0.00/0.00 c SCIP version 2.1.1.4 [precision: 8 byte] [memory: block] [mode: optimized] [LP solver: SoPlex 1.6.0.3] [GitHash: a3bf3a4-dirty]
0.00/0.00 c Copyright (c) 2002-2012 Konrad-Zuse-Zentrum fuer Informationstechnik Berlin (ZIB)
0.00/0.00 c
0.00/0.00 c user parameter file <scip.set> not found - using default parameters
0.00/0.00 c reading problem <HOME/instance-3717384-1338201784.wbo>
0.00/0.03 c original problem has 7549 variables (7549 bin, 0 int, 0 impl, 0 cont) and 3932 constraints
0.00/0.03 c problem read in 0.03
0.07/0.09 o 199975
0.07/0.10 c feasible solution found by trivial heuristic, objective value 1.999750e+05
0.07/0.10 c presolving:
0.09/0.12 c (round 1) 0 del vars, 1 del conss, 0 add conss, 0 chg bounds, 537 chg sides, 1074 chg coeffs, 0 upgd conss, 0 impls, 0 clqs
0.09/0.13 c (round 2) 0 del vars, 1 del conss, 0 add conss, 3931 chg bounds, 537 chg sides, 1074 chg coeffs, 0 upgd conss, 0 impls, 0 clqs
0.09/0.16 c (0.2s) probing: 51/7549 (0.7%) - 0 fixings, 0 aggregations, 0 implications, 0 bound changes
0.09/0.16 c (0.2s) probing aborted: 50/50 successive totally useless probings
0.09/0.16 c presolving (3 rounds):
0.09/0.16 c 0 deleted vars, 1 deleted constraints, 0 added constraints, 3931 tightened bounds, 0 added holes, 537 changed sides, 1074 changed coefficients
0.09/0.16 c 3931 implications, 0 cliques
0.09/0.16 c presolved problem has 11480 variables (7549 bin, 0 int, 3931 impl, 0 cont) and 7862 constraints
0.09/0.16 c 3931 constraints of type <linear>
0.09/0.16 c 3931 constraints of type <indicator>
0.09/0.16 c transformed objective value is always integral (scale: 1)
0.09/0.16 c Presolving Time: 0.12
0.09/0.16 c - non default parameters ----------------------------------------------------------------------
0.09/0.16 c # SCIP version 2.1.1.4
0.09/0.16 c
0.09/0.16 c # maximal time in seconds to run
0.09/0.16 c # [type: real, range: [0,1.79769313486232e+308], default: 1e+20]
0.09/0.16 c limits/time = 1797
0.09/0.16 c
0.09/0.16 c # maximal memory usage in MB; reported memory usage is lower than real memory usage!
0.09/0.16 c # [type: real, range: [0,1.79769313486232e+308], default: 1e+20]
0.09/0.16 c limits/memory = 13950
0.09/0.16 c
0.09/0.16 c # default clock type (1: CPU user seconds, 2: wall clock time)
0.09/0.16 c # [type: int, range: [1,2], default: 1]
0.09/0.16 c timing/clocktype = 2
0.09/0.16 c
0.09/0.16 c # belongs reading time to solving time?
0.09/0.16 c # [type: bool, range: {TRUE,FALSE}, default: FALSE]
0.09/0.16 c timing/reading = TRUE
0.09/0.16 c
0.09/0.16 c # force restart if we have a max FS instance and gap is 1?
0.09/0.16 c # [type: bool, range: {TRUE,FALSE}, default: FALSE]
0.09/0.16 c constraints/indicator/forcerestart = TRUE
0.09/0.16 c
0.09/0.16 c # priority of branching rule <inference>
0.09/0.16 c # [type: int, range: [-536870912,536870911], default: 1000]
0.09/0.16 c branching/inference/priority = 1000000
0.09/0.16 c
0.09/0.16 c # frequency offset for calling primal heuristic <coefdiving>
0.09/0.16 c # [type: int, range: [0,2147483647], default: 1]
0.09/0.16 c heuristics/coefdiving/freqofs = 0
0.09/0.16 c
0.09/0.16 c # frequency for calling primal heuristic <shiftandpropagate> (-1: never, 0: only at depth freqofs)
0.09/0.16 c # [type: int, range: [-1,2147483647], default: 0]
0.09/0.16 c heuristics/shiftandpropagate/freq = -1
0.09/0.16 c
0.09/0.16 c # frequency for calling primal heuristic <undercover> (-1: never, 0: only at depth freqofs)
0.09/0.16 c # [type: int, range: [-1,2147483647], default: 0]
0.09/0.16 c heuristics/undercover/freq = -1
0.09/0.16 c
0.09/0.16 c # frequency for calling separator <rapidlearning> (-1: never, 0: only in root node)
0.09/0.16 c # [type: int, range: [-1,2147483647], default: -1]
0.09/0.16 c separating/rapidlearning/freq = 0
0.09/0.16 c
0.09/0.16 c # frequency for calling primal heuristic <indrounding> (-1: never, 0: only at depth freqofs)
0.09/0.16 c # [type: int, range: [-1,2147483647], default: -1]
0.09/0.16 c heuristics/indrounding/freq = 1
0.09/0.16 c
0.09/0.16 c -----------------------------------------------------------------------------------------------
0.09/0.16 c start solving
0.09/0.18 c
0.09/0.19 o 29180
0.09/0.19 c time | node | left |LP iter|LP it/n| mem |mdpt |frac |vars |cons |cols |rows |cuts |confs|strbr| dualbound | primalbound | gap
0.09/0.19 c 6 0.2s| 1 | 0 | 0 | - | 28M| 0 | - | 11k|7862 | 0 | 0 | 0 | 0 | 0 | -- | 2.918000e+04 | Inf
2.99/3.07 o 5197
2.99/3.07 c 6 3.1s| 1 | 0 | 0 | - | 29M| 0 | - | 11k|7862 | 0 | 0 | 0 | 0 | 0 | -- | 5.197000e+03 | Inf
3.19/3.22 c 3.2s| 1 | 0 | 1903 | - | 37M| 0 | 871 | 11k|7862 | 11k|7862 | 0 | 0 | 0 | 5.659653e-02 | 5.197000e+03 | Large
3.19/3.25 o 3835
3.19/3.25 c s 3.2s| 1 | 0 | 1903 | - | 38M| 0 | 871 | 11k|7862 | 11k|7862 | 0 | 0 | 0 | 5.659653e-02 | 3.835000e+03 | Large
3.59/3.60 o 1658
3.59/3.60 c 6 3.6s| 1 | 0 | 1903 | - | 38M| 0 | 871 | 11k|7862 | 11k|7862 | 0 | 0 | 0 | 5.659653e-02 | 1.658000e+03 | Large
4.19/4.24 c 4.2s| 1 | 0 | 2394 | - | 39M| 0 | 647 | 11k|7862 | 11k|7957 | 95 | 0 | 0 | 1.000000e+00 | 1.658000e+03 | Large
4.30/4.39 o 969
4.30/4.39 c 6 4.4s| 1 | 0 | 2394 | - | 39M| 0 | 647 | 11k|7862 | 11k|7957 | 95 | 0 | 0 | 1.000000e+00 | 9.690000e+02 | Large
4.89/4.96 c 5.0s| 1 | 0 | 2921 | - | 39M| 0 | 810 | 11k|7862 | 11k|8097 | 235 | 0 | 0 | 1.000000e+00 | 9.690000e+02 | Large
5.69/5.79 c 5.8s| 1 | 0 | 4712 | - | 39M| 0 | 855 | 11k|7862 | 11k|8229 | 367 | 0 | 0 | 1.000000e+00 | 9.690000e+02 | Large
6.59/6.63 c 6.6s| 1 | 0 | 5979 | - | 40M| 0 | 832 | 11k|7862 | 11k|8378 | 516 | 0 | 0 | 1.000000e+00 | 9.690000e+02 | Large
7.60/7.62 c 7.6s| 1 | 0 | 7784 | - | 40M| 0 | 922 | 11k|7862 | 11k|8501 | 639 | 0 | 0 | 1.000000e+00 | 9.690000e+02 | Large
8.59/8.70 c 8.7s| 1 | 0 | 8409 | - | 40M| 0 | 949 | 11k|7862 | 11k|8621 | 759 | 0 | 0 | 1.000000e+00 | 9.690000e+02 | Large
17.69/17.73 c 17.7s| 1 | 2 | 25814 | - | 41M| 0 | 949 | 11k|7862 | 11k|8621 | 759 | 0 | 0 | 1.000000e+00 | 9.690000e+02 | Large
74.97/75.07 o 814
74.97/75.07 c g75.1s| 67 | 68 |116880 |1643.5 | 66M| 25 | - | 11k|7892 | 11k|8239 | 759 | 30 | 0 | 1.000000e+00 | 8.140000e+02 | Large
75.07/75.12 o 770
75.07/75.12 c g75.1s| 67 | 68 |116894 |1643.7 | 67M| 25 | - | 11k|7892 | 11k|8239 | 759 | 30 | 0 | 1.000000e+00 | 7.700000e+02 | Large
75.47/75.52 o 533
75.47/75.52 c time | node | left |LP iter|LP it/n| mem |mdpt |frac |vars |cons |cols |rows |cuts |confs|strbr| dualbound | primalbound | gap
75.47/75.52 c 675.5s| 68 | 67 |117125 |1622.6 | 59M| 25 | - | 11k|7892 | 0 | 0 | 759 | 30 | 0 | 1.000000e+00 | 5.330000e+02 | Large
75.57/75.65 o 450
75.57/75.65 c 675.6s| 68 | 67 |117288 |1625.1 | 60M| 25 | 899 | 11k|7892 | 11k|8239 | 759 | 30 | 0 | 1.000000e+00 | 4.500000e+02 | Large
90.37/90.40 o 256
90.37/90.40 c g90.4s| 74 | 75 |132091 |1694.3 | 69M| 25 | - | 11k|7892 | 11k|8239 | 759 | 30 | 0 | 1.000000e+00 | 2.560000e+02 | Large
90.57/90.61 o 229
90.57/90.61 c 690.6s| 75 | 74 |132205 |1672.9 | 62M| 25 | - | 11k|7896 | 0 | 0 | 759 | 34 | 0 | 1.000000e+00 | 2.290000e+02 | Large
101.97/102.08 c 102s| 100 | 101 |145118 |1380.9 | 65M| 31 | 768 | 11k|7901 | 11k|8239 | 759 | 39 | 0 | 1.000000e+00 | 2.290000e+02 | Large
114.15/114.28 c 114s| 200 | 201 |155752 | 740.4 | 66M| 95 | 535 | 11k|7910 | 11k|8239 | 759 | 48 | 0 | 1.000000e+00 | 2.290000e+02 | Large
125.06/125.13 c 125s| 300 | 299 |186062 | 594.2 | 69M| 102 | 421 | 11k|7919 | 11k|8239 | 759 | 57 | 0 | 1.000000e+00 | 2.290000e+02 | Large
140.26/140.38 c 140s| 400 | 399 |203030 | 487.8 | 70M| 105 | 840 | 11k|7922 | 11k|8239 | 759 | 60 | 0 | 1.000000e+00 | 2.290000e+02 | Large
153.26/153.30 c 153s| 500 | 493 |219534 | 423.1 | 73M| 105 | 453 | 11k|7951 | 11k|8239 | 759 | 89 | 0 | 1.000000e+00 | 2.290000e+02 | Large
162.66/162.72 c 163s| 600 | 587 |232159 | 373.5 | 76M| 105 | 423 | 11k|8028 | 11k|8239 | 759 | 166 | 0 | 1.000000e+00 | 2.290000e+02 | Large
165.55/165.64 c 166s| 700 | 679 |237635 | 327.9 | 78M| 108 | 482 | 11k|8033 | 11k|8239 | 759 | 171 | 0 | 1.000000e+00 | 2.290000e+02 | Large
175.25/175.37 c 175s| 800 | 771 |248200 | 300.1 | 80M| 108 | 538 | 11k|8051 | 11k|8239 | 759 | 189 | 0 | 1.000000e+00 | 2.290000e+02 | Large
179.35/179.45 c 179s| 900 | 867 |254732 | 274.0 | 82M| 113 | 465 | 11k|8061 | 11k|8239 | 759 | 199 | 0 | 1.000000e+00 | 2.290000e+02 | Large
181.65/181.79 c 182s| 1000 | 949 |258465 | 250.3 | 85M| 113 | 442 | 11k|8075 | 11k|8239 | 759 | 213 | 0 | 1.000000e+00 | 2.290000e+02 | Large
199.85/199.93 o 228
199.85/199.93 c f 200s| 1062 | 1003 |275609 | 251.8 | 93M| 113 | - | 11k|8255 | 11k|8239 | 759 | 393 | 0 | 1.000000e+00 | 2.280000e+02 | Large
199.95/200.04 o 29
199.95/200.04 c time | node | left |LP iter|LP it/n| mem |mdpt |frac |vars |cons |cols |rows |cuts |confs|strbr| dualbound | primalbound | gap
199.95/200.04 c 6 200s| 1063 | 355 |275609 | 251.6 | 67M| 113 | - | 11k|8255 | 0 | 0 | 759 | 393 | 0 | 1.000000e+00 | 2.900000e+01 |2800.00%
201.04/201.14 c 201s| 1100 | 390 |277477 | 244.8 | 66M| 115 | 459 | 11k|5258 | 11k|8239 | 759 | 397 | 0 | 1.000000e+00 | 2.900000e+01 |2800.00%
203.25/203.37 c 203s| 1200 | 482 |280143 | 226.6 | 67M| 149 | 442 | 11k|5275 | 11k|8239 | 759 | 414 | 0 | 1.000000e+00 | 2.900000e+01 |2800.00%
206.75/206.87 c 207s| 1300 | 576 |282585 | 211.1 | 67M| 227 | 258 | 11k|5314 | 11k|8239 | 759 | 453 | 0 | 1.000000e+00 | 2.900000e+01 |2800.00%
208.64/208.76 c 209s| 1400 | 666 |283877 | 196.9 | 68M| 315 | 169 | 11k|5342 | 11k|8239 | 759 | 481 | 0 | 1.000000e+00 | 2.900000e+01 |2800.00%
210.45/210.53 c 211s| 1500 | 756 |285100 | 184.6 | 69M| 319 | 110 | 11k|5353 | 11k|8239 | 759 | 492 | 0 | 1.000000e+00 | 2.900000e+01 |2800.00%
212.74/212.84 c 213s| 1600 | 856 |289594 | 175.9 | 69M| 332 | 152 | 11k|5357 | 11k|8239 | 759 | 496 | 0 | 1.000000e+00 | 2.900000e+01 |2800.00%
213.94/214.07 c 214s| 1700 | 948 |290268 | 165.9 | 70M| 385 | 44 | 11k|5373 | 11k|8239 | 759 | 512 | 0 | 1.000000e+00 | 2.900000e+01 |2800.00%
215.15/215.28 c 215s| 1800 | 1046 |290577 | 156.8 | 70M| 464 | 23 | 11k|5374 | 11k|8239 | 759 | 513 | 0 | 1.000000e+00 | 2.900000e+01 |2800.00%
216.25/216.36 o 28
216.25/216.36 c s 216s| 1897 | 392 |290830 | 149.0 | 67M| 560 | - | 11k|5375 | 11k|8239 | 759 | 514 | 0 | 1.000000e+00 | 2.800000e+01 |2700.00%
216.25/216.39 o 23
216.25/216.39 c 6 216s| 1897 | 392 |290830 | 149.0 | 67M| 560 | - | 11k|5375 | 11k|8239 | 759 | 514 | 0 | 1.000000e+00 | 2.300000e+01 |2200.00%
216.45/216.52 c 217s| 1900 | 395 |291047 | 148.8 | 67M| 560 | 461 | 11k|5145 | 11k|8239 | 759 | 514 | 0 | 1.000000e+00 | 2.300000e+01 |2200.00%
218.15/218.20 c 218s| 2000 | 487 |293960 | 142.8 | 67M| 560 | 434 | 11k|5156 | 11k|8239 | 759 | 525 | 0 | 1.000000e+00 | 2.300000e+01 |2200.00%
219.75/219.83 c 220s| 2100 | 568 |296054 | 137.0 | 68M| 560 | - | 11k|5187 | 0 | 0 | 759 | 556 | 0 | 1.000000e+00 | 2.300000e+01 |2200.00%
220.95/221.03 c 221s| 2200 | 640 |297189 | 131.3 | 68M| 560 | 355 | 11k|5226 | 11k|8239 | 759 | 595 | 0 | 1.000000e+00 | 2.300000e+01 |2200.00%
222.14/222.24 c time | node | left |LP iter|LP it/n| mem |mdpt |frac |vars |cons |cols |rows |cuts |confs|strbr| dualbound | primalbound | gap
222.14/222.24 c 222s| 2300 | 724 |298242 | 126.1 | 69M| 560 | 251 | 11k|5244 | 11k|8239 | 759 | 613 | 0 | 1.000000e+00 | 2.300000e+01 |2200.00%
228.05/228.16 c 228s| 2400 | 800 |309752 | 125.6 | 69M| 560 | 669 | 11k|5301 | 11k|8239 | 759 | 670 | 0 | 1.000000e+00 | 2.300000e+01 |2200.00%
229.64/229.78 c 230s| 2500 | 817 |312396 | 121.6 | 69M| 560 | 415 | 11k|5312 | 11k|8239 | 759 | 681 | 0 | 1.000000e+00 | 2.300000e+01 |2200.00%
236.24/236.40 c 236s| 2600 | 917 |320344 | 120.0 | 70M| 560 | 506 | 11k|5339 | 11k|8239 | 759 | 708 | 0 | 1.000000e+00 | 2.300000e+01 |2200.00%
239.84/239.95 c 240s| 2700 | 1013 |324229 | 117.0 | 71M| 560 | 510 | 11k|5359 | 11k|8239 | 759 | 728 | 0 | 1.000000e+00 | 2.300000e+01 |2200.00%
241.44/241.59 c 242s| 2800 | 1107 |326744 | 113.7 | 71M| 560 | 383 | 11k|5365 | 11k|8239 | 759 | 734 | 0 | 1.000000e+00 | 2.300000e+01 |2200.00%
246.35/246.45 o 22
246.35/246.45 c f 246s| 2804 | 993 |330423 | 114.9 | 75M| 560 | - | 11k|5375 | 11k|8239 | 759 | 744 | 0 | 1.000000e+00 | 2.200000e+01 |2100.00%
246.44/246.51 o 16
246.44/246.51 c 6 247s| 2805 | 530 |330423 | 114.8 | 68M| 560 | - | 11k|5299 | 0 | 0 | 759 | 746 | 0 | 1.000000e+00 | 1.600000e+01 |1500.00%
249.04/249.19 c 249s| 2900 | 608 |337533 | 113.5 | 68M| 560 | 499 | 11k|5164 | 11k|8239 | 759 | 828 | 0 | 1.000000e+00 | 1.600000e+01 |1500.00%
250.64/250.78 c 251s| 3000 | 708 |339800 | 110.5 | 69M| 560 | 471 | 11k|5164 | 11k|8239 | 759 | 828 | 0 | 1.000000e+00 | 1.600000e+01 |1500.00%
256.34/256.47 o 15
256.34/256.47 c l 256s| 3010 | 568 |343266 | 111.3 | 73M| 560 | - | 11k|5168 | 11k|8239 | 759 | 832 | 0 | 1.000000e+00 | 1.500000e+01 |1400.00%
257.84/257.97 c 258s| 3100 | 654 |345865 | 108.9 | 69M| 560 | 478 | 11k|5125 | 11k|8239 | 759 | 837 | 0 | 1.000000e+00 | 1.500000e+01 |1400.00%
263.44/263.56 o 14
263.44/263.56 c l 264s| 3126 | 602 |349468 | 109.1 | 73M| 560 | - | 11k|5159 | 11k|8239 | 759 | 871 | 0 | 1.000000e+00 | 1.400000e+01 |1300.00%
264.43/264.58 c 265s| 3200 | 520 |351180 | 107.1 | 68M| 560 | 392 | 11k|5132 | 11k|8239 | 759 | 886 | 0 | 1.000000e+00 | 1.400000e+01 |1300.00%
265.64/265.78 c 266s| 3300 | 608 |352501 | 104.3 | 68M| 560 | 175 | 11k|5140 | 11k|8239 | 759 | 894 | 0 | 1.000000e+00 | 1.400000e+01 |1300.00%
268.13/268.27 c time | node | left |LP iter|LP it/n| mem |mdpt |frac |vars |cons |cols |rows |cuts |confs|strbr| dualbound | primalbound | gap
268.13/268.27 c 268s| 3400 | 704 |354244 | 101.7 | 69M| 560 | 110 | 11k|5143 | 11k|8239 | 759 | 897 | 0 | 1.000000e+00 | 1.400000e+01 |1300.00%
269.24/269.33 c 269s| 3500 | 792 |354696 | 99.0 | 69M| 560 | 62 | 11k|5153 | 11k|8239 | 759 | 907 | 0 | 1.000000e+00 | 1.400000e+01 |1300.00%
270.33/270.44 c 270s| 3600 | 888 |355127 | 96.3 | 70M| 560 | 31 | 11k|5155 | 11k|8239 | 759 | 909 | 0 | 1.000000e+00 | 1.400000e+01 |1300.00%
270.63/270.78 o 13
270.63/270.78 c s 271s| 3634 | 808 |355211 | 95.5 | 69M| 560 | - | 11k|5155 | 11k|8239 | 759 | 909 | 0 | 1.000000e+00 | 1.300000e+01 |1200.00%
270.73/270.81 o 12
270.73/270.81 c 6 271s| 3634 | 533 |355211 | 95.5 | 68M| 560 | - | 11k|5155 | 11k|8239 | 759 | 909 | 0 | 1.000000e+00 | 1.200000e+01 |1100.00%
270.73/270.82 c Forcing restart, since 3538 binary variables among 3931 have been fixed.
270.73/270.83 c (run 1, node 3635) performing user restart
270.73/270.83 c
270.73/270.85 c (restart) converted 4307 cuts from the global cut pool into linear constraints
270.73/270.85 c
270.84/270.91 c presolving:
270.93/271.00 c (round 1) 7215 del vars, 3774 del conss, 0 add conss, 85 chg bounds, 476 chg sides, 356 chg coeffs, 0 upgd conss, 24224 impls, 0 clqs
270.93/271.01 c (round 2) 7218 del vars, 3952 del conss, 0 add conss, 85 chg bounds, 476 chg sides, 356 chg coeffs, 5 upgd conss, 25322 impls, 0 clqs
270.93/271.02 c (round 3) 7218 del vars, 3958 del conss, 0 add conss, 85 chg bounds, 476 chg sides, 356 chg coeffs, 5 upgd conss, 25322 impls, 0 clqs
270.93/271.06 c (round 4) 7218 del vars, 3965 del conss, 0 add conss, 85 chg bounds, 476 chg sides, 356 chg coeffs, 4040 upgd conss, 25322 impls, 0 clqs
270.93/271.09 c (round 5) 7231 del vars, 3985 del conss, 23 add conss, 85 chg bounds, 558 chg sides, 808 chg coeffs, 4059 upgd conss, 25344 impls, 0 clqs
271.04/271.11 c (round 6) 7231 del vars, 3990 del conss, 23 add conss, 85 chg bounds, 560 chg sides, 855 chg coeffs, 4062 upgd conss, 25344 impls, 0 clqs
271.04/271.13 c (round 7) 7231 del vars, 3990 del conss, 23 add conss, 85 chg bounds, 560 chg sides, 856 chg coeffs, 4064 upgd conss, 25344 impls, 0 clqs
271.04/271.14 c (round 8) 7231 del vars, 5994 del conss, 684 add conss, 85 chg bounds, 560 chg sides, 856 chg coeffs, 4064 upgd conss, 25344 impls, 0 clqs
271.04/271.15 c (round 9) 7234 del vars, 6012 del conss, 702 add conss, 85 chg bounds, 560 chg sides, 856 chg coeffs, 4064 upgd conss, 25344 impls, 20 clqs
271.14/271.20 c (round 10) 7234 del vars, 6015 del conss, 705 add conss, 85 chg bounds, 560 chg sides, 856 chg coeffs, 4064 upgd conss, 25344 impls, 38 clqs
271.14/271.21 c presolving (11 rounds):
271.14/271.21 c 7234 deleted vars, 6015 deleted constraints, 705 added constraints, 85 tightened bounds, 0 added holes, 560 changed sides, 856 changed coefficients
271.14/271.21 c 25344 implications, 39 cliques
271.14/271.21 c presolved problem has 4246 variables (3875 bin, 0 int, 371 impl, 0 cont) and 4152 constraints
271.14/271.21 c 371 constraints of type <varbound>
271.14/271.21 c 1172 constraints of type <knapsack>
271.14/271.21 c 375 constraints of type <setppc>
271.14/271.21 c 619 constraints of type <and>
271.14/271.21 c 455 constraints of type <linear>
271.14/271.21 c 371 constraints of type <indicator>
271.14/271.21 c 416 constraints of type <logicor>
271.14/271.21 c 373 constraints of type <bounddisjunction>
271.14/271.21 c transformed objective value is always integral (scale: 1)
271.14/271.21 c Presolving Time: 0.46
271.14/271.21 c
271.24/271.40 c time | node | left |LP iter|LP it/n| mem |mdpt |frac |vars |cons |cols |rows |cuts |confs|strbr| dualbound | primalbound | gap
271.24/271.40 c 271s| 1 | 0 |356214 | - | 67M| 0 | 605 |4246 |4152 |4246 |4163 | 0 | 909 | 0 | 1.000000e+00 | 1.200000e+01 |1100.00%
274.43/274.56 c 275s| 1 | 0 |358078 | - | 71M| 0 | 805 |4246 |6113 |4246 |4445 | 282 | 909 | 0 | 1.000000e+00 | 1.200000e+01 |1100.00%
274.43/274.56 c 275s| 1 | 2 |358078 | - | 71M| 0 | 805 |4246 |6113 |4246 |4445 | 282 | 909 | 0 | 1.000000e+00 | 1.200000e+01 |1100.00%
283.14/283.20 o 11
283.14/283.20 c l 283s| 44 | 45 |377450 | 99.6 | 74M| 27 | - |4246 |6221 |4246 |4288 | 971 |1017 | 0 | 1.000000e+00 | 1.100000e+01 |1000.00%
283.14/283.24 o 8
283.14/283.24 c 6 283s| 45 | 44 |377450 | 99.5 | 72M| 27 | - |4246 |6221 | 0 | 0 | 971 |1017 | 0 | 1.000000e+00 | 8.000000e+00 | 700.00%
285.73/285.86 o 6
285.73/285.86 c g 286s| 47 | 48 |381516 | 100.6 | 74M| 27 | - |4246 |5896 |4246 |4288 | 971 |1017 | 0 | 1.000000e+00 | 6.000000e+00 | 500.00%
288.53/288.62 o 5
288.53/288.62 c l 289s| 54 | 55 |385430 | 101.5 | 73M| 27 | - |4246 |5739 |4246 |4288 | 971 |1042 | 0 | 1.000000e+00 | 5.000000e+00 | 400.00%
288.53/288.66 o 3
288.53/288.66 c 6 289s| 55 | 54 |385430 | 101.4 | 71M| 27 | - |4246 |5739 | 0 | 0 | 971 |1042 | 0 | 1.000000e+00 | 3.000000e+00 | 200.00%
290.93/291.05 o 2
290.93/291.05 c Forcing restart, since the absolute gap is 1.000000.
290.93/291.05 c f 291s| 57 | 58 |390029 | 102.6 | 73M| 29 | - |4246 |5198 |4246 |4285 | 973 |1092 | 0 | 1.000000e+00 | 2.000000e+00 | 100.00%
290.93/291.06 c (run 2, node 57) performing user restart
290.93/291.06 c
290.93/291.07 c (restart) converted 442 cuts from the global cut pool into linear constraints
290.93/291.07 c
290.93/291.08 c presolving:
291.03/291.11 c (round 1) 872 del vars, 631 del conss, 39 add conss, 0 chg bounds, 76 chg sides, 94 chg coeffs, 0 upgd conss, 29192 impls, 34 clqs
291.03/291.13 c (round 2) 881 del vars, 704 del conss, 103 add conss, 0 chg bounds, 123 chg sides, 187 chg coeffs, 0 upgd conss, 29260 impls, 34 clqs
291.03/291.15 c (round 3) 890 del vars, 745 del conss, 123 add conss, 0 chg bounds, 145 chg sides, 231 chg coeffs, 0 upgd conss, 29288 impls, 51 clqs
291.03/291.17 c (round 4) 899 del vars, 791 del conss, 157 add conss, 0 chg bounds, 179 chg sides, 299 chg coeffs, 17 upgd conss, 29356 impls, 51 clqs
291.03/291.18 c (round 5) 908 del vars, 826 del conss, 176 add conss, 0 chg bounds, 204 chg sides, 348 chg coeffs, 17 upgd conss, 29382 impls, 51 clqs
291.13/291.20 c (round 6) 917 del vars, 848 del conss, 203 add conss, 0 chg bounds, 233 chg sides, 404 chg coeffs, 17 upgd conss, 29452 impls, 51 clqs
291.13/291.26 c (round 7) 926 del vars, 928 del conss, 223 add conss, 0 chg bounds, 253 chg sides, 443 chg coeffs, 1360 upgd conss, 29478 impls, 51 clqs
291.23/291.30 c (round 8) 937 del vars, 985 del conss, 259 add conss, 0 chg bounds, 351 chg sides, 896 chg coeffs, 1363 upgd conss, 29556 impls, 52 clqs
291.23/291.34 c (round 9) 948 del vars, 1018 del conss, 284 add conss, 0 chg bounds, 383 chg sides, 955 chg coeffs, 1363 upgd conss, 29594 impls, 52 clqs
291.23/291.38 c (round 10) 959 del vars, 1045 del conss, 321 add conss, 0 chg bounds, 420 chg sides, 1027 chg coeffs, 1363 upgd conss, 29668 impls, 52 clqs
291.33/291.42 c (round 11) 970 del vars, 1087 del conss, 363 add conss, 0 chg bounds, 444 chg sides, 1076 chg coeffs, 1363 upgd conss, 29706 impls, 52 clqs
291.33/291.49 c (round 12) 981 del vars, 1155 del conss, 385 add conss, 0 chg bounds, 457 chg sides, 1103 chg coeffs, 1363 upgd conss, 29736 impls, 52 clqs
291.44/291.53 c (round 13) 983 del vars, 1198 del conss, 391 add conss, 0 chg bounds, 463 chg sides, 1115 chg coeffs, 1363 upgd conss, 29748 impls, 52 clqs
291.44/291.56 c (round 14) 985 del vars, 1204 del conss, 395 add conss, 0 chg bounds, 467 chg sides, 1123 chg coeffs, 1363 upgd conss, 29752 impls, 52 clqs
291.44/291.59 c (round 15) 987 del vars, 1208 del conss, 401 add conss, 0 chg bounds, 473 chg sides, 1135 chg coeffs, 1363 upgd conss, 29764 impls, 52 clqs
291.54/291.62 c (round 16) 989 del vars, 1214 del conss, 405 add conss, 0 chg bounds, 477 chg sides, 1143 chg coeffs, 1363 upgd conss, 29768 impls, 52 clqs
291.54/291.65 c (round 17) 991 del vars, 1218 del conss, 411 add conss, 0 chg bounds, 483 chg sides, 1155 chg coeffs, 1363 upgd conss, 29780 impls, 52 clqs
291.54/291.67 c (round 18) 993 del vars, 1226 del conss, 419 add conss, 0 chg bounds, 487 chg sides, 1163 chg coeffs, 1363 upgd conss, 29784 impls, 52 clqs
291.63/291.70 c (round 19) 995 del vars, 1234 del conss, 423 add conss, 0 chg bounds, 489 chg sides, 1167 chg coeffs, 1363 upgd conss, 29788 impls, 52 clqs
291.63/291.71 c (round 20) 995 del vars, 1242 del conss, 423 add conss, 0 chg bounds, 489 chg sides, 1167 chg coeffs, 1363 upgd conss, 29788 impls, 52 clqs
291.63/291.72 c (round 21) 995 del vars, 1261 del conss, 423 add conss, 0 chg bounds, 489 chg sides, 1167 chg coeffs, 1363 upgd conss, 29788 impls, 52 clqs
291.63/291.73 c (round 22) 995 del vars, 1772 del conss, 592 add conss, 2 chg bounds, 489 chg sides, 1167 chg coeffs, 1363 upgd conss, 29788 impls, 52 clqs
291.63/291.77 c (round 23) 1000 del vars, 1780 del conss, 595 add conss, 5 chg bounds, 489 chg sides, 1167 chg coeffs, 1363 upgd conss, 29788 impls, 55 clqs
291.73/291.80 c (round 24) 1004 del vars, 1780 del conss, 595 add conss, 5 chg bounds, 489 chg sides, 1167 chg coeffs, 1368 upgd conss, 29794 impls, 58 clqs
291.73/291.81 c (round 25) 1022 del vars, 1790 del conss, 595 add conss, 5 chg bounds, 489 chg sides, 1167 chg coeffs, 1368 upgd conss, 29794 impls, 55 clqs
291.73/291.82 c (round 26) 1051 del vars, 1818 del conss, 602 add conss, 6 chg bounds, 496 chg sides, 1185 chg coeffs, 1369 upgd conss, 29922 impls, 55 clqs
291.73/291.83 c (round 27) 1058 del vars, 1837 del conss, 619 add conss, 6 chg bounds, 513 chg sides, 1220 chg coeffs, 1369 upgd conss, 29970 impls, 55 clqs
291.83/291.91 c (round 28) 1064 del vars, 1856 del conss, 636 add conss, 6 chg bounds, 533 chg sides, 1254 chg coeffs, 1374 upgd conss, 30000 impls, 55 clqs
291.83/291.94 c (round 29) 1072 del vars, 1871 del conss, 651 add conss, 6 chg bounds, 549 chg sides, 1284 chg coeffs, 1374 upgd conss, 30020 impls, 55 clqs
291.83/291.97 c (round 30) 1080 del vars, 1888 del conss, 664 add conss, 6 chg bounds, 572 chg sides, 1320 chg coeffs, 1374 upgd conss, 30048 impls, 55 clqs
291.93/292.00 c (round 31) 1088 del vars, 1901 del conss, 677 add conss, 6 chg bounds, 589 chg sides, 1350 chg coeffs, 1374 upgd conss, 30068 impls, 55 clqs
291.93/292.03 c (round 32) 1096 del vars, 1914 del conss, 690 add conss, 6 chg bounds, 602 chg sides, 1376 chg coeffs, 1374 upgd conss, 30096 impls, 55 clqs
291.93/292.06 c (round 33) 1104 del vars, 1927 del conss, 702 add conss, 6 chg bounds, 614 chg sides, 1400 chg coeffs, 1374 upgd conss, 30116 impls, 55 clqs
291.93/292.09 c (round 34) 1112 del vars, 1939 del conss, 715 add conss, 6 chg bounds, 627 chg sides, 1426 chg coeffs, 1374 upgd conss, 30144 impls, 55 clqs
292.03/292.12 c (round 35) 1120 del vars, 1953 del conss, 727 add conss, 6 chg bounds, 639 chg sides, 1450 chg coeffs, 1374 upgd conss, 30164 impls, 55 clqs
292.03/292.15 c (round 36) 1128 del vars, 1967 del conss, 744 add conss, 6 chg bounds, 652 chg sides, 1476 chg coeffs, 1374 upgd conss, 30192 impls, 55 clqs
292.03/292.18 c (round 37) 1136 del vars, 1987 del conss, 760 add conss, 6 chg bounds, 660 chg sides, 1492 chg coeffs, 1374 upgd conss, 30204 impls, 55 clqs
292.13/292.21 c (round 38) 1142 del vars, 2008 del conss, 766 add conss, 6 chg bounds, 663 chg sides, 1498 chg coeffs, 1374 upgd conss, 30212 impls, 55 clqs
292.13/292.22 c (round 39) 1145 del vars, 2020 del conss, 766 add conss, 6 chg bounds, 663 chg sides, 1498 chg coeffs, 1374 upgd conss, 30212 impls, 55 clqs
292.13/292.22 c (round 40) 1147 del vars, 2020 del conss, 766 add conss, 6 chg bounds, 663 chg sides, 1498 chg coeffs, 1374 upgd conss, 30212 impls, 55 clqs
292.13/292.23 c (round 41) 1147 del vars, 2020 del conss, 766 add conss, 38 chg bounds, 663 chg sides, 1498 chg coeffs, 1374 upgd conss, 30212 impls, 55 clqs
292.13/292.26 c (round 42) 1212 del vars, 2084 del conss, 766 add conss, 70 chg bounds, 663 chg sides, 1498 chg coeffs, 1375 upgd conss, 30650 impls, 55 clqs
292.13/292.29 c (round 43) 1212 del vars, 2088 del conss, 768 add conss, 70 chg bounds, 663 chg sides, 1498 chg coeffs, 1375 upgd conss, 30650 impls, 55 clqs
292.23/292.32 c (round 44) 1212 del vars, 2089 del conss, 768 add conss, 70 chg bounds, 663 chg sides, 1498 chg coeffs, 1411 upgd conss, 30650 impls, 56 clqs
292.23/292.35 c (round 45) 1212 del vars, 2156 del conss, 790 add conss, 70 chg bounds, 663 chg sides, 1499 chg coeffs, 1411 upgd conss, 30650 impls, 57 clqs
292.23/292.36 c (round 46) 1212 del vars, 2157 del conss, 791 add conss, 70 chg bounds, 663 chg sides, 1499 chg coeffs, 1411 upgd conss, 30650 impls, 57 clqs
292.33/292.40 c (round 47) 1238 del vars, 2177 del conss, 791 add conss, 70 chg bounds, 663 chg sides, 1499 chg coeffs, 1411 upgd conss, 30650 impls, 54 clqs
292.33/292.41 c (round 48) 1238 del vars, 2188 del conss, 791 add conss, 70 chg bounds, 663 chg sides, 1499 chg coeffs, 1411 upgd conss, 30650 impls, 54 clqs
292.33/292.45 c presolving (49 rounds):
292.33/292.45 c 1238 deleted vars, 2188 deleted constraints, 791 added constraints, 70 tightened bounds, 0 added holes, 663 changed sides, 1499 changed coefficients
292.33/292.45 c 30650 implications, 54 cliques
292.33/292.45 c presolved problem has 3008 variables (3008 bin, 0 int, 0 impl, 0 cont) and 4225 constraints
292.33/292.45 c 1203 constraints of type <knapsack>
292.33/292.45 c 105 constraints of type <setppc>
292.33/292.45 c 656 constraints of type <and>
292.33/292.45 c 52 constraints of type <linear>
292.33/292.45 c 1262 constraints of type <logicor>
292.33/292.45 c 947 constraints of type <bounddisjunction>
292.33/292.45 c transformed objective value is always integral (scale: 1)
292.33/292.45 c Presolving Time: 1.83
292.33/292.45 c
292.33/292.50 c time | node | left |LP iter|LP it/n| mem |mdpt |frac |vars |cons |cols |rows |cuts |confs|strbr| dualbound | primalbound | gap
292.33/292.50 c 292s| 1 | 0 |390698 | - | 68M| 0 | 519 |3008 |4225 |3008 |2713 | 0 |1092 | 0 | 1.000000e+00 | 2.000000e+00 | 100.00%
292.74/292.80 c 293s| 1 | 0 |391253 | - | 69M| 0 | 635 |3008 |4225 |3008 |2921 | 208 |1092 | 0 | 1.000000e+00 | 2.000000e+00 | 100.00%
292.74/292.83 c 293s| 1 | 2 |391253 | - | 69M| 0 | 635 |3008 |4225 |3008 |2921 | 208 |1092 | 0 | 1.000000e+00 | 2.000000e+00 | 100.00%
295.83/295.91 o 1
295.83/295.91 c l 296s| 26 | 0 |399495 | 104.1 | 70M| 18 | - |3008 |4266 |3008 |2737 | 361 |1133 | 0 | 1.000000e+00 | 1.000000e+00 | 0.00%
295.83/295.92 c
295.83/295.92 c SCIP Status : problem is solved [optimal solution found]
295.83/295.92 c Solving Time (sec) : 295.92
295.83/295.92 c Solving Nodes : 26 (total of 3718 nodes in 3 runs)
295.83/295.92 c Primal Bound : +1.00000000000000e+00 (429 solutions)
295.83/295.92 c Dual Bound : +1.00000000000000e+00
295.83/295.92 c Gap : 0.00 %
295.83/295.92 s OPTIMUM FOUND
295.83/295.92 v -x3618 -x3617 -x3616 -x3615 -x3614 -x3613 -x3612 -x3611 -x3610 x3609 x3608 x3607 x3606 x3605 x3604 x3603 x3602 x3601 x3600 x3599
295.83/295.92 v -x3598 -x3597 x3596 x3595 x3594 x3593 x3592 x3591 x3590 x3589 x3588 x3587 x3586 x3585 x3584 x3583 -x3582 -x3581 -x3580 -x3579
295.83/295.92 v -x3578 -x3577 -x3576 -x3575 -x3574 -x3573 -x3572 -x3571 -x3570 x3569 x3568 x3567 x3566 x3565 x3564 x3563 x3562 x3561 x3560
295.83/295.92 v x3559 -x3558 x3557 x3556 x3555 x3554 x3553 x3552 x3551 x3550 x3549 x3548 x3547 -x3546 x3545 x3544 x3543 x3542 x3541 x3540 x3539
295.83/295.92 v x3538 x3537 x3536 x3535 -x3534 -x3533 -x3532 -x3531 -x3530 -x3529 -x3528 -x3527 -x3526 -x3525 -x3524 -x3523 -x3522 x3521
295.83/295.92 v x3520 x3519 x3518 x3517 x3516 x3515 x3514 x3513 x3512 x3511 -x3510 -x3509 x3508 x3507 x3506 x3505 x3504 x3503 -x3502 x3501 x3500
295.83/295.92 v x3499 -x3498 x3497 x3496 x3495 x3494 x3493 x3492 x3491 -x3490 x3489 x3488 x3487 x3486 x3485 x3484 x3483 x3482 x3481 x3480
295.83/295.92 v x3479 x3478 x3477 x3476 x3475 x3474 x3473 x3472 x3471 -x3470 x3469 x3468 x3467 x3466 x3465 x3464 x3463 x3462 x3461 x3460 x3459
295.83/295.92 v -x3458 x3457 x3456 x3455 -x3454 x3453 x3452 x3451 x3450 x3449 x3448 x3447 -x3446 -x3445 -x3444 -x3443 -x3442 -x3441 -x3440
295.83/295.92 v -x3439 -x3438 -x3437 -x3436 -x3435 -x3434 x3433 x3432 x3431 x3430 x3429 x3428 x3427 x3426 x3425 -x3424 x3423 -x3422 -x3421 -x3420
295.83/295.92 v -x3419 -x3418 -x3417 -x3416 -x3415 -x3414 -x3413 x3412 x3411 -x3410 x3409 x3408 x3407 x3406 -x3405 x3404 x3403 x3402 x3401
295.83/295.92 v x3400 x3399 x3398 -x3397 -x3396 -x3395 -x3394 -x3393 -x3392 -x3391 -x3390 -x3389 -x3388 -x3387 -x3386 x3385 x3384 x3383 x3382
295.83/295.92 v x3381 x3380 x3379 x3378 x3377 x3376 x3375 -x3374 -x3373 -x3372 -x3371 -x3370 -x3369 -x3368 -x3367 -x3366 -x3365 -x3364 -x3363
295.83/295.92 v -x3362 -x3361 -x3360 -x3359 -x3358 -x3357 -x3356 -x3355 -x3354 -x3353 -x3352 -x3351 -x3350 x3349 x3348 x3347 x3346 x3345
295.83/295.92 v x3344 x3343 x3342 x3341 x3340 x3339 -x3338 -x3337 -x3336 -x3335 -x3334 -x3333 -x3332 -x3331 -x3330 -x3329 -x3328 -x3327 -x3326
295.83/295.92 v x3325 x3324 x3323 x3322 x3321 x3320 x3319 x3318 x3317 x3316 x3315 -x3314 -x3313 x3312 x3311 x3310 x3309 x3308 x3307 x3306
295.83/295.92 v x3305 x3304 x3303 -x3302 x3301 -x3300 x3299 x3298 x3297 x3296 x3295 x3294 x3293 x3292 -x3291 x3290 x3289 x3288 x3287 x3286 x3285
295.83/295.92 v x3284 -x3283 x3282 -x3281 x3280 x3279 -x3278 x3277 x3276 x3275 x3274 x3273 x3272 x3271 x3270 x3269 x3268 x3267 x3266 x3265
295.83/295.92 v x3264 x3263 x3262 x3261 x3260 x3259 x3258 x3257 x3256 x3255 x3254 x3253 x3252 x3251 x3250 x3249 x3248 x3247 -x3246 -x3245
295.83/295.92 v -x3244 x3243 -x3242 -x3241 -x3240 -x3239 -x3238 -x3237 -x3236 -x3235 -x3234 -x3233 -x3232 -x3231 -x3230 x3229 x3228 x3227 x3226
295.83/295.92 v x3225 x3224 x3223 x3222 x3221 x3220 x3219 -x3218 -x3217 -x3216 -x3215 -x3214 -x3213 -x3212 -x3211 -x3210 -x3209 -x3208 -x3207
295.83/295.92 v -x3206 x3205 -x3204 -x3203 -x3202 -x3201 -x3200 -x3199 -x3198 -x3197 -x3196 -x3195 -x3194 x3193 x3192 x3191 x3190 x3189 x3188
295.83/295.92 v x3187 x3186 x3185 x3184 x3183 x3182 -x3181 x3180 x3179 x3178 x3177 x3176 x3175 x3174 x3173 x3172 x3171 -x3170 -x3169 -x3168
295.83/295.92 v -x3167 -x3166 -x3165 -x3164 -x3163 -x3162 -x3161 -x3160 -x3159 x3158 x3157 x3156 x3155 x3154 x3153 x3152 x3151 x3150 x3149
295.83/295.92 v x3148 x3147 -x3146 x3145 x3144 x3143 x3142 x3141 x3140 x3139 x3138 x3137 x3136 x3135 x3134 x3133 x3132 -x3131 x3130 x3129 x3128
295.83/295.92 v x3127 x3126 x3125 x3124 -x3123 -x3122 x3121 x3120 x3119 x3118 x3117 x3116 -x3115 x3114 -x3113 x3112 x3111 -x3110 x3109 x3108
295.83/295.92 v x3107 x3106 x3105 x3104 x3103 x3102 x3101 x3100 -x3099 x3098 x3097 x3096 x3095 x3094 x3093 x3092 x3091 x3090 x3089 x3088
295.83/295.92 v x3087 x3086 x3085 x3084 x3083 x3082 x3081 x3080 x3079 -x3078 -x3077 -x3076 x3075 -x3074 -x3073 -x3072 -x3071 -x3070 -x3069 -x3068
295.83/295.92 v -x3067 x3066 -x3065 x3064 x3063 -x3062 -x3061 -x3060 -x3059 -x3058 -x3057 -x3056 -x3055 -x3054 -x3053 -x3052 -x3051 x3050
295.83/295.92 v x3049 x3048 x3047 x3046 x3045 x3044 x3043 x3042 x3041 x3040 x3039 -x3038 x3037 x3036 x3035 x3034 x3033 x3032 x3031 -x3030
295.83/295.92 v -x3029 -x3028 x3027 -x3026 -x3025 -x3024 -x3023 -x3022 -x3021 -x3020 -x3019 -x3018 -x3017 -x3016 -x3015 -x3014 -x3013 -x3012
295.83/295.92 v -x3011 -x3010 -x3009 -x3008 -x3007 -x3006 -x3005 -x3004 -x3003 -x3002 x3001 x3000 x2999 x2998 x2997 x2996 x2995 -x2994 -x2993
295.83/295.92 v x2992 x2991 x2990 x2989 x2988 x2987 x2986 x2985 x2984 x2983 x2982 x2981 x2980 x2979 x2978 x2977 x2976 x2975 -x2974 x2973 x2972
295.83/295.92 v x2971 x2970 x2969 x2968 x2967 x2966 x2965 x2964 x2963 -x2962 x2961 x2960 x2959 x2958 x2957 x2956 x2955 x2954 x2953 x2952 -x2951
295.83/295.92 v -x2950 -x2949 -x2948 -x2947 -x2946 -x2945 -x2944 -x2943 -x2942 -x2941 -x2940 x2939 -x2938 x2937 x2936 x2935 -x2934 x2933
295.83/295.92 v x2932 x2931 x2930 x2929 x2928 x2927 -x2926 -x2925 -x2924 -x2923 -x2922 -x2921 -x2920 -x2919 -x2918 -x2917 -x2916 -x2915 -x2914
295.83/295.92 v -x2913 -x2912 -x2911 -x2910 -x2909 -x2908 -x2907 x2906 -x2905 -x2904 -x2903 -x2902 -x2901 -x2900 -x2899 -x2898 -x2897 -x2896
295.83/295.92 v -x2895 -x2894 -x2893 x2892 -x2891 -x2890 x2889 x2888 x2887 x2886 x2885 x2884 x2883 x2882 x2881 x2880 x2879 -x2878 -x2877
295.83/295.92 v -x2876 -x2875 -x2874 -x2873 x2872 -x2871 -x2870 -x2869 -x2868 -x2867 x2866 x2865 x2864 x2863 x2862 x2861 x2860 -x2859 x2858 x2857
295.83/295.92 v -x2856 -x2855 -x2854 -x2853 x2852 x2851 x2850 x2849 x2848 x2847 x2846 x2845 -x2844 -x2843 -x2842 -x2841 x2840 x2839 x2838
295.83/295.93 v x2837 -x2836 -x2835 x2834 x2833 -x2832 -x2831 -x2830 -x2829 x2828 x2827 x2826 x2825 -x2824 x2823 x2822 x2821 x2820 x2819 x2818
295.83/295.93 v x2817 -x2816 x2815 x2814 x2813 x2812 -x2811 x2810 x2809 x2808 x2807 x2806 -x2805 -x2804 x2803 x2802 x2801 -x2800 x2799 x2798
295.83/295.93 v x2797 -x2796 -x2795 -x2794 -x2793 x2792 x2791 x2790 x2789 -x2788 x2787 x2786 x2785 x2784 x2783 x2782 x2781 x2780 x2779 x2778
295.83/295.93 v x2777 -x2776 x2775 x2774 x2773 x2772 x2771 x2770 x2769 x2768 x2767 x2766 x2765 -x2764 -x2763 x2762 x2761 x2760 x2759 x2758
295.83/295.93 v x2757 x2756 x2755 x2754 x2753 x2752 x2751 x2750 x2749 x2748 x2747 x2746 x2745 x2744 x2743 x2742 x2741 -x2740 -x2739 -x2738
295.83/295.93 v -x2737 -x2736 -x2735 -x2734 -x2733 -x2732 -x2731 -x2730 -x2729 x2728 x2727 x2726 x2725 x2724 x2723 x2722 x2721 x2720 x2719 x2718
295.83/295.93 v x2717 -x2716 -x2715 -x2714 -x2713 -x2712 -x2711 -x2710 -x2709 -x2708 -x2707 -x2706 -x2705 x2704 x2703 x2702 x2701 x2700 x2699
295.83/295.93 v x2698 x2697 x2696 x2695 x2694 x2693 -x2692 -x2691 -x2690 -x2689 -x2688 -x2687 -x2686 -x2685 -x2684 -x2683 -x2682 -x2681
295.83/295.93 v x2680 x2679 x2678 x2677 x2676 x2675 x2674 x2673 -x2672 x2671 x2670 x2669 -x2668 -x2667 -x2666 -x2665 -x2664 -x2663 -x2662 -x2661
295.83/295.93 v -x2660 -x2659 -x2658 -x2657 x2656 -x2655 -x2654 -x2653 -x2652 -x2651 -x2650 x2649 x2648 x2647 x2646 x2645 x2644 x2643 -x2642
295.83/295.93 v -x2641 x2640 x2639 -x2638 x2637 x2636 x2635 x2634 -x2633 -x2632 -x2631 -x2630 x2629 x2628 -x2627 x2626 x2625 x2624 x2623
295.83/295.93 v x2622 -x2621 -x2620 -x2619 -x2618 x2617 x2616 -x2615 x2614 x2613 x2612 x2611 x2610 x2609 x2608 x2607 x2606 x2605 x2604 x2603
295.83/295.93 v -x2602 x2601 x2600 x2599 x2598 x2597 x2596 x2595 x2594 x2593 x2592 x2591 -x2590 x2589 x2588 x2587 x2586 x2585 x2584 x2583 x2582
295.83/295.93 v x2581 x2580 x2579 -x2578 -x2577 -x2576 -x2575 -x2574 -x2573 -x2572 -x2571 -x2570 -x2569 -x2568 -x2567 x2566 x2565 x2564 x2563
295.83/295.93 v x2562 x2561 x2560 x2559 x2558 x2557 x2556 x2555 -x2554 x2553 x2552 x2551 x2550 x2549 x2548 x2547 x2546 x2545 x2544 x2543
295.83/295.93 v x2542 x2541 x2540 x2539 x2538 x2537 x2536 x2535 x2534 x2533 x2532 x2531 -x2530 x2529 x2528 x2527 x2526 x2525 x2524 x2523 x2522
295.83/295.93 v x2521 x2520 x2519 -x2518 -x2517 -x2516 -x2515 -x2514 -x2513 -x2512 -x2511 -x2510 x2509 x2508 x2507 x2506 x2505 x2504 x2503
295.83/295.93 v x2502 x2501 x2500 x2499 -x2498 -x2497 x2496 x2495 x2494 x2493 x2492 x2491 x2490 x2489 x2488 x2487 x2486 x2485 x2484 x2483 -x2482
295.83/295.93 v x2481 x2480 x2479 x2478 x2477 x2476 x2475 x2474 x2473 x2472 x2471 -x2470 -x2469 -x2468 x2467 -x2466 -x2465 x2464 x2463 x2462
295.83/295.93 v x2461 x2460 x2459 x2458 x2457 -x2456 -x2455 x2454 x2453 -x2452 -x2451 -x2450 -x2449 -x2448 -x2447 -x2446 -x2445 -x2444 x2443
295.83/295.93 v x2442 x2441 -x2440 -x2439 -x2438 -x2437 -x2436 -x2435 -x2434 -x2433 -x2432 -x2431 -x2430 -x2429 -x2428 x2427 x2426 x2425
295.83/295.93 v x2424 x2423 x2422 x2421 x2420 x2419 x2418 x2417 -x2416 -x2415 -x2414 -x2413 -x2412 -x2411 -x2410 -x2409 -x2408 -x2407 -x2406
295.83/295.93 v -x2405 -x2404 x2403 x2402 x2401 x2400 x2399 x2398 x2397 x2396 x2395 x2394 x2393 x2392 x2391 x2390 x2389 x2388 x2387 x2386 x2385
295.83/295.93 v x2384 x2383 x2382 x2381 -x2380 -x2379 -x2378 -x2377 -x2376 -x2375 -x2374 -x2373 -x2372 -x2371 -x2370 -x2369 -x2368 x2367 x2366
295.83/295.93 v x2365 x2364 x2363 x2362 x2361 x2360 x2359 x2358 x2357 x2356 x2355 x2354 x2353 x2352 x2351 x2350 x2349 x2348 x2347 x2346
295.83/295.93 v x2345 -x2344 x2343 x2342 x2341 x2340 x2339 x2338 -x2337 -x2336 -x2335 -x2334 x2333 x2332 x2331 x2330 x2329 x2328 x2327 x2326
295.83/295.93 v x2325 x2324 x2323 x2322 x2321 -x2320 x2319 -x2318 x2317 x2316 x2315 x2314 x2313 x2312 x2311 x2310 x2309 x2308 x2307 x2306 x2305
295.83/295.93 v x2304 x2303 x2302 x2301 x2300 x2299 -x2298 -x2297 -x2296 x2295 x2294 x2293 x2292 x2291 x2290 x2289 x2288 x2287 x2286 x2285
295.83/295.93 v -x2284 x2283 x2282 x2281 x2280 x2279 x2278 x2277 x2276 x2275 x2274 x2273 x2272 x2271 x2270 x2269 x2268 x2267 x2266 x2265 x2264
295.83/295.93 v x2263 x2262 x2261 -x2260 -x2259 -x2258 -x2257 -x2256 -x2255 -x2254 -x2253 -x2252 -x2251 -x2250 -x2249 x2248 x2247 x2246 x2245
295.83/295.93 v x2244 x2243 x2242 x2241 x2240 x2239 x2238 x2237 -x2236 -x2235 -x2234 -x2233 -x2232 -x2231 -x2230 -x2229 -x2228 -x2227 -x2226
295.83/295.93 v -x2225 -x2224 -x2223 -x2222 -x2221 -x2220 -x2219 x2218 -x2217 -x2216 -x2215 -x2214 -x2213 -x2212 -x2211 -x2210 -x2209 -x2208
295.83/295.93 v -x2207 x2206 -x2205 -x2204 -x2203 -x2202 -x2201 -x2200 x2199 -x2198 x2197 x2196 x2195 x2194 x2193 x2192 x2191 x2190 x2189
295.83/295.93 v x2188 x2187 x2186 x2185 x2184 x2183 x2182 x2181 x2180 x2179 x2178 x2177 -x2176 -x2175 -x2174 -x2173 -x2172 -x2171 -x2170 -x2169
295.83/295.93 v -x2168 -x2167 -x2166 -x2165 -x2164 x2163 x2162 x2161 x2160 x2159 x2158 x2157 -x2156 -x2155 x2154 x2153 -x2152 x2151 x2150
295.83/295.93 v x2149 x2148 x2147 x2146 x2145 x2144 x2143 x2142 x2141 x2140 x2139 x2138 x2137 x2136 x2135 x2134 x2133 x2132 x2131 x2130 x2129
295.83/295.93 v x2128 x2127 x2126 x2125 x2124 x2123 x2122 x2121 x2120 x2119 x2118 x2117 -x2116 x2115 -x2114 x2113 x2112 x2111 x2110 x2109 x2108
295.83/295.93 v x2107 x2106 x2105 -x2104 x2103 x2102 x2101 x2100 x2099 x2098 x2097 -x2096 -x2095 -x2094 x2093 -x2092 -x2091 -x2090 -x2089
295.83/295.93 v -x2088 -x2087 x2086 -x2085 -x2084 -x2083 -x2082 -x2081 -x2080 x2079 x2078 x2077 x2076 x2075 x2074 x2073 -x2072 -x2071 x2070
295.83/295.93 v x2069 x2068 x2067 x2066 x2065 x2064 x2063 x2062 x2061 -x2060 -x2059 x2058 x2057 x2056 x2055 x2054 x2053 x2052 x2051 x2050 x2049
295.83/295.93 v -x2048 -x2047 x2046 x2045 x2044 x2043 x2042 x2041 x2040 x2039 x2038 x2037 x2036 x2035 x2034 x2033 x2032 x2031 x2030 x2029
295.83/295.93 v x2028 x2027 x2026 x2025 x2024 x2023 x2022 x2021 x2020 x2019 -x2018 x2017 x2016 x2015 x2014 x2013 x2012 x2011 x2010 -x2009 x2008
295.83/295.93 v -x2007 x2006 x2005 x2004 x2003 x2002 x2001 -x2000 -x1999 x1998 x1997 -x1996 -x1995 -x1994 -x1993 -x1992 -x1991 -x1990 -x1989
295.83/295.93 v -x1988 -x1987 -x1986 -x1985 -x1984 -x1983 -x1982 -x1981 -x1980 -x1979 -x1978 -x1977 -x1976 -x1975 -x1974 -x1973 -x1972 -x1971
295.83/295.93 v -x1970 -x1969 -x1968 -x1967 -x1966 -x1965 -x1964 -x1963 -x1962 -x1961 -x1960 -x1959 -x1958 -x1957 -x1956 -x1955 -x1954 -x1953
295.83/295.93 v -x1952 -x1951 -x1950 -x1949 -x1948 -x1947 -x1946 -x1945 -x1944 -x1943 -x1942 -x1941 -x1940 -x1939 -x1938 -x1937 -x1936
295.83/295.93 v -x1935 -x1934 -x1933 -x1932 -x1931 -x1930 -x1929 -x1928 -x1927 -x1926 -x1925 -x1924 -x1923 -x1922 -x1921 -x1920 -x1919 -x1918
295.83/295.93 v -x1917 -x1916 -x1915 -x1914 -x1913 x1912 -x1911 x1910 x1909 x1908 -x1907 -x1906 -x1905 -x1904 x1903 -x1902 x1901 x1900 x1899
295.83/295.93 v x1898 x1897 x1896 x1895 x1894 x1893 x1892 x1891 x1890 x1889 -x1888 x1887 x1886 x1885 x1884 x1883 x1882 x1881 -x1880 -x1879 x1878
295.83/295.93 v x1877 -x1876 x1875 x1874 x1873 x1872 x1871 x1870 x1869 -x1868 -x1867 x1866 x1865 x1864 x1863 x1862 x1861 x1860 x1859 x1858
295.83/295.93 v x1857 x1856 x1855 x1854 x1853 x1852 x1851 x1850 x1849 x1848 x1847 x1846 x1845 x1844 x1843 x1842 x1841 x1840 x1839 x1838 x1837
295.83/295.93 v x1836 x1835 x1834 x1833 x1832 x1831 x1830 -x1829 -x1828 x1827 x1826 x1825 x1824 x1823 x1822 x1821 x1820 x1819 x1818 -x1817
295.83/295.93 v x1816 x1815 x1814 x1813 x1812 x1811 x1810 x1809 -x1808 -x1807 x1806 x1805 -x1804 -x1803 -x1802 -x1801 -x1800 -x1799 -x1798
295.83/295.93 v -x1797 -x1796 -x1795 -x1794 -x1793 -x1792 -x1791 -x1790 -x1789 -x1788 -x1787 -x1786 -x1785 -x1784 -x1783 -x1782 -x1781 -x1780
295.83/295.93 v x1779 x1778 -x1777 x1776 x1775 x1774 x1773 x1772 x1771 x1770 x1769 -x1768 x1767 x1766 -x1765 x1764 x1763 x1762 x1761 x1760 x1759
295.83/295.93 v x1758 x1757 -x1756 x1755 x1754 -x1753 x1752 x1751 x1750 x1749 x1748 x1747 x1746 x1745 -x1744 x1743 x1742 x1741 x1740 x1739
295.83/295.93 v x1738 x1737 x1736 x1735 x1734 x1733 -x1732 x1731 x1730 x1729 x1728 x1727 x1726 x1725 x1724 x1723 x1722 x1721 -x1720 x1719
295.83/295.93 v x1718 x1717 x1716 x1715 x1714 x1713 -x1712 -x1711 x1710 x1709 -x1708 x1707 x1706 x1705 x1704 x1703 x1702 x1701 x1700 x1699 x1698
295.83/295.93 v x1697 -x1696 x1695 x1694 x1693 x1692 x1691 x1690 x1689 x1688 x1687 x1686 x1685 -x1684 x1683 x1682 x1681 x1680 x1679 x1678
295.83/295.93 v x1677 x1676 x1675 x1674 x1673 -x1672 x1671 x1670 x1669 -x1668 x1667 x1666 x1665 x1664 x1663 x1662 x1661 -x1660 x1659 x1658 x1657
295.83/295.93 v -x1656 x1655 x1654 x1653 x1652 x1651 x1650 x1649 x1648 x1647 x1646 x1645 x1644 x1643 x1642 x1641 -x1640 -x1639 x1638 x1637
295.83/295.93 v -x1636 -x1635 -x1634 x1633 x1632 x1631 x1630 x1629 x1628 x1627 -x1626 x1625 -x1624 x1623 -x1622 x1621 x1620 x1619 x1618 x1617
295.83/295.93 v x1616 x1615 x1614 x1613 -x1612 x1611 -x1610 x1609 x1608 x1607 x1606 x1605 x1604 x1603 x1602 x1601 -x1600 x1599 x1598 x1597
295.83/295.93 v x1596 x1595 x1594 x1593 -x1592 -x1591 x1590 x1589 -x1588 x1587 x1586 x1585 x1584 x1583 x1582 x1581 -x1580 -x1579 x1578 x1577
295.83/295.93 v -x1576 x1575 x1574 x1573 x1572 x1571 x1570 x1569 -x1568 -x1567 x1566 x1565 -x1564 x1563 x1562 x1561 x1560 x1559 x1558 x1557
295.83/295.93 v -x1556 -x1555 x1554 x1553 -x1552 x1551 x1550 x1549 x1548 x1547 x1546 x1545 -x1544 -x1543 x1542 x1541 x1540 -x1539 x1538 x1537
295.83/295.93 v x1536 -x1535 -x1534 -x1533 -x1532 x1531 -x1530 x1529 x1528 x1527 x1526 x1525 x1524 x1523 x1522 x1521 x1520 x1519 x1518 x1517
295.83/295.93 v x1516 x1515 x1514 x1513 x1512 x1511 x1510 x1509 x1508 x1507 x1506 x1505 x1504 x1503 x1502 x1501 x1500 x1499 x1498 x1497 x1496
295.83/295.93 v x1495 x1494 x1493 x1492 x1491 x1490 x1489 x1488 x1487 x1486 x1485 x1484 x1483 x1482 x1481 -x1480 -x1479 -x1478 -x1477 -x1476
295.83/295.93 v -x1475 -x1474 -x1473 -x1472 -x1471 -x1470 -x1469 -x1468 -x1467 -x1466 -x1465 -x1464 -x1463 -x1462 -x1461 -x1460 -x1459 -x1458
295.83/295.93 v -x1457 -x1456 -x1455 -x1454 -x1453 -x1452 -x1451 -x1450 -x1449 -x1448 -x1447 -x1446 -x1445 -x1444 -x1443 -x1442 -x1441 -x1440
295.83/295.93 v -x1439 -x1438 -x1437 -x1436 -x1435 -x1434 -x1433 -x1432 -x1431 -x1430 -x1429 -x1428 -x1427 -x1426 -x1425 -x1424 -x1423 -x1422
295.83/295.93 v -x1421 -x1420 -x1419 -x1418 -x1417 -x1416 -x1415 -x1414 -x1413 -x1412 -x1411 -x1410 -x1409 -x1408 -x1407 -x1406 -x1405
295.83/295.93 v -x1404 -x1403 -x1402 -x1401 -x1400 -x1399 -x1398 -x1397 -x1396 -x1395 -x1394 -x1393 -x1392 -x1391 -x1390 -x1389 -x1388 -x1387
295.83/295.93 v -x1386 -x1385 -x1384 -x1383 -x1382 -x1381 -x1380 -x1379 -x1378 -x1377 -x1376 -x1375 -x1374 -x1373 -x1372 -x1371 x1370 -x1369
295.83/295.93 v x1368 -x1367 -x1366 x1365 -x1364 x1363 -x1362 x1361 x1360 -x1359 x1358 -x1357 x1356 -x1355 x1354 -x1353 -x1352 -x1351 x1350
295.83/295.93 v -x1349 -x1348 x1347 -x1346 x1345 x1344 -x1343 -x1342 x1341 x1340 x1339 x1338 x1337 x1336 x1335 -x1334 -x1333 x1332 x1331 x1330
295.83/295.93 v x1329 -x1328 -x1327 -x1326 x1325 -x1324 x1323 x1322 x1321 -x1320 x1319 -x1318 x1317 -x1316 x1315 -x1314 x1313 -x1312 -x1311
295.83/295.93 v -x1310 x1309 -x1308 x1307 -x1306 x1305 -x1304 -x1303 -x1302 x1301 -x1300 -x1299 x1298 -x1297 x1296 -x1295 -x1294 -x1293 -x1292
295.83/295.93 v -x1291 x1290 -x1289 -x1288 -x1287 -x1286 -x1285 x1284 x1283 x1282 x1281 x1280 -x1279 x1278 -x1277 -x1276 x1275 -x1274 -x1273
295.83/295.93 v -x1272 -x1271 -x1270 -x1269 -x1268 -x1267 -x1266 -x1265 -x1264 -x1263 -x1262 x1261 -x1260 -x1259 -x1258 -x1257 -x1256 -x1255
295.83/295.93 v -x1254 -x1253 x1252 -x1251 -x1250 -x1249 -x1248 -x1247 -x1246 -x1245 x1244 -x1243 -x1242 -x1241 -x1240 -x1239 -x1238 x1237
295.83/295.93 v -x1236 -x1235 -x1234 -x1233 -x1232 x1231 -x1230 -x1229 -x1228 -x1227 x1226 -x1225 -x1224 -x1223 x1222 -x1221 -x1220 x1219 x1218
295.83/295.93 v x1217 x1216 x1215 x1214 x1213 x1212 x1211 x1210 -x1209 x1208 -x1207 -x1206 -x1205 -x1204 -x1203 -x1202 -x1201 -x1200 -x1199
295.83/295.93 v -x1198 -x1197 -x1196 -x1195 -x1194 -x1193 x1192 -x1191 -x1190 -x1189 x1188 -x1187 x1186 -x1185 -x1184 -x1183 -x1182 -x1181
295.83/295.93 v -x1180 -x1179 -x1178 -x1177 -x1176 -x1175 -x1174 -x1173 -x1172 x1171 -x1170 -x1169 x1168 -x1167 -x1166 -x1165 -x1164 -x1163
295.83/295.93 v -x1162 -x1161 -x1160 -x1159 -x1158 x1157 -x1156 x1155 -x1154 -x1153 -x1152 -x1151 -x1150 -x1149 -x1148 -x1147 -x1146 -x1145 -x1144
295.83/295.93 v -x1143 -x1142 x1141 -x1140 -x1139 -x1138 x1137 -x1136 x1135 -x1134 -x1133 -x1132 -x1131 -x1130 -x1129 -x1128 -x1127 -x1126
295.83/295.93 v -x1125 -x1124 -x1123 x1122 -x1121 -x1120 -x1119 x1118 -x1117 -x1116 -x1115 -x1114 x1113 -x1112 -x1111 -x1110 x1109 -x1108
295.83/295.93 v -x1107 -x1106 x1105 -x1104 -x1103 -x1102 -x1101 x1100 -x1099 -x1098 -x1097 -x1096 x1095 -x1094 -x1093 x1092 -x1091 -x1090 -x1089
295.83/295.93 v -x1088 x1087 -x1086 -x1085 -x1084 x1083 -x1082 -x1081 -x1080 -x1079 x1078 -x1077 -x1076 -x1075 x1074 -x1073 -x1072 -x1071
295.83/295.93 v -x1070 x1069 -x1068 x1067 x1066 -x1065 -x1064 x1063 -x1062 -x1061 x1060 -x1059 x1058 -x1057 -x1056 x1055 x1054 -x1053 -x1052
295.83/295.93 v -x1051 -x1050 -x1049 -x1048 -x1047 -x1046 -x1045 x1044 -x1043 -x1042 -x1041 -x1040 -x1039 -x1038 -x1037 x1036 x1035 x1034 -x1033
295.83/295.93 v -x1032 -x1031 -x1030 -x1029 x1028 x1027 x1026 -x1025 -x1024 -x1023 -x1022 x1021 x1020 x1019 -x1018 -x1017 -x1016 x1015
295.83/295.93 v x1014 x1013 -x1012 -x1011 -x1010 x1009 -x1008 -x1007 -x1006 x1005 -x1004 -x1003 -x1002 -x1001 -x1000 -x999 -x998 -x997 -x996
295.83/295.93 v x995 -x994 x993 x992 x991 -x990 -x989 -x988 -x987 -x986 -x985 -x984 -x983 -x982 -x981 x980 -x979 -x978 -x977 -x976 x975 x974
295.83/295.93 v x973 x972 x971 x970 x969 x968 x967 x966 x965 x964 x963 x962 x961 -x960 x959 x958 x957 -x956 -x955 -x954 -x953 -x952 -x951 x950
295.83/295.93 v -x949 -x948 x947 x946 -x945 -x944 x943 x942 -x941 -x940 x939 x938 -x937 -x936 x935 x934 -x933 -x932 x931 x930 -x929 -x928 x927
295.83/295.93 v x926 -x925 -x924 -x923 -x922 -x921 x920 -x919 -x918 -x917 -x916 -x915 x914 x913 x912 x911 x910 -x909 -x908 x907 -x906 x905
295.83/295.93 v -x904 -x903 -x902 -x901 x900 -x899 -x898 x897 -x896 x895 -x894 -x893 x892 -x891 -x890 -x889 -x888 -x887 -x886 -x885 -x884 -x883
295.83/295.93 v -x882 -x881 x880 x879 x878 -x877 -x876 -x875 -x874 -x873 -x872 x871 -x870 -x869 -x868 -x867 -x866 -x865 -x864 x863 -x862
295.83/295.93 v -x861 -x860 -x859 -x858 -x857 x856 -x855 -x854 -x853 -x852 -x851 x850 -x849 -x848 -x847 -x846 x845 x844 x843 -x842 x841 -x840
295.83/295.93 v -x839 x838 x837 x836 x835 x834 x833 x832 x831 -x830 x829 -x828 -x827 -x826 -x825 -x824 -x823 -x822 -x821 -x820 -x819 -x818
295.83/295.93 v -x817 x816 -x815 -x814 x813 -x812 x811 -x810 -x809 -x808 -x807 -x806 -x805 -x804 -x803 -x802 -x801 -x800 x799 -x798 -x797 x796
295.83/295.93 v -x795 -x794 -x793 x792 -x791 -x790 x789 -x788 -x787 x786 -x785 -x784 -x783 x782 -x781 -x780 x779 -x778 x777 -x776 -x775 -x774
295.83/295.93 v x773 -x772 -x771 x770 -x769 -x768 -x767 x766 -x765 -x764 x763 -x762 -x761 -x760 x759 -x758 x757 -x756 x755 -x754 -x753 -x752
295.83/295.93 v -x751 -x750 -x749 -x748 -x747 -x746 -x745 -x744 -x743 -x742 -x741 -x740 -x739 -x738 -x737 -x736 -x735 -x734 -x733 -x732 -x731
295.83/295.93 v -x730 -x729 -x728 -x727 -x726 -x725 -x724 -x723 x722 -x721 x720 x719 x718 x717 x716 x715 x714 -x713 -x712 -x711 -x710 -x709
295.83/295.93 v -x708 -x707 x706 -x705 -x704 x703 x702 -x701 -x700 x699 x698 -x697 -x696 x695 x694 -x693 -x692 x691 x690 -x689 -x688 x687
295.83/295.93 v x686 -x685 -x684 x683 x682 -x681 -x680 -x679 x678 -x677 x676 -x675 -x674 -x673 -x672 -x671 -x670 -x669 -x668 -x667 -x666 x665
295.83/295.93 v x664 x663 -x662 -x661 -x660 x659 -x658 -x657 -x656 -x655 x654 -x653 x652 -x651 -x650 x649 -x648 -x647 -x646 -x645 x644 -x643
295.83/295.93 v -x642 -x641 x640 x639 x638 -x637 -x636 -x635 x634 -x633 -x632 -x631 -x630 -x629 -x628 -x627 -x626 -x625 -x624 x623 -x622 -x621
295.83/295.93 v -x620 -x619 -x618 -x617 -x616 -x615 -x614 x613 -x612 -x611 -x610 -x609 -x608 -x607 -x606 -x605 x604 -x603 -x602 x601 x600
295.83/295.93 v x599 -x598 -x597 x596 -x595 -x594 -x593 -x592 -x591 -x590 x589 -x588 -x587 -x586 -x585 -x584 x583 -x582 -x581 -x580 -x579 x578
295.83/295.93 v -x577 -x576 -x575 -x574 -x573 -x572 x571 x570 x569 -x568 -x567 x566 x565 -x564 -x563 -x562 x561 x560 x559 x558 x557 -x556 -x555
295.83/295.93 v x554 x553 -x552 -x551 x550 x549 -x548 -x547 x546 -x545 -x544 x543 -x542 -x541 x540 x539 -x538 -x537 x536 -x535 -x534 x533
295.83/295.93 v -x532 x531 -x530 -x529 -x528 x527 -x526 x525 x524 -x523 x522 -x521 x520 -x519 -x518 x517 x516 x515 x514 x513 x512 x511 x510
295.83/295.93 v -x509 -x508 x507 -x506 -x505 x504 -x503 x502 -x501 -x500 -x499 x498 -x497 -x496 x495 -x494 -x493 x492 -x491 -x490 x489 -x488
295.83/295.93 v x487 -x486 -x485 x484 -x483 x482 -x481 x480 x479 x478 x477 -x476 x475 -x474 x473 x472 x471 -x470 x469 -x468 x467 x466 x465 -x464
295.83/295.93 v -x463 x462 x461 -x460 -x459 x458 -x457 x456 -x455 -x454 -x453 x452 -x451 x450 -x449 -x448 -x447 x446 -x445 -x444 x443 -x442
295.83/295.93 v x441 x440 -x439 -x438 -x437 x436 -x435 x434 x433 x432 -x431 x430 -x429 -x428 x427 -x426 x425 -x424 -x423 -x422 x421 -x420
295.83/295.93 v -x419 -x418 x417 -x416 -x415 x414 -x413 -x412 x411 -x410 -x409 x408 x407 -x406 -x405 x404 x403 -x402 -x401 -x400 x399 -x398
295.83/295.93 v -x397 -x396 x395 -x394 -x393 -x392 -x391 -x390 x389 -x388 x387 x386 x385 x384 -x383 -x382 x381 -x380 -x379 x378 -x377 -x376 x375
295.83/295.93 v -x374 -x373 x372 -x371 -x370 -x369 x368 -x367 -x366 x365 -x364 -x363 x362 -x361 x360 -x359 -x358 -x357 x356 -x355 x354 -x353
295.83/295.93 v -x352 -x351 x350 -x349 x348 -x347 -x346 -x345 -x344 -x343 -x342 -x341 -x340 -x339 x338 -x337 x336 x335 x334 x333 x332 -x331
295.83/295.93 v x330 x329 x328 -x327 -x326 -x325 -x324 x323 -x322 -x321 x320 -x319 x318 x317 x316 -x315 -x314 -x313 -x312 x311 -x310 x309
295.83/295.93 v -x308 x307 x306 x305 -x304 -x303 x302 -x301 -x300 x299 -x298 x297 x296 x295 -x294 -x293 x292 -x291 x290 -x289 -x288 x287 -x286
295.83/295.93 v -x285 x284 -x283 -x282 -x281 -x280 -x279 -x278 x277 -x276 -x275 x274 x273 x272 x271 -x270 x269 -x268 -x267 -x266 -x265 -x264
295.83/295.93 v -x263 x262 -x261 x260 -x259 x258 -x257 -x256 -x255 -x254 -x253 x252 -x251 x250 -x249 x248 -x247 -x246 -x245 x244 -x243 -x242
295.83/295.93 v x241 -x240 x239 -x238 -x237 x236 -x235 -x234 x233 x232 x231 x230 x229 x228 x227 -x226 x225 -x224 -x223 -x222 x221 -x220 -x219
295.83/295.93 v -x218 x217 -x216 -x215 x214 -x213 -x212 x211 -x210 -x209 x208 -x207 -x206 x205 -x204 -x203 x202 -x201 -x200 -x199 x198 -x197
295.83/295.93 v x196 -x195 -x194 -x193 -x192 x191 -x190 -x189 x188 -x187 -x186 x185 -x184 -x183 -x182 -x181 -x180 x179 -x178 -x177 x176 x175
295.83/295.93 v x174 -x173 x172 -x171 -x170 -x169 -x168 x167 -x166 -x165 x164 -x163 x162 -x161 -x160 -x159 -x158 x157 -x156 x155 -x154 x153
295.83/295.93 v -x152 -x151 -x150 x149 -x148 x147 -x146 -x145 x144 x143 x142 x141 x140 x139 x138 x137 x136 x135 x134 x133 x132 x131 x130 x129
295.83/295.93 v x128 -x127 x126 x125 x124 -x123 x122 -x121 -x120 x119 -x118 -x117 x116 -x115 x114 -x113 -x112 x111 x110 x109 x108 x107 x106
295.83/295.93 v x105 x104 x103 x102 x101 x100 x99 x98 x97 x96 x95 x94 x93 x92 x91 x90 x89 -x88 -x87 x86 -x85 x84 -x83 -x82 x81 x80 x79 x78
295.83/295.93 v x77 x76 x75 x74 x73 x72 x71 x70 x69 x68 x67 x66 -x65 -x64 x63 -x62 x61 -x60 -x59 x58 x57 x56 x55 x54 x53 x52 x51 x50 x49 x48
295.83/295.93 v x47 x46 x45 x44 x43 x42 x41 x40 x39 x38 x37 x36 x35 x34 x33 x32 x31 x30 x29 x28 x27 x26 x25 x24 x23 x22 -x21 x20 x19 x18 x17
295.83/295.93 v x16 x15 x14 x13 x12 x11 x10 x9 x8 x7 x6 x5 x4 x3 x2 -x1
295.83/295.93 c SCIP Status : problem is solved [optimal solution found]
295.83/295.93 c Total Time : 295.92
295.83/295.93 c solving : 295.92
295.83/295.93 c presolving : 1.83 (included in solving)
295.83/295.93 c reading : 0.03 (included in solving)
295.83/295.93 c copying : 0.25 (7 #copies) (minimal 0.02, maximal 0.04, average 0.04)
295.83/295.93 c Original Problem :
295.83/295.93 c Problem name : HOME/instance-3717384-1338201784.wbo
295.83/295.93 c Variables : 7549 (7549 binary, 0 integer, 0 implicit integer, 0 continuous)
295.83/295.93 c Constraints : 3932 initial, 3932 maximal
295.83/295.93 c Objective sense : minimize
295.83/295.93 c Presolved Problem :
295.83/295.93 c Problem name : t_HOME/instance-3717384-1338201784.wbo
295.83/295.93 c Variables : 3008 (3008 binary, 0 integer, 0 implicit integer, 0 continuous)
295.83/295.93 c Constraints : 4225 initial, 4266 maximal
295.83/295.93 c Presolvers : ExecTime SetupTime FixedVars AggrVars ChgTypes ChgBounds AddHoles DelCons AddCons ChgSides ChgCoefs
295.83/295.93 c domcol : 0.00 0.00 0 0 0 0 0 0 0 0 0
295.83/295.93 c trivial : 0.03 0.00 7918 0 0 0 0 0 0 0 0
295.83/295.93 c dualfix : 0.01 0.00 56 0 0 0 0 0 0 0 0
295.83/295.93 c boundshift : 0.00 0.00 0 0 0 0 0 0 0 0 0
295.83/295.93 c inttobinary : 0.00 0.00 0 0 0 0 0 0 0 0 0
295.83/295.93 c convertinttobin : 0.00 0.00 0 0 0 0 0 0 0 0 0
295.83/295.93 c gateextraction : 0.01 0.00 0 0 0 0 0 2582 852 0 0
295.83/295.93 c implics : 0.01 0.00 0 276 0 0 0 0 0 0 0
295.83/295.93 c components : 0.01 0.00 26 0 0 0 0 20 0 0 0
295.83/295.93 c pseudoobj : 0.00 0.00 0 0 0 34 0 0 0 0 0
295.83/295.93 c probing : 0.01 0.00 0 0 0 0 0 0 0 0 0
295.83/295.93 c varbound : 0.00 0.00 0 0 0 34 0 73 0 0 0
295.83/295.93 c knapsack : 0.18 0.00 0 0 0 0 0 100 597 696 1947
295.83/295.93 c setppc : 0.03 0.00 14 2 0 0 0 641 0 0 0
295.83/295.93 c and : 0.17 0.00 29 8 0 0 0 51 47 0 4
295.83/295.93 c linear : 0.20 0.01 121 14 0 4018 0 4321 0 1064 1478
295.83/295.93 c indicator : 0.00 0.00 8 0 0 0 0 128 0 0 0
295.83/295.93 c logicor : 0.94 0.01 0 0 0 0 0 223 0 0 0
295.83/295.93 c bounddisjunction : 0.07 0.00 0 0 0 0 0 65 0 0 0
295.83/295.93 c root node : - - 7884 - - 7885 - - - - -
295.83/295.93 c Constraints : Number MaxNumber #Separate #Propagate #EnfoLP #EnfoPS #Check #ResProp Cutoffs DomReds Cuts Conss Children
295.83/295.93 c integral : 0 0 0 0 3576 0 4108 0 0 0 0 0 7152
295.83/295.93 c knapsack : 1203 1203 2 10430 0 0 540 934 52 194 401 0 0
295.83/295.93 c setppc : 105 105 2 10378 0 0 28 63 2 116 1 0 0
295.83/295.93 c and : 656 656 121 10376 0 0 28 358 3 384 968 0 0
295.83/295.93 c linear : 52 52 9 52946 0 0 3573 6058 234 29108 6 0 0
295.83/295.93 c logicor : 1262+ 1303 2 3663 0 0 11 116 4 257 13 0 0
295.83/295.93 c bounddisjunction : 947 947 0 3615 0 0 0 142 12 353 0 0 0
295.83/295.93 c countsols : 0 0 0 0 0 0 1080 0 0 0 0 0 0
295.83/295.93 c Constraint Timings : TotalTime SetupTime Separate Propagate EnfoLP EnfoPS Check ResProp
295.83/295.93 c integral : 1.94 0.00 0.00 0.00 0.29 0.00 1.65 0.00
295.83/295.93 c knapsack : 0.39 0.00 0.01 0.35 0.00 0.00 0.03 0.00
295.83/295.93 c setppc : 0.07 0.00 0.00 0.07 0.00 0.00 0.00 0.00
295.83/295.93 c and : 0.14 0.00 0.02 0.11 0.00 0.00 0.00 0.00
295.83/295.93 c linear : 7.63 0.01 0.10 3.86 0.00 0.00 3.65 0.01
295.83/295.93 c logicor : 0.03 0.01 0.00 0.02 0.00 0.00 0.00 0.00
295.83/295.93 c bounddisjunction : 0.04 0.00 0.00 0.04 0.00 0.00 0.00 0.00
295.83/295.93 c countsols : 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
295.83/295.93 c Propagators : #Propagate #ResProp Cutoffs DomReds
295.83/295.93 c rootredcost : 17 0 0 3859
295.83/295.93 c pseudoobj : 54267 1395 10 172971
295.83/295.93 c vbounds : 808 1570 2 198559
295.83/295.93 c redcost : 3762 0 0 25255
295.83/295.93 c probing : 0 0 0 0
295.83/295.93 c Propagator Timings : TotalTime SetupTime Presolve Propagate ResProp
295.83/295.93 c rootredcost : 0.06 0.00 0.00 0.06 0.00
295.83/295.93 c pseudoobj : 1.14 0.00 0.00 0.79 0.35
295.83/295.93 c vbounds : 1.10 0.01 0.00 1.09 0.00
295.83/295.93 c redcost : 1.31 0.00 0.00 1.31 0.00
295.83/295.93 c probing : 0.01 0.00 0.01 0.00 0.00
295.83/295.93 c Conflict Analysis : Time Calls Success Conflicts Literals Reconvs ReconvLits LP Iters
295.83/295.93 c propagation : 0.24 319 319 1256 22.5 24 11.4 -
295.83/295.93 c infeasible LP : 0.79 269 269 466 8.8 10 7.3 0
295.83/295.93 c bound exceed. LP : 0.00 0 0 0 0.0 0 0.0 0
295.83/295.93 c strong branching : 0.00 0 0 0 0.0 0 0.0 0
295.83/295.93 c pseudo solution : 0.00 2 2 2 2.5 0 0.0 -
295.83/295.93 c applied globally : - - - 1133 15.4 - - -
295.83/295.93 c applied locally : - - - 0 0.0 - - -
295.83/295.93 c Separators : ExecTime SetupTime Calls Cutoffs DomReds Cuts Conss
295.83/295.93 c cut pool : 0.00 0 - - 0 - (maximal pool size: 453)
295.83/295.93 c closecuts : 0.00 0.00 0 0 0 0 0
295.83/295.93 c impliedbounds : 0.00 0.00 8 0 0 256 0
295.83/295.93 c intobj : 0.00 0.00 0 0 0 0 0
295.83/295.93 c gomory : 0.38 0.00 8 0 0 365 0
295.83/295.93 c cgmip : 0.00 0.00 0 0 0 0 0
295.83/295.93 c strongcg : 1.05 0.00 8 0 0 2657 0
295.83/295.93 c cmir : 0.99 0.00 8 0 0 339 0
295.83/295.93 c flowcover : 1.98 0.00 8 0 0 1597 0
295.83/295.93 c clique : 0.02 0.00 3 0 0 11 0
295.83/295.93 c zerohalf : 0.00 0.00 0 0 0 0 0
295.83/295.93 c mcf : 0.02 0.00 3 0 0 0 0
295.83/295.93 c oddcycle : 0.00 0.00 0 0 0 0 0
295.83/295.93 c rapidlearning : 2.67 0.00 1 0 0 0 1961
295.83/295.93 c Pricers : ExecTime SetupTime Calls Vars
295.83/295.93 c problem variables: 0.00 - 0 0
295.83/295.93 c Branching Rules : ExecTime SetupTime Calls Cutoffs DomReds Cuts Conss Children
295.83/295.93 c inference : 0.29 0.00 3576 0 0 0 0 7152
295.83/295.93 c relpscost : 0.00 0.00 0 0 0 0 0 0
295.83/295.93 c pscost : 0.00 0.00 0 0 0 0 0 0
295.83/295.93 c mostinf : 0.00 0.00 0 0 0 0 0 0
295.83/295.93 c leastinf : 0.00 0.00 0 0 0 0 0 0
295.83/295.93 c fullstrong : 0.00 0.00 0 0 0 0 0 0
295.83/295.93 c allfullstrong : 0.00 0.00 0 0 0 0 0 0
295.83/295.93 c random : 0.00 0.00 0 0 0 0 0 0
295.83/295.93 c Primal Heuristics : ExecTime SetupTime Calls Found
295.83/295.93 c LP solutions : 0.00 - - 0
295.83/295.93 c pseudo solutions : 0.00 - - 0
295.83/295.93 c oneopt : 0.05 0.00 13 0
295.83/295.93 c crossover : 1.04 0.00 5 0
295.83/295.93 c fracdiving : 37.47 0.00 24 3
295.83/295.93 c guideddiving : 68.90 0.00 35 5
295.83/295.93 c smallcard : 0.00 0.00 0 0
295.83/295.93 c trivial : 0.02 0.00 2 1
295.83/295.93 c shiftandpropagate: 0.00 0.00 0 0
295.83/295.93 c simplerounding : 0.10 0.00 3619 0
295.83/295.93 c zirounding : 0.57 0.00 1000 0
295.83/295.93 c rounding : 0.41 0.00 793 0
295.83/295.93 c shifting : 0.55 0.00 365 3
295.83/295.93 c intshifting : 0.00 0.00 0 0
295.83/295.93 c twoopt : 0.00 0.00 0 0
295.83/295.93 c indtwoopt : 0.00 0.00 0 0
295.83/295.93 c indoneopt : 4.22 0.00 25 13
295.83/295.93 c fixandinfer : 0.00 0.00 0 0
295.83/295.93 c feaspump : 0.00 0.00 0 0
295.83/295.93 c clique : 0.00 0.00 0 0
295.83/295.93 c indrounding : 18.36 0.00 3572 391
295.83/295.93 c coefdiving : 13.28 0.00 5 0
295.83/295.93 c indcoefdiving : 0.00 0.00 0 0
295.83/295.93 c pscostdiving : 25.52 0.00 6 0
295.83/295.93 c nlpdiving : 0.00 0.00 0 0
295.83/295.93 c veclendiving : 19.58 0.00 11 1
295.83/295.93 c intdiving : 0.00 0.00 0 0
295.83/295.93 c actconsdiving : 0.00 0.00 0 0
295.83/295.93 c objpscostdiving : 5.46 0.00 2 0
295.83/295.93 c rootsoldiving : 7.62 0.00 2 1
295.83/295.93 c linesearchdiving : 32.21 0.00 23 5
295.83/295.93 c octane : 0.00 0.00 0 0
295.83/295.93 c rens : 0.26 0.00 1 0
295.83/295.93 c rins : 0.00 0.00 0 0
295.83/295.93 c localbranching : 0.00 0.00 0 0
295.83/295.93 c mutation : 0.00 0.00 0 0
295.83/295.93 c dins : 0.00 0.00 0 0
295.83/295.93 c vbounds : 0.00 0.00 0 0
295.83/295.93 c undercover : 0.00 0.00 0 0
295.83/295.93 c subnlp : 0.00 0.00 0 0
295.83/295.93 c trysol : 0.04 0.00 7 6
295.83/295.93 c LP : Time Calls Iterations Iter/call Iter/sec Time-0-It Calls-0-It
295.83/295.93 c primal LP : 0.04 3 165 165.00 3709.95 0.01 2
295.83/295.93 c dual LP : 35.80 3803 158392 43.44 4423.96 0.46 157
295.83/295.93 c lex dual LP : 0.00 0 0 0.00 -
295.83/295.93 c barrier LP : 0.00 0 0 0.00 - 0.00 0
295.83/295.93 c diving/probing LP: 131.00 29123 240938 8.27 1839.21
295.83/295.93 c strong branching : 0.00 0 0 0.00 -
295.83/295.93 c (at root node) : - 0 0 0.00 -
295.83/295.93 c conflict analysis: 0.00 0 0 0.00 -
295.83/295.93 c B&B Tree :
295.83/295.93 c number of runs : 3
295.83/295.93 c nodes : 26
295.83/295.93 c nodes (total) : 3718
295.83/295.93 c nodes left : 0
295.83/295.93 c max depth : 18
295.83/295.93 c max depth (total): 560
295.83/295.93 c backtracks : 1 (3.8%)
295.83/295.93 c delayed cutoffs : 0
295.83/295.93 c repropagations : 0 (0 domain reductions, 0 cutoffs)
295.83/295.93 c avg switch length: 2.00
295.83/295.93 c switching time : 1.92
295.83/295.93 c Solution :
295.83/295.93 c Solutions found : 429 (29 improvements)
295.83/295.93 c First Solution : +1.99975000000000e+05 (in run 1, after 0 nodes, 0.09 seconds, depth 0, found by <trivial>)
295.83/295.93 c Primal Bound : +1.00000000000000e+00 (in run 3, after 26 nodes, 295.91 seconds, depth 825, found by <linesearchdiving>)
295.83/295.93 c Dual Bound : +1.00000000000000e+00
295.83/295.93 c Gap : 0.00 %
295.83/295.93 c Root Dual Bound : +1.00000000000000e+00
295.83/295.93 c Root Iterations : 12493
295.83/295.99 c Time complete: 295.93.