analysis : Time Calls Success Conflicts Literals Reconvs ReconvLits LP Iters
1311.67/1311.97 c propagation : 0.26 858 858 3916 35.0 296 11.4 -
1311.67/1311.97 c infeasible LP : 0.47 501 501 573 5.3 18 7.9 0
1311.67/1311.97 c bound exceed. LP : 0.00 0 0 0 0.0 0 0.0 0
1311.67/1311.97 c strong branching : 0.00 0 0 0 0.0 0 0.0 0
1311.67/1311.97 c pseudo solution : 0.00 0 0 0 0.0 0 0.0 -
1311.67/1311.97 c applied globally : - - - 3488 24.9 - - -
1311.67/1311.97 c applied locally : - - - 0 0.0 - - -
1311.67/1311.97 c Separators : ExecTime SetupTime Calls Cutoffs DomReds Cuts Conss
1311.67/1311.97 c cut pool : 0.00 0 - - 0 - (maximal pool size: 968)
1311.67/1311.97 c closecuts : 0.00 0.00 0 0 0 0 0
1311.67/1311.97 c impliedbounds : 0.01 0.00 11 0 0 2176 0
1311.67/1311.97 c intobj : 0.00 0.00 0 0 0 0 0
1311.67/1311.97 c gomory : 2.13 0.00 11 0 0 322 0
1311.67/1311.97 c cgmip : 0.00 0.00 0 0 0 0 0
1311.67/1311.97 c strongcg : 2.24 0.00 11 0 0 1813 0
1311.67/1311.97 c cmir : 0.68 0.00 11 0 0 560 0
1311.67/1311.97 c flowcover : 1.64 0.00 11 0 0 2204 0
1311.67/1311.97 c clique : 0.02 0.00 11 0 0 42 0
1311.67/1311.97 c zerohalf : 0.00 0.00 0 0 0 0 0
1311.67/1311.97 c mcf : 0.02 0.00 3 0 0 0 0
1311.67/1311.97 c oddcycle : 0.00 0.00 0 0 0 0 0
1311.67/1311.97 c rapidlearning : 3.32 0.00 1 0 0 0 373
1311.67/1311.97 c Pricers : ExecTime SetupTime Calls Vars
1311.67/1311.97 c problem variables: 0.00 - 0 0
1311.67/1311.97 c Branching Rules : ExecTime SetupTime Calls Cutoffs DomReds Cuts Conss Children
1311.67/1311.97 c inference : 1.31 0.00 15342 0 0 0 0 30684
1311.67/1311.97 c relpscost : 0.00 0.00 0 0 0 0 0 0
1311.67/1311.97 c pscost : 0.00 0.00 0 0 0 0 0 0
1311.67/1311.97 c mostinf : 0.00 0.00 0 0 0 0 0 0
1311.67/1311.97 c leastinf : 0.00 0.00 0 0 0 0 0 0
1311.67/1311.97 c fullstrong : 0.00 0.00 0 0 0 0 0 0
1311.67/1311.97 c allfullstrong : 0.00 0.00 0 0 0 0 0 0
1311.67/1311.97 c random : 0.00 0.00 0 0 0 0 0 0
1311.67/1311.97 c Primal Heuristics : ExecTime SetupTime Calls Found
1311.67/1311.97 c LP solutions : 0.00 - - 0
1311.67/1311.97 c pseudo solutions : 0.00 - - 0
1311.67/1311.97 c oneopt : 0.06 0.00 23 0
1311.67/1311.97 c indoneopt : 2.38 0.00 37 12
1311.67/1311.97 c crossover : 5.32 0.00 11 7
1311.67/1311.97 c smallcard : 0.00 0.00 0 0
1311.67/1311.97 c trivial : 0.01 0.00 2 0
1311.67/1311.97 c shiftandpropagate: 0.00 0.00 0 0
1311.67/1311.97 c simplerounding : 0.12 0.00 17832 0
1311.67/1311.97 c zirounding : 0.94 0.00 1000 0
1311.67/1311.97 c rounding : 0.55 0.00 1855 0
1311.67/1311.97 c shifting : 5.41 0.00 1524 1
1311.67/1311.97 c intshifting : 0.00 0.00 0 0
1311.67/1311.97 c twoopt : 0.00 0.00 0 0
1311.67/1311.97 c indtwoopt : 0.00 0.00 0 0
1311.67/1311.97 c fixandinfer : 0.00 0.00 0 0
1311.67/1311.97 c feaspump : 0.00 0.00 0 0
1311.67/1311.97 c clique : 0.00 0.00 0 0
1311.67/1311.97 c indrounding : 30.85 0.00 15338 0
1311.67/1311.97 c coefdiving : 54.78 0.00 20 0
1311.67/1311.97 c indcoefdiving : 0.00 0.00 0 0
1311.67/1311.97 c pscostdiving : 70.10 0.00 22 0
1311.67/1311.97 c nlpdiving : 0.00 0.00 0 0
1311.67/1311.97 c fracdiving : 62.59 0.00 22 0
1311.67/1311.97 c veclendiving : 220.96 0.00 57 7
1311.67/1311.97 c intdiving : 0.00 0.00 0 0
1311.67/1311.97 c actconsdiving : 0.00 0.00 0 0
1311.67/1311.97 c objpscostdiving : 38.27 0.00 4 0
1311.67/1311.97 c rootsoldiving : 9.54 0.00 6 0
1311.67/1311.97 c linesearchdiving : 72.93 0.00 27 0
1311.67/1311.97 c guideddiving : 260.34 0.00 98 19
1311.67/1311.97 c octane : 0.00 0.00 0 0
1311.67/1311.97 c rens : 0.11 0.00 1 0
1311.67/1311.97 c rins : 0.00 0.00 0 0
1311.67/1311.97 c localbranching : 0.00 0.00 0 0
1311.67/1311.97 c mutation : 0.00 0.00 0 0
1311.67/1311.97 c dins : 0.00 0.00 0 0
1311.67/1311.97 c vbounds : 0.00 0.00 0 0
1311.67/1311.97 c undercover : 0.00 0.00 0 0
1311.67/1311.97 c subnlp : 0.01 0.00 0 0
1311.67/1311.97 c trysol : 0.09 0.00 22 17
1311.67/1311.97 c LP : Time Calls Iterations Iter/call Iter/sec Time-0-It Calls-0-It
1311.67/1311.97 c primal LP : 0.04 3 90 90.00 2218.06 0.01 2
1311.67/1311.97 c dual LP : 420.42 18149 1956222 109.37 4653.02 0.64 263
1311.67/1311.97 c lex dual LP : 0.00 0 0 0.00 -
1311.67/1311.97 c barrier LP : 0.00 0 0 0.00 - 0.00 0
1311.67/1311.97 c diving/probing LP: 602.49 103286 1644681 15.92 2729.82
1311.67/1311.97 c strong branching : 0.00 0 0 0.00 -
1311.67/1311.97 c (at root node) : - 0 0 0.00 -
1311.67/1311.97 c conflict analysis: 0.00 0 0 0.00 -
1311.67/1311.97 c B&B Tree :
1311.67/1311.97 c number of runs : 3
1311.67/1311.97 c nodes : 35
1311.67/1311.97 c nodes (total) : 15433
1311.67/1311.97 c nodes left : 0
1311.67/1311.97 c max depth : 26
1311.67/1311.97 c max depth (total): 118
1311.67/1311.97 c backtracks : 3 (8.6%)
1311.67/1311.97 c delayed cutoffs : 0
1311.67/1311.97 c repropagations : 0 (0 domain reductions, 0 cutoffs)
1311.67/1311.97 c avg switch length: 2.06
1311.67/1311.97 c switching time : 4.07
1311.67/1311.97 c Solution :
1311.67/1311.97 c Solutions found : 63 (36 improvements)
1311.67/1311.97 c First Solution : +6.64000000000000e+03 (in run 1, after 1 nodes, 0.74 seconds, depth 0, found by <shifting>)
1311.67/1311.97 c Primal Bound : +4.00000000000000e+00 (in run 3, after 35 nodes, 1311.95 seconds, depth 428, found by <veclendiving>)
1311.67/1311.97 c Dual Bound : +4.00000000000000e+00
1311.67/1311.97 c Gap : 0.00 %
1311.67/1311.97 c Root Dual Bound : +4.00000000000000e+00
1311.67/1311.97 c Root Iterations : 28515
1311.77/1312.01 c Time complete: 1311.78.