0.00/0.00 c SCIP version 2.1.1.4 [precision: 8 byte] [memory: block] [mode: optimized] [LP solver: SoPlex 1.6.0.3] [GitHash: a3bf3a4-dirty]
0.00/0.00 c Copyright (c) 2002-2012 Konrad-Zuse-Zentrum fuer Informationstechnik Berlin (ZIB)
0.00/0.00 c
0.00/0.00 c user parameter file <scip.set> not found - using default parameters
0.00/0.00 c reading problem <HOME/instance-3717393-1338202080.wbo>
0.00/0.05 c original problem has 14351 variables (14351 bin, 0 int, 0 impl, 0 cont) and 10413 constraints
0.00/0.05 c problem read in 0.05
0.19/0.21 o 524425
0.19/0.21 c feasible solution found by trivial heuristic, objective value 5.244250e+05
0.19/0.21 c presolving:
0.19/0.25 c (round 1) 0 del vars, 1 del conss, 0 add conss, 0 chg bounds, 336 chg sides, 672 chg coeffs, 0 upgd conss, 0 impls, 0 clqs
0.19/0.27 c (round 2) 0 del vars, 1 del conss, 0 add conss, 10412 chg bounds, 336 chg sides, 672 chg coeffs, 0 upgd conss, 0 impls, 0 clqs
0.29/0.36 c (0.4s) probing: 51/14351 (0.4%) - 0 fixings, 0 aggregations, 0 implications, 0 bound changes
0.29/0.36 c (0.4s) probing aborted: 50/50 successive totally useless probings
0.29/0.37 c presolving (3 rounds):
0.29/0.37 c 0 deleted vars, 1 deleted constraints, 0 added constraints, 10412 tightened bounds, 0 added holes, 336 changed sides, 672 changed coefficients
0.29/0.37 c 10412 implications, 0 cliques
0.29/0.37 c presolved problem has 24763 variables (14351 bin, 0 int, 10412 impl, 0 cont) and 20824 constraints
0.29/0.37 c 10412 constraints of type <linear>
0.29/0.37 c 10412 constraints of type <indicator>
0.29/0.37 c transformed objective value is always integral (scale: 1)
0.29/0.37 c Presolving Time: 0.30
0.29/0.37 c - non default parameters ----------------------------------------------------------------------
0.29/0.37 c # SCIP version 2.1.1.4
0.29/0.37 c
0.29/0.37 c # maximal time in seconds to run
0.29/0.37 c # [type: real, range: [0,1.79769313486232e+308], default: 1e+20]
0.29/0.37 c limits/time = 1797
0.29/0.37 c
0.29/0.37 c # maximal memory usage in MB; reported memory usage is lower than real memory usage!
0.29/0.37 c # [type: real, range: [0,1.79769313486232e+308], default: 1e+20]
0.29/0.37 c limits/memory = 13950
0.29/0.37 c
0.29/0.37 c # default clock type (1: CPU user seconds, 2: wall clock time)
0.29/0.37 c # [type: int, range: [1,2], default: 1]
0.29/0.37 c timing/clocktype = 2
0.29/0.37 c
0.29/0.37 c # belongs reading time to solving time?
0.29/0.37 c # [type: bool, range: {TRUE,FALSE}, default: FALSE]
0.29/0.37 c timing/reading = TRUE
0.29/0.37 c
0.29/0.37 c # force restart if we have a max FS instance and gap is 1?
0.29/0.37 c # [type: bool, range: {TRUE,FALSE}, default: FALSE]
0.29/0.37 c constraints/indicator/forcerestart = TRUE
0.29/0.37 c
0.29/0.37 c # priority of branching rule <inference>
0.29/0.37 c # [type: int, range: [-536870912,536870911], default: 1000]
0.29/0.37 c branching/inference/priority = 1000000
0.29/0.37 c
0.29/0.37 c # frequency offset for calling primal heuristic <coefdiving>
0.29/0.37 c # [type: int, range: [0,2147483647], default: 1]
0.29/0.37 c heuristics/coefdiving/freqofs = 0
0.29/0.37 c
0.29/0.37 c # frequency for calling primal heuristic <shiftandpropagate> (-1: never, 0: only at depth freqofs)
0.29/0.37 c # [type: int, range: [-1,2147483647], default: 0]
0.29/0.37 c heuristics/shiftandpropagate/freq = -1
0.29/0.37 c
0.29/0.37 c # frequency for calling primal heuristic <undercover> (-1: never, 0: only at depth freqofs)
0.29/0.37 c # [type: int, range: [-1,2147483647], default: 0]
0.29/0.37 c heuristics/undercover/freq = -1
0.29/0.37 c
0.29/0.37 c # frequency for calling separator <rapidlearning> (-1: never, 0: only in root node)
0.29/0.37 c # [type: int, range: [-1,2147483647], default: -1]
0.29/0.37 c separating/rapidlearning/freq = 0
0.29/0.37 c
0.29/0.37 c # frequency for calling primal heuristic <indrounding> (-1: never, 0: only at depth freqofs)
0.29/0.37 c # [type: int, range: [-1,2147483647], default: -1]
0.29/0.37 c heuristics/indrounding/freq = 1
0.29/0.37 c
0.29/0.37 c -----------------------------------------------------------------------------------------------
0.29/0.37 c start solving
0.39/0.42 c
0.39/0.45 o 22317
0.39/0.45 c time | node | left |LP iter|LP it/n| mem |mdpt |frac |vars |cons |cols |rows |cuts |confs|strbr| dualbound | primalbound | gap
0.39/0.45 c 6 0.5s| 1 | 0 | 0 | - | 62M| 0 | - | 24k| 20k| 0 | 0 | 0 | 0 | 0 | -- | 2.231700e+04 | Inf
7.09/7.14 o 3492
7.09/7.14 c 6 7.1s| 1 | 0 | 0 | - | 63M| 0 | - | 24k| 20k| 0 | 0 | 0 | 0 | 0 | -- | 3.492000e+03 | Inf
7.69/7.72 c 7.7s| 1 | 0 | 3910 | - | 82M| 0 |1355 | 24k| 20k| 24k| 20k| 0 | 0 | 0 | 0.000000e+00 | 3.492000e+03 | Inf
8.29/8.33 o 2850
8.29/8.33 c 6 8.3s| 1 | 0 | 3910 | - | 83M| 0 |1355 | 24k| 20k| 24k| 20k| 0 | 0 | 0 | 0.000000e+00 | 2.850000e+03 | Inf
9.69/9.76 c 9.8s| 1 | 0 | 5069 | - | 83M| 0 |1613 | 24k| 20k| 24k| 20k| 73 | 0 | 0 | 0.000000e+00 | 2.850000e+03 | Inf
9.79/9.89 o 2842
9.79/9.89 c 6 9.9s| 1 | 0 | 5069 | - | 84M| 0 |1613 | 24k| 20k| 24k| 20k| 73 | 0 | 0 | 0.000000e+00 | 2.842000e+03 | Inf
11.59/11.66 c 11.7s| 1 | 0 | 6342 | - | 84M| 0 |1702 | 24k| 20k| 24k| 21k| 193 | 0 | 0 | 0.000000e+00 | 2.842000e+03 | Inf
13.69/13.79 c 13.8s| 1 | 0 | 7990 | - | 84M| 0 |1802 | 24k| 20k| 24k| 21k| 308 | 0 | 0 | 0.000000e+00 | 2.842000e+03 | Inf
17.68/17.78 c 17.8s| 1 | 0 | 9228 | - | 85M| 0 |1794 | 24k| 20k| 24k| 21k| 462 | 0 | 0 | 0.000000e+00 | 2.842000e+03 | Inf
22.59/22.62 c 22.6s| 1 | 0 | 12586 | - | 85M| 0 |1874 | 24k| 20k| 24k| 21k| 610 | 0 | 0 | 0.000000e+00 | 2.842000e+03 | Inf
25.18/25.22 c 25.2s| 1 | 0 | 13865 | - | 86M| 0 |1981 | 24k| 20k| 24k| 21k| 729 | 0 | 0 | 0.000000e+00 | 2.842000e+03 | Inf
52.17/52.25 c 52.3s| 1 | 2 | 36833 | - | 95M| 0 |1981 | 24k| 20k| 24k| 21k| 729 | 41 | 0 | 0.000000e+00 | 2.842000e+03 | Inf
128.05/128.13 o 1580
128.05/128.13 c g 128s| 14 | 15 |128836 |8843.9 | 112M| 7 | - | 24k| 20k| 24k| 21k| 729 | 141 | 0 | 0.000000e+00 | 1.580000e+03 | Inf
128.65/128.78 o 1357
128.65/128.79 c 6 129s| 14 | 15 |129007 |8857.1 | 106M| 7 |1928 | 24k| 20k| 24k| 21k| 729 | 143 | 0 | 0.000000e+00 | 1.357000e+03 | Inf
198.54/198.65 c 199s| 100 | 101 |217025 |2052.1 | 138M| 45 |1846 | 24k| 20k| 24k| 21k| 729 | 153 | 0 | 0.000000e+00 | 1.357000e+03 | Inf
262.63/262.79 c time | node | left |LP iter|LP it/n| mem |mdpt |frac |vars |cons |cols |rows |cuts |confs|strbr| dualbound | primalbound | gap
262.63/262.79 c 263s| 200 | 201 |295358 |1414.5 | 139M| 49 |1836 | 24k| 20k| 24k| 21k| 729 | 167 | 0 | 0.000000e+00 | 1.357000e+03 | Inf
288.93/289.08 o 1080
288.93/289.08 c C 289s| 214 | 215 |325119 |1461.3 | 140M| 52 |1871 | 24k| 20k| 24k| 21k| 729 | 172 | 0 | 0.000000e+00 | 1.080000e+03 | Inf
289.33/289.43 o 816
289.33/289.43 c 6 289s| 214 | 215 |325119 |1461.3 | 140M| 52 |1871 | 24k| 20k| 24k| 21k| 729 | 172 | 0 | 0.000000e+00 | 8.160000e+02 | Inf
289.43/289.58 o 753
289.43/289.58 c 6 290s| 215 | 214 |325119 |1454.5 | 140M| 52 | - | 24k| 20k| 0 | 0 | 729 | 172 | 0 | 0.000000e+00 | 7.530000e+02 | Inf
331.12/331.20 c 331s| 300 | 301 |379439 |1222.7 | 141M| 81 |1788 | 24k| 21k| 24k| 21k| 729 | 218 | 0 | 0.000000e+00 | 7.530000e+02 | Inf
364.31/364.42 c 364s| 400 | 401 |461327 |1121.5 | 143M| 118 | 820 | 24k| 21k| 24k| 21k| 729 | 229 | 0 | 0.000000e+00 | 7.530000e+02 | Inf
378.52/378.68 c 379s| 500 | 462 |482625 | 939.4 | 145M| 163 | 166 | 24k| 21k| 24k| 21k| 729 | 252 | 0 | 0.000000e+00 | 7.530000e+02 | Inf
408.90/409.08 c 409s| 600 | 474 |512984 | 833.3 | 146M| 163 | - | 24k| 21k| 24k| 21k| 729 | 259 | 0 | 0.000000e+00 | 7.530000e+02 | Inf
428.01/428.12 c 428s| 700 | 480 |527629 | 735.0 | 146M| 163 | - | 24k| 21k| 24k| 21k| 729 | 285 | 0 | 0.000000e+00 | 7.530000e+02 | Inf
450.10/450.24 c 450s| 800 | 517 |552418 | 674.0 | 147M| 163 |1920 | 24k| 21k| 24k| 21k| 729 | 374 | 0 | 0.000000e+00 | 7.530000e+02 | Inf
486.79/486.93 c 487s| 900 | 579 |592982 | 644.2 | 148M| 166 | 58 | 24k| 21k| 24k| 21k| 729 | 419 | 0 | 0.000000e+00 | 7.530000e+02 | Inf
488.10/488.24 o 752
488.10/488.24 c * 488s| 929 | 556 |593081 | 624.2 | 147M| 195 | - | 24k| 21k| 24k| 21k| 729 | 419 | 0 | 0.000000e+00 | 7.520000e+02 | Inf
488.30/488.42 o 320
488.30/488.42 c 6 488s| 929 | 355 |593081 | 624.2 | 145M| 195 | - | 24k| 21k| 24k| 21k| 729 | 419 | 0 | 0.000000e+00 | 3.200000e+02 | Inf
488.40/488.59 o 271
488.40/488.59 c 6 489s| 930 | 349 |593081 | 623.5 | 143M| 195 | - | 24k| 21k| 0 | 0 | 729 | 419 | 0 | 0.000000e+00 | 2.710000e+02 | Inf
497.29/497.40 c 497s| 1000 | 415 |612843 | 599.6 | 144M| 195 | - | 24k| 21k| 0 | 0 | 729 | 422 | 0 | 0.000000e+00 | 2.710000e+02 | Inf
499.59/499.79 o 270
499.59/499.79 c time | node | left |LP iter|LP it/n| mem |mdpt |frac |vars |cons |cols |rows |cuts |confs|strbr| dualbound | primalbound | gap
499.59/499.79 c * 500s| 1051 | 395 |613087 | 570.7 | 144M| 195 | - | 24k| 21k| 24k| 21k| 729 | 425 | 0 | 0.000000e+00 | 2.700000e+02 | Inf
499.79/499.90 o 106
499.79/499.90 c 6 500s| 1051 | 344 |613087 | 570.7 | 144M| 195 | - | 24k| 21k| 24k| 21k| 729 | 425 | 0 | 0.000000e+00 | 1.060000e+02 | Inf
509.39/509.55 c 510s| 1100 | 390 |636470 | 566.5 | 144M| 195 | 443 | 24k| 21k| 24k| 21k| 729 | 444 | 0 | 0.000000e+00 | 1.060000e+02 | Inf
514.79/514.99 c 515s| 1200 | 422 |640106 | 522.3 | 145M| 195 | - | 24k| 21k| 24k| 21k| 729 | 614 | 0 | 0.000000e+00 | 1.060000e+02 | Inf
519.89/520.01 o 59
519.89/520.01 c C 520s| 1251 | 332 |645819 | 505.6 | 145M| 195 | - | 24k| 21k| 24k| 21k| 729 | 620 | 0 | 0.000000e+00 | 5.900000e+01 | Inf
525.38/525.52 c 526s| 1300 | 346 |656523 | 494.7 | 143M| 195 | 138 | 24k| 17k| 24k| 21k| 729 | 647 | 0 | 0.000000e+00 | 5.900000e+01 | Inf
527.49/527.60 o 58
527.49/527.60 c * 528s| 1352 | 330 |656787 | 475.9 | 143M| 195 | - | 24k| 17k| 24k| 21k| 729 | 650 | 0 | 0.000000e+00 | 5.800000e+01 | Inf
527.49/527.68 o 31
527.49/527.68 c 6 528s| 1352 | 293 |656787 | 475.9 | 142M| 195 | - | 24k| 17k| 24k| 21k| 729 | 650 | 0 | 0.000000e+00 | 3.100000e+01 | Inf
535.69/535.83 c 536s| 1400 | 336 |673755 | 471.7 | 141M| 195 | 930 | 24k| 14k| 24k| 21k| 729 | 677 | 0 | 0.000000e+00 | 3.100000e+01 | Inf
543.19/543.39 o 29
543.19/543.39 c s 543s| 1470 | 336 |684334 | 456.4 | 142M| 195 | - | 24k| 14k| 24k| 21k| 729 | 716 | 0 | 0.000000e+00 | 2.900000e+01 | Inf
550.78/550.95 c 551s| 1500 | 365 |701614 | 458.8 | 142M| 195 |1844 | 24k| 13k| 24k| 21k| 729 | 736 | 0 | 0.000000e+00 | 2.900000e+01 | Inf
568.08/568.29 o 28
568.08/568.29 c l 568s| 1543 | 408 |726098 | 461.9 | 145M| 195 | - | 24k| 14k| 24k| 21k| 729 | 832 | 0 | 0.000000e+00 | 2.800000e+01 | Inf
570.69/570.80 c 571s| 1600 | 459 |727524 | 446.3 | 144M| 195 | 148 | 24k| 13k| 24k| 21k| 729 | 842 | 0 | 0.000000e+00 | 2.800000e+01 | Inf
571.78/571.99 o 27
571.78/571.99 c s 572s| 1635 | 470 |727704 | 436.9 | 144M| 195 | - | 24k| 13k| 24k| 21k| 729 | 847 | 0 | 0.000000e+00 | 2.700000e+01 | Inf
572.89/573.09 o 26
572.89/573.09 c 5 573s| 1661 | 493 |727804 | 430.1 | 144M| 195 | 11 | 24k| 13k| 24k| 21k| 729 | 847 | 0 | 0.000000e+00 | 2.600000e+01 | Inf
572.99/573.15 o 25
572.99/573.15 c time | node | left |LP iter|LP it/n| mem |mdpt |frac |vars |cons |cols |rows |cuts |confs|strbr| dualbound | primalbound | gap
572.99/573.15 c 6 573s| 1662 | 439 |727804 | 429.8 | 144M| 195 | - | 24k| 13k| 0 | 0 | 729 | 847 | 0 | 0.000000e+00 | 2.500000e+01 | Inf
574.58/574.75 c 575s| 1700 | 453 |728295 | 420.5 | 144M| 195 | 106 | 24k| 13k| 24k| 21k| 729 | 884 | 0 | 0.000000e+00 | 2.500000e+01 | Inf
575.68/575.89 o 23
575.68/575.89 c s 576s| 1733 | 412 |728502 | 412.6 | 143M| 195 | - | 24k| 13k| 24k| 21k| 729 | 889 | 0 | 0.000000e+00 | 2.300000e+01 | Inf
578.98/579.14 c 579s| 1800 | 373 |731144 | 398.7 | 143M| 195 | - | 24k| 13k| 0 | 0 | 729 | 976 | 0 | 0.000000e+00 | 2.300000e+01 | Inf
586.68/586.83 o 20
586.68/586.83 c s 587s| 1864 | 372 |745336 | 392.6 | 143M| 195 | - | 24k| 13k| 24k| 21k| 729 | 982 | 0 | 0.000000e+00 | 2.000000e+01 | Inf
588.07/588.20 c 588s| 1900 | 406 |745625 | 385.3 | 143M| 195 | 45 | 24k| 13k| 24k| 21k| 729 | 984 | 0 | 0.000000e+00 | 2.000000e+01 | Inf
588.78/588.95 o 19
588.78/588.95 c 5 589s| 1925 | 425 |745704 | 380.4 | 143M| 195 | 9 | 24k| 13k| 24k| 21k| 729 | 987 | 0 | 0.000000e+00 | 1.900000e+01 | Inf
588.88/589.01 o 18
588.88/589.01 c 6 589s| 1926 | 351 |745704 | 380.2 | 143M| 195 | - | 24k| 13k| 0 | 0 | 729 | 987 | 0 | 0.000000e+00 | 1.800000e+01 | Inf
593.48/593.65 c 594s| 2000 | 353 |751079 | 368.8 | 143M| 195 | 550 | 24k| 13k| 24k| 21k| 729 |1120 | 0 | 0.000000e+00 | 1.800000e+01 | Inf
600.67/600.88 o 17
600.67/600.88 c p 601s| 2061 | 364 |760750 | 362.6 | 144M| 195 | - | 24k| 13k| 24k| 21k| 729 |1258 | 0 | 0.000000e+00 | 1.700000e+01 | Inf
602.18/602.32 c 602s| 2100 | 375 |761647 | 356.3 | 143M| 195 | 419 | 24k| 13k| 24k| 21k| 729 |1319 | 0 | 0.000000e+00 | 1.700000e+01 | Inf
606.58/606.73 o 16
606.58/606.73 c v 607s| 2181 | 373 |766910 | 345.4 | 144M| 195 | - | 24k| 13k| 24k| 21k| 729 |1404 | 0 | 0.000000e+00 | 1.600000e+01 | Inf
607.48/607.68 c 608s| 2200 | 364 |767661 | 342.8 | 143M| 195 | 645 | 24k| 13k| 24k| 21k| 729 |1446 | 0 | 0.000000e+00 | 1.600000e+01 | Inf
613.38/613.57 c 614s| 2300 | 384 |776167 | 331.6 | 144M| 195 | 214 | 24k| 13k| 24k| 21k| 729 |1569 | 0 | 0.000000e+00 | 1.600000e+01 | Inf
615.28/615.45 o 15
615.28/615.45 c s 615s| 2368 | 356 |776520 | 322.2 | 143M| 195 | - | 24k| 13k| 24k| 21k| 729 |1575 | 0 | 0.000000e+00 | 1.500000e+01 | Inf
617.58/617.79 c time | node | left |LP iter|LP it/n| mem |mdpt |frac |vars |cons |cols |rows |cuts |confs|strbr| dualbound | primalbound | gap
617.58/617.79 c 618s| 2400 | 358 |779550 | 319.2 | 143M| 195 | 825 | 24k| 13k| 24k| 21k| 729 |1650 | 0 | 0.000000e+00 | 1.500000e+01 | Inf
623.18/623.35 c 623s| 2500 | 360 |785735 | 308.9 | 144M| 195 | 695 | 24k| 13k| 24k| 21k| 729 |1892 | 0 | 0.000000e+00 | 1.500000e+01 | Inf
630.87/631.01 c 631s| 2600 | 371 |796790 | 301.2 | 144M| 195 | - | 24k| 13k| 0 | 0 | 729 |2074 | 0 | 0.000000e+00 | 1.500000e+01 | Inf
636.68/636.89 c 637s| 2700 | 460 |805959 | 293.5 | 146M| 195 | 31 | 24k| 13k| 24k| 21k| 729 |2102 | 0 | 0.000000e+00 | 1.500000e+01 | Inf
636.78/636.92 o 14
636.78/636.92 c s 637s| 2701 | 415 |805964 | 293.4 | 145M| 195 | - | 24k| 13k| 24k| 21k| 729 |2102 | 0 | 0.000000e+00 | 1.400000e+01 | Inf
636.78/636.99 o 13
636.78/636.99 c 6 637s| 2701 | 364 |805964 | 293.4 | 145M| 195 | - | 24k| 13k| 24k| 21k| 729 |2102 | 0 | 0.000000e+00 | 1.300000e+01 | Inf
638.78/638.90 o 12
638.78/638.90 c s 639s| 2758 | 388 |806671 | 287.6 | 145M| 195 | - | 24k| 13k| 24k| 21k| 729 |2110 | 0 | 0.000000e+00 | 1.200000e+01 | Inf
638.78/638.97 o 10
638.78/638.97 c 6 639s| 2758 | 351 |806671 | 287.6 | 144M| 195 | - | 24k| 13k| 24k| 21k| 729 |2110 | 0 | 0.000000e+00 | 1.000000e+01 | Inf
638.88/639.02 c Forcing restart, since 9371 binary variables among 10412 have been fixed.
638.88/639.07 c (run 1, node 2759) performing user restart
638.88/639.07 c
638.98/639.10 c (restart) converted 10618 cuts from the global cut pool into linear constraints
638.98/639.10 c
639.18/639.30 c presolving:
639.57/639.79 c (round 1) 19234 del vars, 10447 del conss, 0 add conss, 418 chg bounds, 12 chg sides, 105 chg coeffs, 0 upgd conss, 145500 impls, 0 clqs
639.67/639.82 c (round 2) 19296 del vars, 10945 del conss, 0 add conss, 427 chg bounds, 13 chg sides, 107 chg coeffs, 0 upgd conss, 152375 impls, 1 clqs
639.67/639.85 c (round 3) 19300 del vars, 11166 del conss, 0 add conss, 429 chg bounds, 13 chg sides, 107 chg coeffs, 3 upgd conss, 152375 impls, 1 clqs
639.67/639.88 c (round 4) 19302 del vars, 11171 del conss, 0 add conss, 431 chg bounds, 13 chg sides, 107 chg coeffs, 3 upgd conss, 152385 impls, 1 clqs
639.67/639.89 c (round 5) 19306 del vars, 11178 del conss, 0 add conss, 433 chg bounds, 13 chg sides, 107 chg coeffs, 3 upgd conss, 152385 impls, 1 clqs
639.77/639.92 c (round 6) 19308 del vars, 11183 del conss, 0 add conss, 435 chg bounds, 13 chg sides, 107 chg coeffs, 3 upgd conss, 152395 impls, 1 clqs
639.77/639.94 c (round 7) 19310 del vars, 11188 del conss, 0 add conss, 437 chg bounds, 13 chg sides, 107 chg coeffs, 3 upgd conss, 152405 impls, 1 clqs
639.77/639.97 c (round 8) 19312 del vars, 11193 del conss, 0 add conss, 439 chg bounds, 13 chg sides, 107 chg coeffs, 3 upgd conss, 152411 impls, 1 clqs
639.77/639.99 c (round 9) 19314 del vars, 11198 del conss, 0 add conss, 441 chg bounds, 13 chg sides, 107 chg coeffs, 3 upgd conss, 152413 impls, 1 clqs
639.87/640.02 c (round 10) 19316 del vars, 11203 del conss, 0 add conss, 443 chg bounds, 13 chg sides, 107 chg coeffs, 3 upgd conss, 152423 impls, 1 clqs
639.87/640.05 c (round 11) 19320 del vars, 11210 del conss, 0 add conss, 445 chg bounds, 13 chg sides, 107 chg coeffs, 3 upgd conss, 152429 impls, 1 clqs
639.87/640.06 c (round 12) 19322 del vars, 11216 del conss, 0 add conss, 445 chg bounds, 13 chg sides, 107 chg coeffs, 3 upgd conss, 152441 impls, 1 clqs
639.98/640.14 c (round 13) 19322 del vars, 11221 del conss, 0 add conss, 445 chg bounds, 13 chg sides, 107 chg coeffs, 9734 upgd conss, 152441 impls, 1 clqs
639.98/640.19 c (round 14) 19322 del vars, 11223 del conss, 3 add conss, 445 chg bounds, 34 chg sides, 184 chg coeffs, 9741 upgd conss, 152443 impls, 1 clqs
640.08/640.24 c (round 15) 19322 del vars, 11225 del conss, 3 add conss, 445 chg bounds, 37 chg sides, 187 chg coeffs, 9741 upgd conss, 152443 impls, 1 clqs
640.08/640.28 c (round 16) 19322 del vars, 17748 del conss, 2172 add conss, 445 chg bounds, 37 chg sides, 187 chg coeffs, 9741 upgd conss, 152443 impls, 1 clqs
640.17/640.31 c (round 17) 19374 del vars, 17953 del conss, 2370 add conss, 445 chg bounds, 37 chg sides, 188 chg coeffs, 9741 upgd conss, 157248 impls, 16 clqs
640.17/640.34 c (round 18) 19385 del vars, 17964 del conss, 2370 add conss, 445 chg bounds, 37 chg sides, 189 chg coeffs, 9744 upgd conss, 157674 impls, 213 clqs
640.17/640.39 c (round 19) 19388 del vars, 18010 del conss, 2416 add conss, 445 chg bounds, 37 chg sides, 189 chg coeffs, 9744 upgd conss, 157942 impls, 214 clqs
640.27/640.48 c (round 20) 19391 del vars, 18020 del conss, 2419 add conss, 445 chg bounds, 37 chg sides, 189 chg coeffs, 9745 upgd conss, 159625 impls, 215 clqs
640.27/640.49 c (round 21) 19398 del vars, 18026 del conss, 2419 add conss, 445 chg bounds, 37 chg sides, 190 chg coeffs, 9746 upgd conss, 159639 impls, 215 clqs
640.37/640.51 c (round 22) 19401 del vars, 18037 del conss, 2419 add conss, 445 chg bounds, 37 chg sides, 190 chg coeffs, 9746 upgd conss, 159651 impls, 215 clqs
640.37/640.52 c (round 23) 19420 del vars, 18054 del conss, 2419 add conss, 445 chg bounds, 37 chg sides, 190 chg coeffs, 9746 upgd conss, 159891 impls, 212 clqs
640.37/640.55 c (round 24) 19449 del vars, 18080 del conss, 2419 add conss, 445 chg bounds, 37 chg sides, 194 chg coeffs, 9746 upgd conss, 160297 impls, 208 clqs
640.37/640.56 c (round 25) 19461 del vars, 18094 del conss, 2419 add conss, 445 chg bounds, 37 chg sides, 195 chg coeffs, 9746 upgd conss, 161101 impls, 207 clqs
640.48/640.64 c (round 26) 19462 del vars, 18095 del conss, 2419 add conss, 445 chg bounds, 37 chg sides, 195 chg coeffs, 9746 upgd conss, 161407 impls, 207 clqs
640.57/640.72 c presolving (27 rounds):
640.57/640.72 c 19462 deleted vars, 18095 deleted constraints, 2419 added constraints, 445 tightened bounds, 0 added holes, 37 changed sides, 195 changed coefficients
640.57/640.72 c 161407 implications, 207 cliques
640.57/640.72 c presolved problem has 5301 variables (4386 bin, 0 int, 915 impl, 0 cont) and 8366 constraints
640.57/640.72 c 915 constraints of type <varbound>
640.57/640.72 c 760 constraints of type <knapsack>
640.57/640.72 c 1270 constraints of type <setppc>
640.57/640.72 c 1858 constraints of type <and>
640.57/640.72 c 941 constraints of type <linear>
640.57/640.72 c 915 constraints of type <indicator>
640.57/640.72 c 1142 constraints of type <logicor>
640.57/640.72 c 565 constraints of type <bounddisjunction>
640.57/640.72 c transformed objective value is always integral (scale: 1)
640.57/640.72 c Presolving Time: 1.86
640.57/640.73 c
640.67/640.88 c time | node | left |LP iter|LP it/n| mem |mdpt |frac |vars |cons |cols |rows |cuts |confs|strbr| dualbound | primalbound | gap
640.67/640.88 c 641s| 1 | 0 |807502 | - | 135M| 0 | 558 |5301 |8366 |5301 |8983 | 0 |2110 | 0 | 0.000000e+00 | 1.000000e+01 | Inf
656.48/656.67 c 657s| 1 | 0 |808353 | - | 136M| 0 | 847 |5301 |9592 |5301 |9476 | 493 |2110 | 0 | 0.000000e+00 | 1.000000e+01 | Inf
656.48/656.68 c 657s| 1 | 2 |808353 | - | 136M| 0 | 847 |5301 |9592 |5301 |9476 | 493 |2110 | 0 | 0.000000e+00 | 1.000000e+01 | Inf
675.36/675.52 o 9
675.36/675.52 c v 676s| 62 | 59 |848301 | 295.3 | 138M| 26 | - |5301 |9796 |5301 |8960 |2587 |2319 | 0 | 0.000000e+00 | 9.000000e+00 | Inf
678.06/678.24 o 7
678.06/678.24 c v 678s| 73 | 68 |851730 | 295.4 | 138M| 27 | - |5301 |9435 |5301 |8955 |2593 |2398 | 0 | 0.000000e+00 | 7.000000e+00 | Inf
679.67/679.86 o 6
679.67/679.86 c p 680s| 93 | 81 |853515 | 293.9 | 138M| 39 | - |5301 |8973 |5301 |8983 |2623 |2429 | 0 | 0.000000e+00 | 6.000000e+00 | Inf
680.37/680.54 o 5
680.37/680.54 c v 681s| 97 | 73 |854432 | 293.8 | 137M| 39 | - |5301 |8259 |5301 |8982 |2627 |2429 | 0 | 0.000000e+00 | 5.000000e+00 | Inf
680.46/680.65 c 681s| 100 | 71 |854657 | 293.6 | 137M| 39 | 258 |5301 |7939 |5301 |8955 |2629 |2433 | 0 | 0.000000e+00 | 5.000000e+00 | Inf
681.47/681.62 o 2
681.47/681.62 c g 682s| 102 | 67 |855427 | 293.7 | 137M| 39 | - |5301 |7941 |5301 |8955 |2629 |2435 | 0 | 0.000000e+00 | 2.000000e+00 | Inf
683.37/683.57 o 1
683.37/683.57 c Forcing restart, since the absolute gap is 1.000000.
683.37/683.57 c l 684s| 118 | 16 |859207 | 293.4 | 135M| 39 | - |5301 |6563 |5301 |9197 |2830 |2462 | 0 | 0.000000e+00 | 1.000000e+00 | Inf
683.37/683.58 c (run 2, node 118) performing user restart
683.37/683.58 c
683.37/683.59 c (restart) converted 1051 cuts from the global cut pool into linear constraints
683.37/683.59 c
683.47/683.62 c presolving:
683.47/683.67 c (round 1) 2400 del vars, 1360 del conss, 0 add conss, 40 chg bounds, 1 chg sides, 219 chg coeffs, 0 upgd conss, 202275 impls, 166 clqs
683.47/683.68 c (round 2) 2578 del vars, 1819 del conss, 0 add conss, 46 chg bounds, 2 chg sides, 254 chg coeffs, 21 upgd conss, 209206 impls, 154 clqs
683.47/683.69 c (round 3) 2657 del vars, 1934 del conss, 0 add conss, 48 chg bounds, 2 chg sides, 268 chg coeffs, 27 upgd conss, 211106 impls, 148 clqs
683.56/683.70 c (round 4) 2677 del vars, 1955 del conss, 0 add conss, 48 chg bounds, 2 chg sides, 273 chg coeffs, 27 upgd conss, 211246 impls, 147 clqs
683.56/683.70 c (round 5) 2687 del vars, 1971 del conss, 0 add conss, 48 chg bounds, 2 chg sides, 278 chg coeffs, 27 upgd conss, 211428 impls, 147 clqs
683.56/683.77 c (round 6) 2689 del vars, 2090 del conss, 0 add conss, 48 chg bounds, 5 chg sides, 280 chg coeffs, 974 upgd conss, 211446 impls, 147 clqs
683.56/683.79 c (round 7) 2750 del vars, 2284 del conss, 94 add conss, 48 chg bounds, 13 chg sides, 303 chg coeffs, 974 upgd conss, 229665 impls, 147 clqs
683.67/683.80 c (round 8) 2764 del vars, 2315 del conss, 94 add conss, 48 chg bounds, 13 chg sides, 311 chg coeffs, 976 upgd conss, 230173 impls, 227 clqs
683.67/683.81 c (round 9) 2768 del vars, 2366 del conss, 141 add conss, 48 chg bounds, 13 chg sides, 314 chg coeffs, 976 upgd conss, 230527 impls, 227 clqs
683.67/683.87 c (round 10) 2787 del vars, 2389 del conss, 145 add conss, 48 chg bounds, 13 chg sides, 315 chg coeffs, 980 upgd conss, 233487 impls, 238 clqs
683.77/683.93 c (round 11) 2790 del vars, 2400 del conss, 146 add conss, 48 chg bounds, 13 chg sides, 316 chg coeffs, 980 upgd conss, 233595 impls, 238 clqs
683.77/683.96 c (round 12) 2794 del vars, 2437 del conss, 147 add conss, 48 chg bounds, 14 chg sides, 317 chg coeffs, 980 upgd conss, 233839 impls, 238 clqs
683.86/684.01 c (round 13) 2794 del vars, 2444 del conss, 151 add conss, 48 chg bounds, 14 chg sides, 317 chg coeffs, 980 upgd conss, 233839 impls, 239 clqs
683.86/684.06 c (round 14) 2794 del vars, 2445 del conss, 151 add conss, 48 chg bounds, 14 chg sides, 317 chg coeffs, 980 upgd conss, 233839 impls, 240 clqs
683.86/684.10 c (round 15) 2794 del vars, 2493 del conss, 151 add conss, 48 chg bounds, 14 chg sides, 317 chg coeffs, 980 upgd conss, 233839 impls, 240 clqs
683.97/684.11 c (round 16) 2794 del vars, 2493 del conss, 151 add conss, 126 chg bounds, 14 chg sides, 317 chg coeffs, 980 upgd conss, 233839 impls, 240 clqs
683.97/684.12 c (round 17) 2973 del vars, 2698 del conss, 151 add conss, 213 chg bounds, 15 chg sides, 319 chg coeffs, 980 upgd conss, 247136 impls, 240 clqs
683.97/684.13 c (round 18) 2986 del vars, 2744 del conss, 151 add conss, 213 chg bounds, 15 chg sides, 322 chg coeffs, 980 upgd conss, 247184 impls, 238 clqs
683.97/684.13 c (round 19) 2994 del vars, 2754 del conss, 151 add conss, 213 chg bounds, 15 chg sides, 326 chg coeffs, 1043 upgd conss, 247326 impls, 238 clqs
683.97/684.14 c (round 20) 3001 del vars, 2772 del conss, 162 add conss, 213 chg bounds, 17 chg sides, 334 chg coeffs, 1045 upgd conss, 247926 impls, 237 clqs
684.08/684.21 c (round 21) 3005 del vars, 2801 del conss, 164 add conss, 213 chg bounds, 17 chg sides, 339 chg coeffs, 1049 upgd conss, 247970 impls, 247 clqs
684.08/684.26 c (round 22) 3005 del vars, 2805 del conss, 166 add conss, 213 chg bounds, 17 chg sides, 341 chg coeffs, 1049 upgd conss, 247970 impls, 248 clqs
684.16/684.31 c (round 23) 3005 del vars, 2806 del conss, 166 add conss, 213 chg bounds, 17 chg sides, 343 chg coeffs, 1049 upgd conss, 247970 impls, 249 clqs
684.16/684.32 c (round 24) 3005 del vars, 4141 del conss, 608 add conss, 213 chg bounds, 17 chg sides, 343 chg coeffs, 1049 upgd conss, 247970 impls, 249 clqs
684.16/684.34 c (round 25) 3021 del vars, 4195 del conss, 660 add conss, 213 chg bounds, 17 chg sides, 343 chg coeffs, 1050 upgd conss, 248514 impls, 258 clqs
684.16/684.35 c (round 26) 3022 del vars, 4212 del conss, 677 add conss, 213 chg bounds, 17 chg sides, 344 chg coeffs, 1050 upgd conss, 248514 impls, 311 clqs
684.26/684.41 c (round 27) 3047 del vars, 4241 del conss, 678 add conss, 213 chg bounds, 17 chg sides, 345 chg coeffs, 1050 upgd conss, 250602 impls, 312 clqs
684.26/684.45 c (round 28) 3053 del vars, 4251 del conss, 681 add conss, 213 chg bounds, 17 chg sides, 348 chg coeffs, 1050 upgd conss, 250672 impls, 312 clqs
684.37/684.51 c (round 29) 3058 del vars, 4256 del conss, 681 add conss, 213 chg bounds, 17 chg sides, 348 chg coeffs, 1050 upgd conss, 251154 impls, 314 clqs
684.37/684.56 c (round 30) 3065 del vars, 4263 del conss, 681 add conss, 213 chg bounds, 17 chg sides, 348 chg coeffs, 1050 upgd conss, 251492 impls, 314 clqs
684.46/684.61 c (round 31) 3066 del vars, 4264 del conss, 681 add conss, 213 chg bounds, 17 chg sides, 348 chg coeffs, 1050 upgd conss, 251500 impls, 314 clqs
684.46/684.66 c presolving (32 rounds):
684.46/684.66 c 3066 deleted vars, 4264 deleted constraints, 681 added constraints, 213 tightened bounds, 0 added holes, 17 changed sides, 348 changed coefficients
684.46/684.66 c 251500 implications, 314 cliques
684.46/684.66 c presolved problem has 2235 variables (2235 bin, 0 int, 0 impl, 0 cont) and 3912 constraints
684.46/684.66 c 853 constraints of type <knapsack>
684.46/684.66 c 530 constraints of type <setppc>
684.46/684.66 c 1296 constraints of type <and>
684.46/684.66 c 658 constraints of type <logicor>
684.46/684.66 c 575 constraints of type <bounddisjunction>
684.46/684.66 c transformed objective value is always integral (scale: 1)
684.46/684.66 c Presolving Time: 2.91
684.46/684.66 c
684.56/684.72 c time | node | left |LP iter|LP it/n| mem |mdpt |frac |vars |cons |cols |rows |cuts |confs|strbr| dualbound | primalbound | gap
684.56/684.72 c 685s| 1 | 0 |859785 | - | 128M| 0 | 408 |2235 |3912 |2235 |3969 | 0 |2462 | 0 | 0.000000e+00 | 1.000000e+00 | Inf
684.76/684.95 c 685s| 1 | 0 |860513 | - | 128M| 0 | 610 |2235 |3912 |2235 |4337 | 368 |2462 | 0 | 0.000000e+00 | 1.000000e+00 | Inf
684.76/684.96 c 685s| 1 | 2 |860513 | - | 128M| 0 | 610 |2235 |3912 |2235 |4337 | 368 |2462 | 0 | 0.000000e+00 | 1.000000e+00 | Inf
690.47/690.67 c 691s| 100 | 65 |884715 | 291.6 | 128M| 34 | - |2235 |4052 | 0 | 0 |1606 |2754 | 0 | 0.000000e+00 | 1.000000e+00 | Inf
692.66/692.87 c 693s| 200 | 49 |893147 | 284.9 | 128M| 34 | - |2235 |4139 | 0 | 0 |2164 |2918 | 0 | 0.000000e+00 | 1.000000e+00 | Inf
695.47/695.62 c 696s| 300 | 51 |905221 | 279.7 | 129M| 34 | 605 |2235 |4236 |2235 |4547 |2821 |3076 | 0 | 0.000000e+00 | 1.000000e+00 | Inf
698.77/698.98 c 699s| 400 | 59 |917953 | 275.1 | 129M| 34 | - |2235 |4345 | 0 | 0 |3558 |3221 | 0 | 0.000000e+00 | 1.000000e+00 | Inf
701.17/701.33 c 701s| 500 | 58 |928086 | 269.9 | 129M| 34 | 611 |2235 |4464 |2235 |4531 |4401 |3361 | 0 | 0.000000e+00 | 1.000000e+00 | Inf
703.47/703.69 c 704s| 600 | 58 |937753 | 264.9 | 129M| 34 | 468 |2235 |4561 |2235 |4510 |5190 |3525 | 0 | 0.000000e+00 | 1.000000e+00 | Inf
705.56/705.79 c 706s| 700 | 63 |947102 | 260.1 | 129M| 34 | 614 |2235 |4632 |2235 |4591 |6091 |3622 | 0 | 0.000000e+00 | 1.000000e+00 | Inf
708.16/708.38 c 708s| 800 | 88 |955713 | 255.4 | 129M| 34 | 552 |2235 |4795 |2235 |4556 |6664 |3807 | 0 | 0.000000e+00 | 1.000000e+00 | Inf
710.66/710.83 c 711s| 900 | 84 |966350 | 251.5 | 129M| 34 | 488 |2235 |4859 |2235 |4386 |7516 |3917 | 0 | 0.000000e+00 | 1.000000e+00 | Inf
713.36/713.53 c 714s| 1000 | 82 |977907 | 248.0 | 129M| 34 | 689 |2235 |4953 |2235 |4619 |8623 |4040 | 0 | 0.000000e+00 | 1.000000e+00 | Inf
715.76/715.95 c 716s| 1100 | 85 |987538 | 244.1 | 130M| 34 | - |2235 |5082 | 0 | 0 |9239 |4196 | 0 | 0.000000e+00 | 1.000000e+00 | Inf
718.56/718.77 c 719s| 1200 | 79 |999666 | 241.1 | 130M| 34 | 699 |2235 |5178 |2235 |4287 | 10k|4338 | 0 | 0.000000e+00 | 1.000000e+00 | Inf
721.46/721.66 c time | node | left |LP iter|LP it/n| mem |mdpt |frac |vars |cons |cols |rows |cuts |confs|strbr| dualbound | primalbound | gap
721.46/721.66 c 722s| 1300 | 82 | 1011k| 238.1 | 130M| 34 | 858 |2235 |5266 |2235 |4423 | 11k|4491 | 0 | 0.000000e+00 | 1.000000e+00 | Inf
724.16/724.38 c 724s| 1400 | 55 | 1021k| 235.0 | 129M| 34 | 629 |2235 |5293 |2235 |4411 | 12k|4660 | 0 | 0.000000e+00 | 1.000000e+00 | Inf
726.97/727.19 c 727s| 1500 | 41 | 1034k| 232.6 | 129M| 34 | 722 |2235 |5289 |2235 |4470 | 13k|4775 | 0 | 0.000000e+00 | 1.000000e+00 | Inf
727.45/727.61 c
727.45/727.61 c SCIP Status : problem is solved [optimal solution found]
727.45/727.61 c Solving Time (sec) : 727.61
727.45/727.61 c Solving Nodes : 1519 (total of 4396 nodes in 3 runs)
727.45/727.61 c Primal Bound : +1.00000000000000e+00 (633 solutions)
727.45/727.61 c Dual Bound : +1.00000000000000e+00
727.45/727.61 c Gap : 0.00 %
727.45/727.61 s OPTIMUM FOUND
727.45/727.62 v x3939 -x3938 -x3937 -x3936 -x3935 -x3934 -x3933 -x3932 -x3931 -x3930 x3929 -x3928 -x3927 x3926 -x3925 x3924 -x3923 -x3922 x3921
727.45/727.62 v -x3920 -x3919 x3918 -x3917 -x3916 -x3915 -x3914 -x3913 x3912 -x3911 -x3910 -x3909 x3908 -x3907 x3906 -x3905 -x3904 x3903 x3902
727.45/727.62 v x3901 x3900 x3899 x3898 x3897 x3896 x3895 -x3894 -x3893 -x3892 -x3891 x3890 x3889 -x3888 -x3887 -x3886 -x3885 x3884 -x3883
727.45/727.62 v -x3882 -x3881 -x3880 x3879 -x3878 -x3877 -x3876 -x3875 -x3874 x3873 -x3872 x3871 x3870 x3869 x3868 -x3867 -x3866 -x3865 -x3864
727.45/727.62 v -x3863 -x3862 x3861 -x3860 -x3859 -x3858 x3857 x3856 -x3855 -x3854 x3853 -x3852 -x3851 x3850 -x3849 x3848 -x3847 -x3846 -x3845
727.45/727.62 v x3844 -x3843 -x3842 -x3841 -x3840 x3839 x3838 -x3837 -x3836 x3835 -x3834 -x3833 x3832 -x3831 x3830 x3829 x3828 x3827 x3826
727.45/727.62 v x3825 -x3824 -x3823 -x3822 -x3821 -x3820 -x3819 x3818 x3817 x3816 -x3815 x3814 x3813 x3812 x3811 x3810 x3809 -x3808 x3807
727.45/727.62 v x3806 -x3805 x3804 -x3803 x3802 x3801 x3800 -x3799 x3798 x3797 x3796 x3795 x3794 x3793 x3792 x3791 -x3790 -x3789 -x3788 -x3787
727.45/727.62 v -x3786 -x3785 x3784 x3783 x3782 x3781 -x3780 -x3779 -x3778 x3777 x3776 x3775 x3774 x3773 x3772 -x3771 x3770 x3769 x3768 x3767
727.45/727.62 v -x3766 x3765 x3764 x3763 x3762 x3761 -x3760 x3759 x3758 -x3757 -x3756 -x3755 -x3754 -x3753 -x3752 -x3751 x3750 x3749 -x3748
727.45/727.62 v -x3747 -x3746 x3745 -x3744 -x3743 -x3742 x3741 x3740 -x3739 -x3738 x3737 x3736 x3735 -x3734 -x3733 -x3732 -x3731 -x3730 x3729
727.45/727.62 v -x3728 -x3727 x3726 x3725 x3724 -x3723 -x3722 -x3721 -x3720 -x3719 x3718 -x3717 x3716 x3715 -x3714 -x3713 x3712 -x3711 -x3710
727.45/727.62 v -x3709 x3708 -x3707 -x3706 x3705 -x3704 -x3703 x3702 -x3701 x3700 x3699 x3698 x3697 -x3696 -x3695 x3694 -x3693 -x3692 -x3691
727.45/727.62 v -x3690 -x3689 -x3688 -x3687 -x3686 -x3685 -x3684 -x3683 -x3682 -x3681 -x3680 -x3679 -x3678 -x3677 -x3676 -x3675 -x3674 -x3673
727.45/727.62 v -x3672 -x3671 -x3670 -x3669 -x3668 -x3667 x3666 x3665 x3664 -x3663 -x3662 -x3661 -x3660 -x3659 -x3658 -x3657 -x3656 -x3655
727.45/727.62 v -x3654 -x3653 -x3652 -x3651 -x3650 -x3649 -x3648 -x3647 x3646 x3645 x3644 -x3643 -x3642 -x3641 -x3640 -x3639 -x3638 -x3637
727.45/727.62 v -x3636 -x3635 -x3634 -x3633 -x3632 -x3631 -x3630 -x3629 -x3628 -x3627 -x3626 -x3625 -x3624 -x3623 -x3622 -x3621 -x3620 -x3619
727.45/727.62 v -x3618 -x3617 -x3616 -x3615 -x3614 -x3613 -x3612 -x3611 -x3610 -x3609 -x3608 -x3607 x3606 x3605 x3604 -x3603 -x3602 -x3601
727.45/727.62 v -x3600 -x3599 -x3598 -x3597 -x3596 x3595 x3594 x3593 -x3592 -x3591 -x3590 -x3589 x3588 x3587 x3586 -x3585 -x3584 -x3583 -x3582
727.45/727.62 v -x3581 x3580 -x3579 -x3578 -x3577 -x3576 -x3575 -x3574 -x3573 -x3572 -x3571 -x3570 -x3569 -x3568 -x3567 -x3566 -x3565 -x3564
727.45/727.62 v -x3563 -x3562 -x3561 -x3560 -x3559 -x3558 -x3557 -x3556 -x3555 -x3554 -x3553 -x3552 -x3551 -x3550 -x3549 -x3548 -x3547 -x3546
727.45/727.62 v -x3545 -x3544 -x3543 -x3542 -x3541 x3540 x3539 x3538 x3537 x3536 x3535 x3534 x3533 x3532 x3531 -x3530 -x3529 -x3528 -x3527
727.45/727.62 v x3526 -x3525 -x3524 -x3523 -x3522 -x3521 -x3520 -x3519 -x3518 -x3517 -x3516 -x3515 -x3514 -x3513 -x3512 x3511 x3510 x3509 x3508
727.45/727.62 v x3507 x3506 x3505 x3504 -x3503 -x3502 -x3501 -x3500 -x3499 x3498 -x3497 -x3496 -x3495 -x3494 -x3493 -x3492 -x3491 -x3490
727.45/727.62 v -x3489 -x3488 -x3487 -x3486 -x3485 -x3484 x3483 -x3482 -x3481 -x3480 -x3479 -x3478 x3477 x3476 x3475 -x3474 -x3473 -x3472 -x3471
727.45/727.62 v -x3470 -x3469 -x3468 -x3467 -x3466 -x3465 -x3464 -x3463 -x3462 -x3461 -x3460 -x3459 -x3458 -x3457 -x3456 -x3455 -x3454 -x3453
727.45/727.62 v -x3452 -x3451 -x3450 -x3449 -x3448 -x3447 -x3446 -x3445 -x3444 -x3443 -x3442 -x3441 x3440 -x3439 -x3438 -x3437 -x3436 -x3435
727.45/727.62 v x3434 x3433 x3432 x3431 x3430 x3429 x3428 x3427 x3426 x3425 -x3424 -x3423 -x3422 -x3421 -x3420 -x3419 x3418 -x3417 -x3416
727.45/727.62 v -x3415 -x3414 -x3413 -x3412 -x3411 -x3410 -x3409 -x3408 -x3407 -x3406 x3405 x3404 x3403 x3402 x3401 x3400 x3399 x3398 -x3397
727.45/727.62 v -x3396 -x3395 -x3394 -x3393 -x3392 -x3391 -x3390 x3389 -x3388 -x3387 -x3386 -x3385 -x3384 -x3383 -x3382 -x3381 -x3380 -x3379
727.45/727.62 v -x3378 -x3377 x3376 -x3375 -x3374 -x3373 -x3372 -x3371 x3370 x3369 -x3368 x3367 x3366 x3365 -x3364 -x3363 -x3362 x3361 -x3360
727.45/727.62 v -x3359 -x3358 -x3357 -x3356 -x3355 -x3354 -x3353 -x3352 -x3351 -x3350 -x3349 -x3348 -x3347 -x3346 -x3345 -x3344 -x3343 -x3342
727.45/727.62 v -x3341 -x3340 -x3339 x3338 x3337 -x3336 -x3335 -x3334 -x3333 -x3332 -x3331 x3330 x3329 x3328 x3327 x3326 x3325 x3324 x3323
727.45/727.62 v x3322 x3321 x3320 x3319 x3318 x3317 x3316 x3315 x3314 -x3313 -x3312 -x3311 -x3310 -x3309 -x3308 -x3307 -x3306 -x3305 -x3304
727.45/727.62 v -x3303 -x3302 -x3301 x3300 x3299 x3298 x3297 x3296 x3295 x3294 x3293 x3292 x3291 -x3290 -x3289 -x3288 -x3287 -x3286 -x3285 -x3284
727.45/727.62 v -x3283 -x3282 -x3281 -x3280 -x3279 -x3278 x3277 -x3276 -x3275 -x3274 -x3273 -x3272 -x3271 -x3270 -x3269 -x3268 -x3267 -x3266
727.45/727.62 v -x3265 -x3264 -x3263 -x3262 -x3261 -x3260 -x3259 -x3258 -x3257 -x3256 -x3255 -x3254 -x3253 -x3252 -x3251 -x3250 -x3249
727.45/727.62 v -x3248 x3247 x3246 x3245 x3244 x3243 x3242 x3241 x3240 x3239 x3238 x3237 x3236 x3235 x3234 -x3233 -x3232 -x3231 -x3230 -x3229
727.45/727.62 v -x3228 -x3227 -x3226 -x3225 -x3224 x3223 x3222 x3221 x3220 x3219 x3218 x3217 x3216 x3215 x3214 -x3213 -x3212 -x3211 -x3210 -x3209
727.45/727.62 v -x3208 -x3207 -x3206 -x3205 -x3204 x3203 -x3202 -x3201 -x3200 x3199 -x3198 x3197 x3196 x3195 x3194 x3193 x3192 x3191 x3190
727.45/727.62 v x3189 x3188 x3187 x3186 x3185 x3184 x3183 x3182 x3181 x3180 x3179 -x3178 -x3177 -x3176 -x3175 -x3174 -x3173 -x3172 -x3171
727.45/727.62 v -x3170 -x3169 -x3168 x3167 x3166 x3165 x3164 x3163 x3162 x3161 x3160 x3159 x3158 x3157 x3156 x3155 x3154 -x3153 -x3152 -x3151
727.45/727.62 v -x3150 -x3149 -x3148 -x3147 -x3146 -x3145 -x3144 -x3143 x3142 -x3141 -x3140 x3139 x3138 x3137 -x3136 -x3135 -x3134 -x3133 -x3132
727.45/727.62 v -x3131 -x3130 -x3129 -x3128 -x3127 -x3126 -x3125 -x3124 -x3123 -x3122 -x3121 -x3120 -x3119 -x3118 -x3117 -x3116 -x3115
727.45/727.62 v -x3114 -x3113 -x3112 -x3111 -x3110 -x3109 -x3108 -x3107 -x3106 -x3105 -x3104 -x3103 -x3102 -x3101 -x3100 -x3099 -x3098 -x3097
727.45/727.62 v -x3096 -x3095 -x3094 -x3093 -x3092 -x3091 -x3090 -x3089 -x3088 -x3087 -x3086 -x3085 -x3084 -x3083 -x3082 -x3081 -x3080 -x3079
727.45/727.62 v -x3078 -x3077 -x3076 -x3075 -x3074 -x3073 -x3072 -x3071 -x3070 -x3069 -x3068 -x3067 -x3066 -x3065 -x3064 -x3063 -x3062 -x3061
727.45/727.62 v -x3060 -x3059 -x3058 -x3057 -x3056 x3055 -x3054 -x3053 -x3052 -x3051 -x3050 -x3049 -x3048 -x3047 -x3046 -x3045 x3044 x3043
727.45/727.62 v x3042 x3041 x3040 x3039 x3038 -x3037 -x3036 x3035 x3034 x3033 x3032 -x3031 -x3030 -x3029 -x3028 -x3027 -x3026 -x3025 -x3024
727.45/727.62 v -x3023 -x3022 -x3021 -x3020 -x3019 -x3018 -x3017 -x3016 -x3015 -x3014 -x3013 -x3012 -x3011 -x3010 -x3009 -x3008 -x3007 -x3006
727.45/727.62 v -x3005 -x3004 -x3003 -x3002 -x3001 -x3000 -x2999 -x2998 -x2997 -x2996 -x2995 -x2994 -x2993 -x2992 -x2991 -x2990 -x2989 -x2988
727.45/727.62 v -x2987 -x2986 -x2985 -x2984 x2983 -x2982 -x2981 -x2980 -x2979 -x2978 -x2977 -x2976 -x2975 -x2974 -x2973 -x2972 -x2971 -x2970
727.45/727.62 v -x2969 -x2968 -x2967 -x2966 -x2965 -x2964 -x2963 -x2962 -x2961 -x2960 -x2959 -x2958 -x2957 -x2956 -x2955 -x2954 -x2953 -x2952
727.45/727.62 v -x2951 -x2950 -x2949 -x2948 -x2947 -x2946 -x2945 -x2944 -x2943 -x2942 -x2941 -x2940 -x2939 -x2938 -x2937 -x2936 -x2935 -x2934
727.45/727.62 v -x2933 -x2932 -x2931 -x2930 -x2929 -x2928 -x2927 -x2926 -x2925 -x2924 -x2923 -x2922 -x2921 -x2920 -x2919 -x2918 -x2917 -x2916
727.45/727.62 v -x2915 -x2914 -x2913 -x2912 -x2911 -x2910 -x2909 x2908 -x2907 -x2906 -x2905 -x2904 x2903 x2902 -x2901 -x2900 -x2899 -x2898
727.45/727.62 v -x2897 -x2896 -x2895 -x2894 -x2893 -x2892 x2891 -x2890 -x2889 -x2888 -x2887 -x2886 -x2885 -x2884 -x2883 -x2882 -x2881 -x2880
727.45/727.62 v -x2879 -x2878 -x2877 -x2876 -x2875 -x2874 -x2873 -x2872 -x2871 -x2870 x2869 x2868 -x2867 -x2866 -x2865 -x2864 -x2863 -x2862
727.45/727.62 v -x2861 -x2860 -x2859 -x2858 -x2857 -x2856 -x2855 -x2854 -x2853 -x2852 -x2851 x2850 -x2849 -x2848 -x2847 -x2846 -x2845 -x2844
727.45/727.62 v -x2843 -x2842 -x2841 -x2840 -x2839 -x2838 -x2837 -x2836 -x2835 -x2834 -x2833 -x2832 -x2831 -x2830 -x2829 -x2828 -x2827 -x2826
727.45/727.62 v -x2825 -x2824 -x2823 -x2822 -x2821 -x2820 -x2819 -x2818 -x2817 -x2816 -x2815 -x2814 -x2813 -x2812 x2811 -x2810 -x2809 -x2808
727.45/727.62 v -x2807 -x2806 -x2805 x2804 x2803 x2802 -x2801 -x2800 -x2799 -x2798 -x2797 -x2796 -x2795 -x2794 -x2793 -x2792 -x2791 -x2790
727.45/727.62 v -x2789 -x2788 -x2787 -x2786 -x2785 -x2784 -x2783 x2782 -x2781 -x2780 -x2779 -x2778 -x2777 -x2776 -x2775 -x2774 -x2773 -x2772
727.45/727.62 v -x2771 -x2770 -x2769 -x2768 -x2767 -x2766 -x2765 -x2764 -x2763 -x2762 -x2761 -x2760 -x2759 -x2758 -x2757 -x2756 -x2755 -x2754
727.45/727.62 v -x2753 -x2752 -x2751 -x2750 -x2749 -x2748 -x2747 -x2746 -x2745 -x2744 -x2743 -x2742 -x2741 -x2740 -x2739 -x2738 -x2737 x2736
727.45/727.62 v -x2735 -x2734 -x2733 -x2732 -x2731 -x2730 x2729 -x2728 -x2727 -x2726 -x2725 -x2724 -x2723 -x2722 -x2721 -x2720 -x2719 -x2718
727.45/727.62 v -x2717 -x2716 -x2715 -x2714 -x2713 x2712 -x2711 -x2710 -x2709 -x2708 -x2707 -x2706 -x2705 -x2704 -x2703 -x2702 -x2701 -x2700
727.45/727.62 v -x2699 -x2698 -x2697 x2696 -x2695 -x2694 -x2693 -x2692 -x2691 x2690 -x2689 -x2688 -x2687 -x2686 -x2685 -x2684 -x2683 -x2682
727.45/727.62 v -x2681 -x2680 -x2679 -x2678 -x2677 -x2676 -x2675 -x2674 -x2673 -x2672 -x2671 -x2670 -x2669 -x2668 -x2667 -x2666 -x2665 -x2664
727.45/727.62 v -x2663 -x2662 -x2661 -x2660 -x2659 -x2658 -x2657 x2656 -x2655 -x2654 -x2653 -x2652 -x2651 -x2650 -x2649 -x2648 -x2647 -x2646
727.45/727.62 v -x2645 -x2644 -x2643 -x2642 -x2641 -x2640 -x2639 x2638 x2637 x2636 -x2635 -x2634 -x2633 -x2632 -x2631 -x2630 -x2629 -x2628
727.45/727.62 v x2627 x2626 x2625 -x2624 -x2623 -x2622 -x2621 -x2620 -x2619 -x2618 -x2617 -x2616 -x2615 -x2614 -x2613 -x2612 -x2611 -x2610 -x2609
727.45/727.62 v -x2608 -x2607 -x2606 x2605 -x2604 -x2603 -x2602 -x2601 -x2600 -x2599 -x2598 -x2597 -x2596 -x2595 -x2594 -x2593 x2592 -x2591
727.45/727.62 v -x2590 -x2589 -x2588 -x2587 -x2586 -x2585 -x2584 x2583 -x2582 x2581 -x2580 -x2579 -x2578 -x2577 -x2576 -x2575 -x2574 -x2573
727.45/727.62 v -x2572 -x2571 -x2570 -x2569 -x2568 -x2567 -x2566 -x2565 -x2564 -x2563 -x2562 -x2561 -x2560 -x2559 -x2558 -x2557 x2556 -x2555
727.45/727.62 v -x2554 -x2553 -x2552 -x2551 x2550 -x2549 -x2548 -x2547 -x2546 -x2545 -x2544 -x2543 -x2542 -x2541 -x2540 -x2539 -x2538 -x2537
727.45/727.62 v -x2536 -x2535 -x2534 -x2533 -x2532 x2531 -x2530 -x2529 -x2528 x2527 -x2526 -x2525 -x2524 -x2523 -x2522 -x2521 -x2520 -x2519
727.45/727.62 v -x2518 -x2517 -x2516 -x2515 -x2514 -x2513 -x2512 -x2511 -x2510 -x2509 -x2508 -x2507 -x2506 -x2505 -x2504 -x2503 -x2502 -x2501
727.45/727.62 v -x2500 -x2499 -x2498 x2497 x2496 x2495 -x2494 -x2493 -x2492 -x2491 -x2490 -x2489 -x2488 -x2487 -x2486 -x2485 -x2484 -x2483
727.45/727.62 v -x2482 -x2481 -x2480 -x2479 -x2478 -x2477 -x2476 -x2475 -x2474 -x2473 -x2472 -x2471 x2470 -x2469 -x2468 -x2467 -x2466 -x2465
727.45/727.62 v -x2464 -x2463 -x2462 -x2461 -x2460 -x2459 -x2458 -x2457 -x2456 -x2455 -x2454 -x2453 -x2452 x2451 -x2450 -x2449 -x2448 -x2447
727.45/727.62 v -x2446 -x2445 -x2444 -x2443 -x2442 -x2441 x2440 -x2439 -x2438 -x2437 x2436 -x2435 -x2434 -x2433 -x2432 -x2431 -x2430 -x2429
727.45/727.62 v -x2428 -x2427 -x2426 -x2425 -x2424 -x2423 -x2422 -x2421 -x2420 -x2419 -x2418 -x2417 -x2416 -x2415 -x2414 -x2413 -x2412 -x2411
727.45/727.62 v -x2410 -x2409 -x2408 -x2407 x2406 -x2405 -x2404 -x2403 -x2402 -x2401 -x2400 -x2399 -x2398 x2397 -x2396 -x2395 -x2394 -x2393
727.45/727.62 v -x2392 -x2391 -x2390 -x2389 -x2388 -x2387 -x2386 -x2385 -x2384 -x2383 -x2382 -x2381 -x2380 -x2379 -x2378 -x2377 -x2376 -x2375
727.45/727.62 v -x2374 -x2373 -x2372 -x2371 -x2370 -x2369 -x2368 -x2367 -x2366 -x2365 -x2364 x2363 -x2362 -x2361 -x2360 -x2359 -x2358 -x2357
727.45/727.62 v -x2356 -x2355 -x2354 -x2353 -x2352 -x2351 -x2350 -x2349 -x2348 -x2347 -x2346 -x2345 -x2344 x2343 -x2342 -x2341 -x2340 -x2339
727.45/727.62 v -x2338 -x2337 -x2336 -x2335 -x2334 -x2333 -x2332 -x2331 -x2330 -x2329 -x2328 -x2327 -x2326 -x2325 -x2324 -x2323 -x2322 -x2321
727.45/727.62 v -x2320 -x2319 -x2318 -x2317 x2316 -x2315 -x2314 -x2313 x2312 -x2311 -x2310 -x2309 -x2308 -x2307 x2306 x2305 -x2304 -x2303 x2302
727.45/727.62 v x2301 -x2300 -x2299 -x2298 -x2297 -x2296 -x2295 -x2294 -x2293 -x2292 -x2291 -x2290 -x2289 -x2288 -x2287 -x2286 -x2285 -x2284
727.45/727.62 v -x2283 -x2282 -x2281 -x2280 -x2279 -x2278 -x2277 -x2276 -x2275 -x2274 -x2273 -x2272 -x2271 -x2270 -x2269 -x2268 -x2267 -x2266
727.45/727.62 v -x2265 -x2264 -x2263 -x2262 -x2261 -x2260 -x2259 -x2258 -x2257 -x2256 -x2255 -x2254 -x2253 -x2252 -x2251 -x2250 -x2249
727.45/727.62 v -x2248 -x2247 x2246 -x2245 -x2244 -x2243 -x2242 -x2241 -x2240 -x2239 -x2238 -x2237 -x2236 -x2235 -x2234 -x2233 -x2232 -x2231
727.45/727.62 v -x2230 -x2229 -x2228 -x2227 -x2226 -x2225 -x2224 -x2223 -x2222 -x2221 -x2220 -x2219 -x2218 -x2217 -x2216 -x2215 -x2214 -x2213
727.45/727.62 v -x2212 -x2211 -x2210 -x2209 -x2208 -x2207 -x2206 -x2205 -x2204 -x2203 -x2202 -x2201 -x2200 -x2199 -x2198 -x2197 -x2196 -x2195
727.45/727.62 v -x2194 -x2193 -x2192 x2191 -x2190 -x2189 -x2188 -x2187 -x2186 -x2185 -x2184 -x2183 -x2182 -x2181 -x2180 x2179 x2178 x2177 x2176
727.45/727.62 v -x2175 -x2174 -x2173 -x2172 -x2171 -x2170 -x2169 -x2168 -x2167 -x2166 -x2165 -x2164 -x2163 -x2162 x2161 -x2160 -x2159 -x2158
727.45/727.62 v -x2157 -x2156 x2155 -x2154 -x2153 x2152 -x2151 -x2150 -x2149 -x2148 -x2147 -x2146 -x2145 -x2144 -x2143 -x2142 -x2141 -x2140
727.45/727.62 v -x2139 -x2138 -x2137 -x2136 -x2135 -x2134 -x2133 -x2132 -x2131 -x2130 -x2129 -x2128 -x2127 -x2126 -x2125 -x2124 -x2123 -x2122
727.45/727.62 v -x2121 -x2120 -x2119 -x2118 -x2117 -x2116 -x2115 -x2114 -x2113 -x2112 -x2111 x2110 -x2109 -x2108 -x2107 -x2106 -x2105 -x2104
727.45/727.62 v -x2103 -x2102 -x2101 -x2100 -x2099 -x2098 -x2097 -x2096 -x2095 -x2094 -x2093 x2092 -x2091 -x2090 -x2089 x2088 -x2087 -x2086
727.45/727.62 v -x2085 -x2084 -x2083 -x2082 -x2081 -x2080 -x2079 -x2078 -x2077 -x2076 -x2075 -x2074 x2073 -x2072 -x2071 -x2070 -x2069 -x2068
727.45/727.62 v -x2067 -x2066 -x2065 -x2064 -x2063 -x2062 -x2061 -x2060 -x2059 -x2058 -x2057 -x2056 -x2055 -x2054 -x2053 x2052 x2051 -x2050
727.45/727.62 v x2049 -x2048 -x2047 -x2046 -x2045 -x2044 -x2043 -x2042 -x2041 -x2040 x2039 -x2038 -x2037 -x2036 -x2035 -x2034 -x2033 -x2032
727.45/727.62 v -x2031 -x2030 -x2029 -x2028 -x2027 -x2026 -x2025 -x2024 -x2023 -x2022 -x2021 -x2020 -x2019 -x2018 -x2017 -x2016 -x2015 x2014
727.45/727.62 v -x2013 -x2012 -x2011 -x2010 -x2009 -x2008 -x2007 -x2006 -x2005 -x2004 -x2003 -x2002 -x2001 x2000 -x1999 -x1998 -x1997 -x1996
727.45/727.62 v -x1995 -x1994 -x1993 -x1992 -x1991 -x1990 -x1989 -x1988 -x1987 -x1986 -x1985 -x1984 -x1983 -x1982 -x1981 -x1980 -x1979 -x1978
727.45/727.62 v -x1977 -x1976 -x1975 -x1974 x1973 -x1972 -x1971 x1970 -x1969 -x1968 -x1967 -x1966 -x1965 -x1964 -x1963 -x1962 x1961 -x1960
727.45/727.62 v x1959 x1958 -x1957 -x1956 -x1955 -x1954 -x1953 -x1952 -x1951 -x1950 -x1949 x1948 x1947 x1946 -x1945 -x1944 -x1943 -x1942 -x1941
727.45/727.62 v -x1940 -x1939 x1938 x1937 x1936 x1935 -x1934 -x1933 -x1932 -x1931 x1930 -x1929 -x1928 -x1927 -x1926 x1925 -x1924 -x1923 -x1922
727.45/727.62 v -x1921 -x1920 -x1919 -x1918 -x1917 -x1916 x1915 x1914 -x1913 -x1912 x1911 -x1910 -x1909 -x1908 -x1907 x1906 -x1905 -x1904
727.45/727.62 v -x1903 -x1902 -x1901 -x1900 -x1899 x1898 -x1897 -x1896 -x1895 -x1894 -x1893 -x1892 -x1891 -x1890 -x1889 x1888 -x1887 -x1886
727.45/727.62 v -x1885 -x1884 -x1883 -x1882 -x1881 -x1880 -x1879 -x1878 -x1877 x1876 -x1875 -x1874 -x1873 -x1872 x1871 -x1870 -x1869 -x1868
727.45/727.62 v -x1867 -x1866 -x1865 x1864 -x1863 -x1862 -x1861 -x1860 -x1859 -x1858 -x1857 -x1856 x1855 x1854 x1853 -x1852 -x1851 -x1850 -x1849
727.45/727.62 v -x1848 -x1847 -x1846 -x1845 -x1844 -x1843 -x1842 -x1841 -x1840 -x1839 -x1838 -x1837 x1836 -x1835 -x1834 -x1833 -x1832 -x1831
727.45/727.62 v -x1830 -x1829 x1828 -x1827 -x1826 -x1825 -x1824 -x1823 -x1822 -x1821 x1820 -x1819 -x1818 -x1817 -x1816 -x1815 -x1814 -x1813
727.45/727.62 v x1812 -x1811 -x1810 -x1809 -x1808 -x1807 -x1806 -x1805 -x1804 -x1803 -x1802 -x1801 -x1800 -x1799 -x1798 -x1797 -x1796 -x1795
727.45/727.62 v -x1794 -x1793 -x1792 -x1791 -x1790 x1789 -x1788 -x1787 -x1786 -x1785 -x1784 -x1783 -x1782 -x1781 -x1780 -x1779 -x1778 -x1777
727.45/727.62 v -x1776 -x1775 -x1774 x1773 -x1772 -x1771 -x1770 -x1769 -x1768 -x1767 -x1766 -x1765 -x1764 -x1763 -x1762 -x1761 -x1760 -x1759
727.45/727.62 v -x1758 -x1757 -x1756 -x1755 -x1754 -x1753 -x1752 -x1751 -x1750 x1749 -x1748 -x1747 -x1746 -x1745 -x1744 -x1743 -x1742 -x1741
727.45/727.62 v -x1740 -x1739 -x1738 -x1737 -x1736 x1735 -x1734 -x1733 -x1732 -x1731 -x1730 -x1729 -x1728 -x1727 x1726 -x1725 -x1724 -x1723
727.45/727.62 v -x1722 -x1721 -x1720 -x1719 -x1718 -x1717 -x1716 -x1715 -x1714 -x1713 -x1712 -x1711 -x1710 -x1709 -x1708 -x1707 -x1706 -x1705
727.45/727.62 v -x1704 -x1703 -x1702 -x1701 -x1700 -x1699 -x1698 x1697 x1696 x1695 -x1694 -x1693 -x1692 -x1691 -x1690 -x1689 -x1688 -x1687
727.45/727.62 v -x1686 -x1685 -x1684 -x1683 -x1682 -x1681 -x1680 -x1679 -x1678 -x1677 -x1676 -x1675 -x1674 x1673 -x1672 -x1671 -x1670 -x1669
727.45/727.62 v -x1668 -x1667 -x1666 -x1665 -x1664 -x1663 x1662 x1661 x1660 -x1659 -x1658 -x1657 -x1656 -x1655 -x1654 -x1653 -x1652 x1651 -x1650
727.45/727.62 v -x1649 -x1648 -x1647 -x1646 -x1645 -x1644 -x1643 -x1642 -x1641 x1640 -x1639 -x1638 -x1637 -x1636 -x1635 -x1634 -x1633 -x1632
727.45/727.62 v -x1631 -x1630 -x1629 -x1628 -x1627 -x1626 -x1625 -x1624 -x1623 -x1622 x1621 -x1620 -x1619 -x1618 -x1617 -x1616 -x1615 -x1614
727.45/727.62 v -x1613 -x1612 -x1611 -x1610 -x1609 -x1608 -x1607 -x1606 x1605 -x1604 -x1603 -x1602 -x1601 -x1600 -x1599 -x1598 -x1597 -x1596
727.45/727.62 v -x1595 -x1594 -x1593 -x1592 -x1591 -x1590 -x1589 x1588 -x1587 -x1586 -x1585 -x1584 -x1583 -x1582 -x1581 -x1580 -x1579 -x1578
727.45/727.62 v -x1577 -x1576 -x1575 -x1574 -x1573 -x1572 -x1571 -x1570 -x1569 -x1568 -x1567 -x1566 -x1565 -x1564 -x1563 -x1562 -x1561
727.45/727.62 v x1560 -x1559 -x1558 -x1557 -x1556 -x1555 -x1554 -x1553 -x1552 x1551 -x1550 -x1549 -x1548 -x1547 -x1546 -x1545 -x1544 -x1543 -x1542
727.45/727.62 v -x1541 -x1540 -x1539 -x1538 x1537 -x1536 -x1535 -x1534 -x1533 -x1532 -x1531 -x1530 -x1529 -x1528 -x1527 -x1526 -x1525 x1524
727.45/727.62 v x1523 x1522 -x1521 -x1520 -x1519 -x1518 -x1517 -x1516 -x1515 -x1514 -x1513 -x1512 -x1511 -x1510 -x1509 -x1508 x1507 -x1506
727.45/727.62 v -x1505 -x1504 -x1503 -x1502 -x1501 -x1500 -x1499 -x1498 -x1497 -x1496 -x1495 -x1494 -x1493 -x1492 -x1491 -x1490 -x1489 -x1488
727.45/727.62 v -x1487 -x1486 -x1485 -x1484 -x1483 -x1482 -x1481 -x1480 -x1479 -x1478 x1477 x1476 x1475 -x1474 -x1473 -x1472 -x1471 -x1470
727.45/727.62 v -x1469 -x1468 -x1467 -x1466 x1465 -x1464 -x1463 -x1462 -x1461 -x1460 -x1459 -x1458 -x1457 -x1456 -x1455 -x1454 -x1453 x1452
727.45/727.62 v -x1451 -x1450 -x1449 x1448 -x1447 -x1446 -x1445 -x1444 x1443 -x1442 x1441 -x1440 -x1439 -x1438 -x1437 x1436 -x1435 -x1434 -x1433
727.45/727.62 v -x1432 -x1431 x1430 x1429 -x1428 -x1427 x1426 x1425 -x1424 -x1423 -x1422 -x1421 -x1420 -x1419 -x1418 -x1417 -x1416 -x1415
727.45/727.62 v -x1414 -x1413 -x1412 -x1411 -x1410 -x1409 -x1408 -x1407 -x1406 -x1405 -x1404 -x1403 -x1402 -x1401 -x1400 -x1399 -x1398 -x1397
727.45/727.62 v -x1396 -x1395 -x1394 -x1393 x1392 -x1391 -x1390 x1389 -x1388 -x1387 -x1386 -x1385 -x1384 -x1383 -x1382 -x1381 -x1380 x1379
727.45/727.62 v -x1378 -x1377 x1376 -x1375 -x1374 -x1373 -x1372 -x1371 -x1370 -x1369 -x1368 x1367 -x1366 -x1365 x1364 -x1363 -x1362 -x1361 -x1360
727.45/727.62 v -x1359 -x1358 -x1357 -x1356 x1355 -x1354 -x1353 x1352 -x1351 -x1350 -x1349 -x1348 -x1347 -x1346 -x1345 -x1344 x1343 -x1342
727.45/727.62 v -x1341 x1340 -x1339 -x1338 -x1337 -x1336 -x1335 -x1334 -x1333 -x1332 x1331 -x1330 -x1329 x1328 -x1327 -x1326 -x1325 -x1324
727.45/727.62 v -x1323 -x1322 -x1321 -x1320 -x1319 x1318 -x1317 x1316 -x1315 -x1314 -x1313 -x1312 -x1311 -x1310 -x1309 -x1308 -x1307 x1306
727.45/727.62 v -x1305 x1304 -x1303 -x1302 -x1301 -x1300 -x1299 -x1298 -x1297 -x1296 x1295 -x1294 -x1293 x1292 -x1291 -x1290 -x1289 -x1288 -x1287
727.45/727.62 v -x1286 -x1285 -x1284 x1283 -x1282 -x1281 -x1280 -x1279 -x1278 -x1277 -x1276 -x1275 x1274 -x1273 -x1272 -x1271 x1270 -x1269
727.45/727.62 v x1268 -x1267 -x1266 -x1265 -x1264 -x1263 -x1262 -x1261 -x1260 -x1259 -x1258 -x1257 -x1256 -x1255 -x1254 -x1253 -x1252 -x1251
727.45/727.62 v -x1250 -x1249 -x1248 -x1247 -x1246 -x1245 -x1244 -x1243 -x1242 -x1241 -x1240 -x1239 -x1238 -x1237 x1236 -x1235 -x1234 -x1233
727.45/727.62 v -x1232 -x1231 -x1230 x1229 -x1228 -x1227 x1226 -x1225 -x1224 -x1223 -x1222 -x1221 -x1220 x1219 -x1218 -x1217 x1216 -x1215
727.45/727.62 v -x1214 -x1213 -x1212 -x1211 -x1210 x1209 -x1208 -x1207 x1206 -x1205 -x1204 -x1203 -x1202 -x1201 -x1200 x1199 -x1198 -x1197 x1196
727.45/727.62 v -x1195 -x1194 -x1193 -x1192 -x1191 -x1190 -x1189 x1188 -x1187 x1186 -x1185 -x1184 -x1183 -x1182 -x1181 -x1180 -x1179 x1178
727.45/727.62 v -x1177 x1176 -x1175 -x1174 -x1173 -x1172 -x1171 x1170 -x1169 -x1168 x1167 -x1166 -x1165 -x1164 -x1163 -x1162 x1161 -x1160 -x1159
727.45/727.62 v -x1158 -x1157 -x1156 -x1155 -x1154 -x1153 -x1152 -x1151 -x1150 -x1149 -x1148 -x1147 -x1146 -x1145 -x1144 -x1143 x1142 -x1141
727.45/727.62 v -x1140 -x1139 -x1138 -x1137 x1136 -x1135 -x1134 -x1133 -x1132 -x1131 x1130 -x1129 -x1128 -x1127 -x1126 -x1125 -x1124 -x1123
727.45/727.62 v -x1122 -x1121 -x1120 -x1119 x1118 -x1117 -x1116 -x1115 -x1114 -x1113 -x1112 -x1111 -x1110 -x1109 -x1108 -x1107 x1106 -x1105
727.45/727.62 v -x1104 -x1103 x1102 -x1101 -x1100 -x1099 x1098 -x1097 -x1096 -x1095 -x1094 -x1093 x1092 -x1091 -x1090 -x1089 -x1088 -x1087
727.45/727.62 v -x1086 -x1085 -x1084 -x1083 -x1082 -x1081 -x1080 -x1079 -x1078 -x1077 -x1076 -x1075 -x1074 -x1073 -x1072 -x1071 -x1070 -x1069
727.45/727.62 v -x1068 -x1067 -x1066 x1065 -x1064 -x1063 -x1062 -x1061 -x1060 -x1059 -x1058 -x1057 -x1056 -x1055 x1054 -x1053 -x1052 -x1051
727.45/727.62 v -x1050 -x1049 -x1048 -x1047 x1046 -x1045 -x1044 -x1043 -x1042 -x1041 -x1040 -x1039 x1038 -x1037 -x1036 -x1035 -x1034 -x1033
727.45/727.62 v -x1032 -x1031 x1030 -x1029 -x1028 -x1027 -x1026 -x1025 -x1024 -x1023 -x1022 x1021 -x1020 -x1019 -x1018 -x1017 -x1016 -x1015
727.45/727.62 v -x1014 -x1013 -x1012 -x1011 -x1010 x1009 -x1008 -x1007 -x1006 -x1005 -x1004 x1003 -x1002 x1001 -x1000 -x999 -x998 -x997 -x996
727.45/727.62 v -x995 -x994 x993 -x992 -x991 -x990 -x989 -x988 -x987 x986 x985 -x984 -x983 -x982 x981 -x980 -x979 -x978 -x977 -x976 -x975 -x974
727.45/727.62 v -x973 -x972 -x971 -x970 -x969 -x968 x967 -x966 -x965 -x964 -x963 -x962 x961 -x960 -x959 -x958 -x957 -x956 -x955 -x954 x953
727.45/727.62 v -x952 -x951 -x950 x949 -x948 x947 -x946 -x945 -x944 x943 x942 x941 x940 x939 x938 x937 x936 x935 x934 x933 x932 x931 x930 x929
727.45/727.62 v x928 x927 x926 x925 x924 x923 x922 x921 x920 -x919 -x918 -x917 -x916 -x915 x914 -x913 -x912 -x911 -x910 x909 -x908 -x907
727.45/727.62 v x906 -x905 -x904 -x903 -x902 x901 -x900 -x899 x898 -x897 -x896 -x895 -x894 x893 -x892 -x891 x890 -x889 -x888 -x887 -x886 x885
727.45/727.62 v -x884 -x883 x882 -x881 -x880 -x879 -x878 -x877 x876 -x875 x874 -x873 -x872 -x871 -x870 -x869 x868 -x867 x866 -x865 -x864 -x863
727.45/727.62 v x862 -x861 -x860 x859 -x858 -x857 -x856 x855 -x854 -x853 -x852 x851 x850 -x849 -x848 -x847 -x846 -x845 -x844 -x843 -x842 x841
727.45/727.62 v x840 x839 -x838 -x837 -x836 -x835 -x834 -x833 -x832 -x831 -x830 -x829 x828 -x827 x826 x825 -x824 -x823 -x822 -x821 -x820
727.45/727.62 v x819 -x818 x817 x816 -x815 -x814 x813 x812 x811 -x810 -x809 -x808 -x807 -x806 -x805 -x804 -x803 x802 -x801 -x800 -x799 -x798
727.45/727.62 v x797 -x796 -x795 -x794 -x793 x792 -x791 x790 -x789 -x788 -x787 x786 x785 x784 x783 x782 -x781 x780 x779 x778 x777 x776 x775 x774
727.45/727.62 v x773 x772 x771 x770 x769 -x768 x767 -x766 x765 -x764 x763 -x762 x761 -x760 -x759 x758 x757 -x756 x755 -x754 x753 x752 -x751
727.45/727.62 v -x750 -x749 -x748 -x747 -x746 -x745 -x744 -x743 -x742 -x741 -x740 -x739 -x738 x737 -x736 -x735 -x734 -x733 -x732 -x731 x730
727.45/727.62 v -x729 x728 -x727 -x726 -x725 -x724 -x723 -x722 -x721 -x720 -x719 x718 -x717 x716 x715 x714 x713 -x712 x711 x710 x709 -x708
727.45/727.62 v -x707 x706 -x705 x704 x703 x702 -x701 x700 -x699 x698 -x697 -x696 -x695 -x694 -x693 -x692 -x691 -x690 -x689 -x688 -x687 -x686
727.45/727.62 v x685 x684 x683 -x682 -x681 -x680 -x679 -x678 -x677 -x676 -x675 -x674 -x673 -x672 -x671 -x670 x669 x668 -x667 x666 x665 x664
727.45/727.62 v x663 -x662 -x661 -x660 -x659 x658 -x657 -x656 -x655 -x654 -x653 -x652 -x651 -x650 -x649 -x648 -x647 -x646 -x645 -x644 -x643 x642
727.45/727.62 v -x641 x640 -x639 -x638 x637 -x636 x635 -x634 -x633 -x632 -x631 x630 x629 x628 x627 -x626 x625 -x624 -x623 x622 -x621 x620
727.45/727.62 v -x619 -x618 x617 -x616 x615 -x614 -x613 x612 -x611 x610 -x609 -x608 -x607 -x606 x605 x604 x603 -x602 -x601 -x600 -x599 -x598
727.45/727.62 v x597 -x596 -x595 -x594 -x593 -x592 -x591 -x590 -x589 -x588 -x587 -x586 -x585 -x584 x583 -x582 x581 -x580 -x579 x578 -x577 -x576
727.45/727.62 v x575 -x574 x573 -x572 -x571 x570 -x569 x568 -x567 x566 -x565 -x564 x563 -x562 x561 -x560 -x559 x558 -x557 -x556 x555 -x554
727.45/727.62 v -x553 -x552 x551 x550 x549 -x548 -x547 x546 x545 -x544 -x543 -x542 -x541 x540 -x539 -x538 -x537 -x536 -x535 -x534 -x533 -x532
727.45/727.62 v -x531 -x530 -x529 x528 -x527 -x526 x525 -x524 x523 -x522 x521 -x520 -x519 x518 -x517 x516 -x515 -x514 x513 -x512 -x511 x510
727.45/727.62 v -x509 x508 -x507 -x506 x505 -x504 -x503 -x502 x501 x500 x499 -x498 -x497 -x496 -x495 -x494 x493 -x492 -x491 -x490 -x489 -x488
727.45/727.62 v -x487 -x486 -x485 -x484 x483 -x482 -x481 x480 -x479 x478 -x477 x476 -x475 -x474 x473 -x472 -x471 x470 -x469 x468 -x467 x466
727.45/727.62 v -x465 -x464 -x463 -x462 x461 x460 x459 -x458 -x457 x456 x455 x454 x453 x452 -x451 x450 -x449 -x448 -x447 -x446 -x445 -x444
727.45/727.62 v -x443 x442 -x441 x440 -x439 -x438 x437 -x436 x435 -x434 -x433 x432 -x431 x430 -x429 -x428 x427 -x426 -x425 -x424 -x423 x422 -x421
727.45/727.62 v x420 x419 -x418 -x417 x416 x415 x414 x413 x412 x411 -x410 x409 -x408 -x407 x406 -x405 x404 -x403 -x402 x401 x400 -x399 x398
727.45/727.62 v x397 x396 x395 x394 x393 x392 x391 -x390 x389 -x388 -x387 -x386 x385 -x384 -x383 x382 -x381 -x380 -x379 x378 x377 x376 -x375
727.45/727.62 v -x374 x373 x372 -x371 x370 -x369 -x368 -x367 x366 x365 x364 -x363 -x362 x361 x360 x359 x358 -x357 -x356 x355 -x354 x353 -x352
727.45/727.62 v x351 x350 x349 -x348 -x347 -x346 -x345 -x344 -x343 -x342 -x341 -x340 -x339 -x338 x337 x336 -x335 -x334 -x333 -x332 -x331
727.45/727.62 v x330 -x329 -x328 -x327 x326 -x325 -x324 -x323 x322 -x321 -x320 -x319 -x318 x317 -x316 -x315 x314 x313 x312 x311 x310 x309 x308
727.45/727.62 v x307 x306 x305 -x304 -x303 -x302 -x301 x300 -x299 -x298 -x297 -x296 -x295 -x294 -x293 -x292 x291 -x290 -x289 -x288 -x287 -x286
727.45/727.62 v -x285 -x284 -x283 -x282 x281 -x280 -x279 -x278 -x277 -x276 x275 -x274 -x273 -x272 -x271 -x270 -x269 x268 -x267 x266 -x265
727.45/727.62 v -x264 -x263 -x262 -x261 x260 -x259 -x258 -x257 -x256 -x255 -x254 x253 -x252 x251 -x250 -x249 -x248 -x247 -x246 x245 -x244 -x243
727.45/727.62 v -x242 x241 x240 x239 -x238 -x237 -x236 x235 -x234 x233 -x232 -x231 -x230 x229 -x228 -x227 -x226 -x225 x224 x223 x222 x221
727.45/727.62 v -x220 x219 x218 -x217 -x216 -x215 -x214 -x213 -x212 -x211 -x210 -x209 x208 x207 -x206 -x205 -x204 -x203 x202 -x201 -x200 -x199
727.45/727.62 v x198 -x197 -x196 -x195 -x194 x193 -x192 -x191 x190 x189 x188 x187 x186 x185 x184 x183 -x182 -x181 -x180 -x179 -x178 -x177
727.45/727.62 v x176 -x175 x174 -x173 -x172 -x171 -x170 -x169 -x168 -x167 x166 -x165 -x164 -x163 -x162 x161 -x160 -x159 x158 -x157 -x156 -x155
727.45/727.62 v -x154 -x153 -x152 x151 -x150 -x149 -x148 -x147 x146 -x145 -x144 x143 -x142 x141 -x140 -x139 -x138 -x137 -x136 -x135 -x134
727.45/727.62 v x133 -x132 -x131 -x130 -x129 x128 -x127 x126 -x125 x124 -x123 -x122 x121 -x120 x119 x118 x117 x116 x115 -x114 -x113 x112 -x111
727.45/727.62 v x110 x109 x108 x107 -x106 x105 -x104 -x103 x102 x101 x100 x99 -x98 -x97 -x96 x95 -x94 -x93 -x92 -x91 x90 x89 -x88 x87 -x86
727.45/727.62 v -x85 -x84 -x83 -x82 -x81 -x80 x79 x78 x77 x76 x75 x74 x73 -x72 x71 -x70 -x69 -x68 -x67 -x66 x65 -x64 -x63 -x62 -x61 x60 -x59
727.45/727.62 v -x58 -x57 x56 -x55 -x54 x53 -x52 x51 -x50 -x49 -x48 x47 x46 x45 x44 x43 x42 -x41 x40 x39 -x38 -x37 x36 -x35 -x34 -x33 x32 x31
727.45/727.62 v x30 -x29 x28 -x27 -x26 -x25 x24 -x23 -x22 -x21 x20 -x19 -x18 x17 -x16 -x15 x14 x13 x12 -x11 x10 -x9 -x8 -x7 -x6 x5 x4 -x3 x2
727.45/727.62 v -x1
727.45/727.62 c SCIP Status : problem is solved [optimal solution found]
727.45/727.62 c Total Time : 727.61
727.45/727.62 c solving : 727.61
727.45/727.62 c presolving : 2.91 (included in solving)
727.45/727.62 c reading : 0.05 (included in solving)
727.45/727.62 c copying : 0.38 (5 #copies) (minimal 0.03, maximal 0.09, average 0.08)
727.45/727.62 c Original Problem :
727.45/727.62 c Problem name : HOME/instance-3717393-1338202080.wbo
727.45/727.62 c Variables : 14351 (14351 binary, 0 integer, 0 implicit integer, 0 continuous)
727.45/727.62 c Constraints : 10413 initial, 10413 maximal
727.45/727.62 c Objective sense : minimize
727.45/727.62 c Presolved Problem :
727.45/727.62 c Problem name : t_HOME/instance-3717393-1338202080.wbo
727.45/727.62 c Variables : 2235 (2235 binary, 0 integer, 0 implicit integer, 0 continuous)
727.45/727.62 c Constraints : 3912 initial, 5313 maximal
727.45/727.62 c Presolvers : ExecTime SetupTime FixedVars AggrVars ChgTypes ChgBounds AddHoles DelCons AddCons ChgSides ChgCoefs
727.45/727.62 c domcol : 0.00 0.00 0 0 0 0 0 0 0 0 0
727.45/727.62 c trivial : 0.07 0.00 20795 0 0 0 0 0 0 0 0
727.45/727.62 c dualfix : 0.02 0.00 56 0 0 0 0 0 0 0 0
727.45/727.62 c boundshift : 0.00 0.00 0 0 0 0 0 0 0 0 0
727.45/727.62 c inttobinary : 0.00 0.00 0 0 0 0 0 0 0 0 0
727.45/727.62 c convertinttobin : 0.00 0.00 0 0 0 0 0 0 0 0 0
727.45/727.62 c gateextraction : 0.03 0.00 0 0 0 0 0 7858 2611 0 0
727.45/727.62 c implics : 0.05 0.00 0 389 0 0 0 0 0 0 0
727.45/727.62 c components : 0.00 0.00 0 0 0 0 0 0 0 0 0
727.45/727.62 c pseudoobj : 0.00 0.02 0 0 0 78 0 0 0 0 0
727.45/727.62 c probing : 0.05 0.00 0 0 0 0 0 0 0 0 0
727.45/727.62 c varbound : 0.01 0.00 0 0 0 78 0 184 0 0 0
727.45/727.62 c knapsack : 0.07 0.00 0 0 0 0 0 3 4 35 133
727.45/727.62 c setppc : 0.10 0.00 29 66 0 0 0 463 0 1 0
727.45/727.62 c and : 0.75 0.00 101 477 0 0 0 858 485 0 295
727.45/727.62 c linear : 0.69 0.03 556 7 0 10886 0 11539 0 354 787
727.45/727.62 c indicator : 0.01 0.01 51 0 0 0 0 462 0 0 0
727.45/727.62 c logicor : 0.66 0.01 1 0 0 28 0 833 0 0 0
727.45/727.62 c bounddisjunction : 0.05 0.00 0 0 0 0 0 160 0 0 0
727.45/727.62 c root node : - - 20956 - - 20956 - - - - -
727.45/727.62 c Constraints : Number MaxNumber #Separate #Propagate #EnfoLP #EnfoPS #Check #ResProp Cutoffs DomReds Cuts Conss Children
727.45/727.62 c integral : 0 0 0 0 3602 0 3927 0 0 0 0 0 7198
727.45/727.62 c knapsack : 853 853 2 28760 0 0 1392 6800 260 8570 400 0 0
727.45/727.62 c setppc : 530 530 2 28500 0 0 22 14513 83 16737 21 0 0
727.45/727.62 c and : 1296 1296 3416 28417 0 0 18 71012 451 89155 16242 0 0
727.45/727.62 c logicor : 658+ 2204 2 18472 0 0 6 10821 273 8339 25 0 0
727.45/727.62 c bounddisjunction : 575 575 0 6375 0 0 0 428 22 549 0 0 0
727.45/727.62 c countsols : 0 0 0 0 3 0 1130 0 0 0 0 0 0
727.45/727.62 c Constraint Timings : TotalTime SetupTime Separate Propagate EnfoLP EnfoPS Check ResProp
727.45/727.62 c integral : 3.51 0.00 0.00 0.00 0.45 0.00 3.05 0.00
727.45/727.62 c knapsack : 0.70 0.00 0.00 0.67 0.00 0.00 0.01 0.01
727.45/727.62 c setppc : 0.42 0.00 0.00 0.40 0.00 0.00 0.00 0.01
727.45/727.62 c and : 1.75 0.00 0.85 0.85 0.00 0.00 0.01 0.04
727.45/727.62 c logicor : 0.75 0.01 0.00 0.71 0.00 0.00 0.00 0.02
727.45/727.62 c bounddisjunction : 0.21 0.00 0.00 0.21 0.00 0.00 0.00 0.00
727.45/727.62 c countsols : 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
727.45/727.62 c Propagators : #Propagate #ResProp Cutoffs DomReds
727.45/727.62 c rootredcost : 24 0 0 10283
727.45/727.62 c pseudoobj : 43712 23718 13 73941
727.45/727.62 c vbounds : 1256 25833 0 147254
727.45/727.62 c redcost : 6192 0 0 54491
727.45/727.62 c probing : 0 0 0 0
727.45/727.62 c Propagator Timings : TotalTime SetupTime Presolve Propagate ResProp
727.45/727.62 c rootredcost : 0.09 0.00 0.00 0.09 0.00
727.45/727.62 c pseudoobj : 7.43 0.02 0.00 1.50 5.91
727.45/727.62 c vbounds : 3.99 0.02 0.00 3.95 0.01
727.45/727.62 c redcost : 4.10 0.00 0.00 4.10 0.00
727.45/727.62 c probing : 0.05 0.00 0.05 0.00 0.00
727.45/727.62 c Conflict Analysis : Time Calls Success Conflicts Literals Reconvs ReconvLits LP Iters
727.45/727.62 c propagation : 6.25 1618 1617 8138 50.7 286 17.2 -
727.45/727.62 c infeasible LP : 0.39 260 260 430 11.1 14 9.9 0
727.45/727.62 c bound exceed. LP : 0.00 0 0 0 0.0 0 0.0 0
727.45/727.62 c strong branching : 0.00 0 0 0 0.0 0 0.0 0
727.45/727.62 c pseudo solution : 0.00 2 2 2 4.0 2 21.0 -
727.45/727.62 c applied globally : - - - 4801 37.3 - - -
727.45/727.62 c applied locally : - - - 0 0.0 - - -
727.45/727.62 c Separators : ExecTime SetupTime Calls Cutoffs DomReds Cuts Conss
727.45/727.62 c cut pool : 0.00 0 - - 0 - (maximal pool size: 837)
727.45/727.62 c closecuts : 0.00 0.00 0 0 0 0 0
727.45/727.62 c impliedbounds : 0.01 0.00 8 0 0 818 0
727.45/727.62 c intobj : 0.00 0.00 0 0 0 0 0
727.45/727.62 c gomory : 2.97 0.00 8 0 0 400 0
727.45/727.62 c cgmip : 0.00 0.00 0 0 0 0 0
727.45/727.62 c strongcg : 4.25 0.00 8 0 0 4000 0
727.45/727.62 c cmir : 3.62 0.00 8 0 0 561 0
727.45/727.62 c flowcover : 2.60 0.00 8 0 0 1593 0
727.45/727.62 c clique : 0.09 0.00 3 0 0 13 0
727.45/727.62 c zerohalf : 0.00 0.00 0 0 0 0 0
727.45/727.62 c mcf : 0.08 0.00 3 0 0 0 0
727.45/727.62 c oddcycle : 0.00 0.00 0 0 0 0 0
727.45/727.62 c rapidlearning : 15.24 0.00 1 0 0 0 1226
727.45/727.62 c Pricers : ExecTime SetupTime Calls Vars
727.45/727.62 c problem variables: 0.00 - 0 0
727.45/727.62 c Branching Rules : ExecTime SetupTime Calls Cutoffs DomReds Cuts Conss Children
727.45/727.62 c inference : 0.45 0.00 3599 0 0 0 0 7198
727.45/727.62 c relpscost : 0.00 0.00 0 0 0 0 0 0
727.45/727.62 c pscost : 0.00 0.00 0 0 0 0 0 0
727.45/727.62 c mostinf : 0.00 0.00 0 0 0 0 0 0
727.45/727.62 c leastinf : 0.00 0.00 0 0 0 0 0 0
727.45/727.62 c fullstrong : 0.00 0.00 0 0 0 0 0 0
727.45/727.62 c allfullstrong : 0.00 0.00 0 0 0 0 0 0
727.45/727.62 c random : 0.00 0.00 0 0 0 0 0 0
727.45/727.62 c Primal Heuristics : ExecTime SetupTime Calls Found
727.45/727.62 c LP solutions : 0.01 - - 3
727.45/727.62 c pseudo solutions : 0.00 - - 0
727.45/727.62 c feaspump : 0.00 0.00 0 0
727.45/727.62 c oneopt : 0.24 0.00 26 0
727.45/727.62 c rootsoldiving : 9.75 0.00 3 0
727.45/727.62 c guideddiving : 133.21 0.00 12 6
727.45/727.62 c objpscostdiving : 7.81 0.00 6 0
727.45/727.62 c fracdiving : 56.88 0.00 14 0
727.45/727.62 c linesearchdiving : 43.49 0.00 29 2
727.45/727.62 c pscostdiving : 48.98 0.00 30 2
727.45/727.62 c veclendiving : 28.45 0.00 30 4
727.45/727.62 c smallcard : 0.00 0.00 0 0
727.45/727.62 c trivial : 0.03 0.00 2 1
727.45/727.62 c shiftandpropagate: 0.00 0.00 0 0
727.45/727.62 c simplerounding : 0.35 0.00 5984 0
727.45/727.62 c zirounding : 1.45 0.00 1000 0
727.45/727.62 c rounding : 0.94 0.00 1054 0
727.45/727.62 c shifting : 3.71 0.00 552 7
727.45/727.62 c intshifting : 0.00 0.00 0 0
727.45/727.62 c twoopt : 0.00 0.00 0 0
727.45/727.62 c indoneopt : 9.60 0.01 39 15
727.45/727.62 c indtwoopt : 0.00 0.01 0 0
727.45/727.62 c fixandinfer : 0.00 0.00 0 0
727.45/727.62 c clique : 0.00 0.00 0 0
727.45/727.62 c coefdiving : 78.39 0.00 12 7
727.45/727.62 c indrounding : 40.88 0.00 3595 578
727.45/727.62 c indcoefdiving : 0.00 0.00 0 0
727.45/727.62 c nlpdiving : 0.00 0.00 0 0
727.45/727.62 c intdiving : 0.00 0.00 0 0
727.45/727.62 c actconsdiving : 0.00 0.00 0 0
727.45/727.62 c octane : 0.00 0.00 0 0
727.45/727.62 c rens : 0.77 0.00 1 0
727.45/727.62 c rins : 0.00 0.00 0 0
727.45/727.62 c localbranching : 0.00 0.00 0 0
727.45/727.62 c mutation : 0.00 0.00 0 0
727.45/727.62 c crossover : 2.37 0.00 3 2
727.45/727.62 c dins : 0.00 0.00 0 0
727.45/727.62 c vbounds : 0.00 0.00 0 0
727.45/727.62 c undercover : 0.00 0.00 0 0
727.45/727.62 c subnlp : 0.00 0.00 0 0
727.45/727.62 c trysol : 0.11 0.00 8 6
727.45/727.62 c LP : Time Calls Iterations Iter/call Iter/sec Time-0-It Calls-0-It
727.45/727.62 c primal LP : 0.02 3 0 0.00 0.00 0.02 3
727.45/727.62 c dual LP : 184.25 6379 559275 90.76 3035.43 1.36 217
727.45/727.62 c lex dual LP : 0.00 0 0 0.00 -
727.45/727.62 c barrier LP : 0.00 0 0 0.00 - 0.00 0
727.45/727.62 c diving/probing LP: 297.84 17095 477317 27.92 1602.61
727.45/727.62 c strong branching : 0.00 0 0 0.00 -
727.45/727.62 c (at root node) : - 0 0 0.00 -
727.45/727.62 c conflict analysis: 0.00 0 0 0.00 -
727.45/727.62 c B&B Tree :
727.45/727.62 c number of runs : 3
727.45/727.62 c nodes : 1519
727.45/727.62 c nodes (total) : 4396
727.45/727.62 c nodes left : 0
727.45/727.62 c max depth : 34
727.45/727.62 c max depth (total): 195
727.45/727.62 c backtracks : 439 (28.9%)
727.45/727.62 c delayed cutoffs : 750
727.45/727.62 c repropagations : 1431 (36693 domain reductions, 319 cutoffs)
727.45/727.62 c avg switch length: 3.38
727.45/727.62 c switching time : 4.19
727.45/727.62 c Solution :
727.45/727.62 c Solutions found : 633 (40 improvements)
727.45/727.62 c First Solution : +5.24425000000000e+05 (in run 1, after 0 nodes, 0.19 seconds, depth 0, found by <trivial>)
727.45/727.62 c Primal Bound : +1.00000000000000e+00 (in run 2, after 118 nodes, 683.57 seconds, depth 181, found by <linesearchdiving>)
727.45/727.62 c Dual Bound : +1.00000000000000e+00
727.45/727.62 c Gap : 0.00 %
727.45/727.62 c Root Dual Bound : +0.00000000000000e+00
727.45/727.62 c Root Iterations : 16825
727.55/727.70 c Time complete: 727.56.