0.00/0.06 c SCIP version 1.1.0.7
0.00/0.06 c LP-Solver SoPlex 1.4.1
0.00/0.06 c user parameter file <scip.set> not found - using default parameters
0.00/0.06 c read problem <HOME/instance-3739470-1338756422.opb>
0.00/0.06 c original problem has 3224 variables (3224 bin, 0 int, 0 impl, 0 cont) and 10369 constraints
0.00/0.08 c No objective function, only one solution is needed.
0.00/0.08 c start presolving problem
0.00/0.08 c presolving:
0.18/0.24 c (round 1) 1029 del vars, 2640 del conss, 678 chg bounds, 1 chg sides, 1 chg coeffs, 0 upgd conss, 474052 impls, 0 clqs
0.29/0.31 c (round 2) 2328 del vars, 6943 del conss, 1891 chg bounds, 4 chg sides, 4 chg coeffs, 0 upgd conss, 480526 impls, 0 clqs
0.29/0.32 c (round 3) 2608 del vars, 8598 del conss, 2005 chg bounds, 79 chg sides, 77 chg coeffs, 0 upgd conss, 481973 impls, 0 clqs
0.29/0.32 c (round 4) 2723 del vars, 9001 del conss, 2064 chg bounds, 101 chg sides, 107 chg coeffs, 0 upgd conss, 483373 impls, 0 clqs
0.29/0.33 c (round 5) 2770 del vars, 9158 del conss, 2092 chg bounds, 131 chg sides, 146 chg coeffs, 0 upgd conss, 483772 impls, 0 clqs
0.29/0.33 c (round 6) 2775 del vars, 9208 del conss, 2093 chg bounds, 160 chg sides, 175 chg coeffs, 0 upgd conss, 483864 impls, 0 clqs
0.29/0.33 c (round 7) 2775 del vars, 9211 del conss, 2093 chg bounds, 160 chg sides, 175 chg coeffs, 0 upgd conss, 483864 impls, 0 clqs
0.29/0.34 c (round 8) 2775 del vars, 9219 del conss, 2093 chg bounds, 160 chg sides, 175 chg coeffs, 1150 upgd conss, 483864 impls, 0 clqs
0.29/0.34 c (round 9) 2788 del vars, 9288 del conss, 2116 chg bounds, 192 chg sides, 282 chg coeffs, 1150 upgd conss, 485180 impls, 17 clqs
0.29/0.35 c (round 10) 2817 del vars, 9304 del conss, 2116 chg bounds, 197 chg sides, 341 chg coeffs, 1150 upgd conss, 485416 impls, 16 clqs
0.29/0.35 c (round 11) 2817 del vars, 9304 del conss, 2116 chg bounds, 197 chg sides, 367 chg coeffs, 1150 upgd conss, 485426 impls, 18 clqs
0.29/0.36 c (round 12) 2817 del vars, 9309 del conss, 2116 chg bounds, 197 chg sides, 378 chg coeffs, 1150 upgd conss, 485426 impls, 18 clqs
0.29/0.36 c (round 13) 2817 del vars, 9309 del conss, 2116 chg bounds, 197 chg sides, 380 chg coeffs, 1150 upgd conss, 485428 impls, 18 clqs
0.29/0.36 c presolving (14 rounds):
0.29/0.36 c 2817 deleted vars, 9309 deleted constraints, 2116 tightened bounds, 0 added holes, 197 changed sides, 380 changed coefficients
0.29/0.36 c 485428 implications, 18 cliques
0.29/0.36 c presolved problem has 407 variables (407 bin, 0 int, 0 impl, 0 cont) and 1060 constraints
0.29/0.36 c 69 constraints of type <knapsack>
0.29/0.36 c 991 constraints of type <logicor>
0.29/0.36 c transformed objective value is always integral (scale: 1)
0.29/0.36 c Presolving Time: 0.26
0.29/0.36 c SATUNSAT-LIN
0.29/0.36 c -----------------------------------------------------------------------------------------------
0.29/0.36 c # frequency for calling separator <flowcover> (-1: never, 0: only in root node)
0.29/0.36 c # [type: int, range: [-1,2147483647], default: 0]
0.29/0.36 c separating/flowcover/freq = c -1
0.29/0.36 c # frequency for calling separator <cmir> (-1: never, 0: only in root node)
0.29/0.36 c # [type: int, range: [-1,2147483647], default: 0]
0.29/0.36 c separating/cmir/freq = c -1
0.29/0.36 c # additional number of allowed LP iterations
0.29/0.36 c # [type: int, range: [0,2147483647], default: 1000]
0.29/0.36 c heuristics/veclendiving/maxlpiterofs = c 1500
0.29/0.36 c # maximal fraction of diving LP iterations compared to node LP iterations
0.29/0.36 c # [type: real, range: [0,1.79769313486232e+308], default: 0.05]
0.29/0.36 c heuristics/veclendiving/maxlpiterquot = c 0.075
0.29/0.36 c # frequency for calling primal heuristic <veclendiving> (-1: never, 0: only at depth freqofs)
0.29/0.36 c # [type: int, range: [-1,2147483647], default: 10]
0.29/0.36 c heuristics/veclendiving/freq = c -1
0.29/0.36 c # frequency for calling primal heuristic <simplerounding> (-1: never, 0: only at depth freqofs)
0.29/0.36 c # [type: int, range: [-1,2147483647], default: 1]
0.29/0.36 c heuristics/simplerounding/freq = c -1
0.29/0.36 c # frequency for calling primal heuristic <shifting> (-1: never, 0: only at depth freqofs)
0.29/0.36 c # [type: int, range: [-1,2147483647], default: 10]
0.29/0.36 c heuristics/shifting/freq = c -1
0.29/0.36 c # frequency for calling primal heuristic <rounding> (-1: never, 0: only at depth freqofs)
0.29/0.36 c # [type: int, range: [-1,2147483647], default: 1]
0.29/0.36 c heuristics/rounding/freq = c -1
0.29/0.36 c # additional number of allowed LP iterations
0.29/0.36 c # [type: int, range: [0,2147483647], default: 1000]
0.29/0.36 c heuristics/rootsoldiving/maxlpiterofs = c 1500
0.29/0.36 c # maximal fraction of diving LP iterations compared to node LP iterations
0.29/0.36 c # [type: real, range: [0,1.79769313486232e+308], default: 0.01]
0.29/0.36 c heuristics/rootsoldiving/maxlpiterquot = c 0.015
0.29/0.36 c # frequency for calling primal heuristic <rootsoldiving> (-1: never, 0: only at depth freqofs)
0.29/0.36 c # [type: int, range: [-1,2147483647], default: 20]
0.29/0.36 c heuristics/rootsoldiving/freq = c -1
0.29/0.36 c # number of nodes added to the contingent of the total nodes
0.29/0.36 c # [type: longint, range: [0,9223372036854775807], default: 500]
0.29/0.36 c heuristics/rens/nodesofs = c 2000
0.29/0.36 c # minimum percentage of integer variables that have to be fixable
0.29/0.36 c # [type: real, range: [0,1], default: 0.5]
0.29/0.36 c heuristics/rens/minfixingrate = c 0.3
0.29/0.36 c # frequency for calling primal heuristic <rens> (-1: never, 0: only at depth freqofs)
0.29/0.36 c # [type: int, range: [-1,2147483647], default: 0]
0.29/0.36 c heuristics/rens/freq = c -1
0.29/0.36 c # additional number of allowed LP iterations
0.29/0.36 c # [type: int, range: [0,2147483647], default: 1000]
0.29/0.36 c heuristics/pscostdiving/maxlpiterofs = c 1500
0.29/0.36 c # maximal fraction of diving LP iterations compared to node LP iterations
0.29/0.36 c # [type: real, range: [0,1.79769313486232e+308], default: 0.05]
0.29/0.36 c heuristics/pscostdiving/maxlpiterquot = c 0.075
0.29/0.36 c # frequency for calling primal heuristic <pscostdiving> (-1: never, 0: only at depth freqofs)
0.29/0.36 c # [type: int, range: [-1,2147483647], default: 10]
0.29/0.36 c heuristics/pscostdiving/freq = c -1
0.29/0.36 c # frequency for calling primal heuristic <oneopt> (-1: never, 0: only at depth freqofs)
0.29/0.36 c # [type: int, range: [-1,2147483647], default: 1]
0.29/0.36 c heuristics/oneopt/freq = c -1
0.29/0.36 c # additional number of allowed LP iterations
0.29/0.36 c # [type: int, range: [0,2147483647], default: 1000]
0.29/0.36 c heuristics/objpscostdiving/maxlpiterofs = c 1500
0.29/0.36 c # maximal fraction of diving LP iterations compared to total iteration number
0.29/0.36 c # [type: real, range: [0,1], default: 0.01]
0.29/0.36 c heuristics/objpscostdiving/maxlpiterquot = c 0.015
0.29/0.36 c # frequency for calling primal heuristic <objpscostdiving> (-1: never, 0: only at depth freqofs)
0.29/0.36 c # [type: int, range: [-1,2147483647], default: 20]
0.29/0.36 c heuristics/objpscostdiving/freq = c -1
0.29/0.36 c # additional number of allowed LP iterations
0.29/0.36 c # [type: int, range: [0,2147483647], default: 1000]
0.29/0.36 c heuristics/linesearchdiving/maxlpiterofs = c 1500
0.29/0.36 c # maximal fraction of diving LP iterations compared to node LP iterations
0.29/0.36 c # [type: real, range: [0,1.79769313486232e+308], default: 0.05]
0.29/0.36 c heuristics/linesearchdiving/maxlpiterquot = c 0.075
0.29/0.36 c # frequency for calling primal heuristic <linesearchdiving> (-1: never, 0: only at depth freqofs)
0.29/0.36 c # [type: int, range: [-1,2147483647], default: 10]
0.29/0.36 c heuristics/linesearchdiving/freq = c -1
0.29/0.36 c # frequency for calling primal heuristic <intshifting> (-1: never, 0: only at depth freqofs)
0.29/0.36 c # [type: int, range: [-1,2147483647], default: 10]
0.29/0.36 c heuristics/intshifting/freq = c -1
0.29/0.36 c # maximal fraction of diving LP iterations compared to node LP iterations
0.29/0.36 c # [type: real, range: [0,1.79769313486232e+308], default: 0.05]
0.29/0.36 c heuristics/intdiving/maxlpiterquot = c 0.075
0.29/0.36 c # additional number of allowed LP iterations
0.29/0.36 c # [type: int, range: [0,2147483647], default: 1000]
0.29/0.36 c heuristics/guideddiving/maxlpiterofs = c 1500
0.29/0.36 c # maximal fraction of diving LP iterations compared to node LP iterations
0.29/0.36 c # [type: real, range: [0,1.79769313486232e+308], default: 0.05]
0.29/0.36 c heuristics/guideddiving/maxlpiterquot = c 0.075
0.29/0.36 c # frequency for calling primal heuristic <guideddiving> (-1: never, 0: only at depth freqofs)
0.29/0.36 c # [type: int, range: [-1,2147483647], default: 10]
0.29/0.36 c heuristics/guideddiving/freq = c -1
0.29/0.36 c # additional number of allowed LP iterations
0.29/0.36 c # [type: int, range: [0,2147483647], default: 1000]
0.29/0.36 c heuristics/fracdiving/maxlpiterofs = c 1500
0.29/0.36 c # maximal fraction of diving LP iterations compared to node LP iterations
0.29/0.36 c # [type: real, range: [0,1.79769313486232e+308], default: 0.05]
0.29/0.36 c heuristics/fracdiving/maxlpiterquot = c 0.075
0.29/0.36 c # frequency for calling primal heuristic <fracdiving> (-1: never, 0: only at depth freqofs)
0.29/0.36 c # [type: int, range: [-1,2147483647], default: 10]
0.29/0.36 c heuristics/fracdiving/freq = c -1
0.29/0.36 c # additional number of allowed LP iterations
0.29/0.36 c # [type: int, range: [0,2147483647], default: 1000]
0.29/0.36 c heuristics/feaspump/maxlpiterofs = c 2000
0.29/0.36 c # frequency for calling primal heuristic <feaspump> (-1: never, 0: only at depth freqofs)
0.29/0.36 c # [type: int, range: [-1,2147483647], default: 20]
0.29/0.36 c heuristics/feaspump/freq = c -1
0.29/0.36 c # minimum percentage of integer variables that have to be fixed
0.29/0.36 c # [type: real, range: [0,1], default: 0.666]
0.29/0.36 c heuristics/crossover/minfixingrate = c 0.5
0.29/0.36 c # contingent of sub problem nodes in relation to the number of nodes of the original problem
0.29/0.36 c # [type: real, range: [0,1], default: 0.1]
0.29/0.36 c heuristics/crossover/nodesquot = c 0.15
0.29/0.36 c # number of nodes without incumbent change that heuristic should wait
0.29/0.36 c # [type: longint, range: [0,9223372036854775807], default: 200]
0.29/0.36 c heuristics/crossover/nwaitingnodes = c 100
0.29/0.36 c # number of nodes added to the contingent of the total nodes
0.29/0.36 c # [type: longint, range: [0,9223372036854775807], default: 500]
0.29/0.36 c heuristics/crossover/nodesofs = c 750
0.29/0.36 c # frequency for calling primal heuristic <crossover> (-1: never, 0: only at depth freqofs)
0.29/0.36 c # [type: int, range: [-1,2147483647], default: 30]
0.29/0.36 c heuristics/crossover/freq = c -1
0.29/0.36 c # additional number of allowed LP iterations
0.29/0.36 c # [type: int, range: [0,2147483647], default: 1000]
0.29/0.36 c heuristics/coefdiving/maxlpiterofs = c 1500
0.29/0.36 c # maximal fraction of diving LP iterations compared to node LP iterations
0.29/0.36 c # [type: real, range: [0,1.79769313486232e+308], default: 0.05]
0.29/0.36 c heuristics/coefdiving/maxlpiterquot = c 0.075
0.29/0.36 c # frequency for calling primal heuristic <coefdiving> (-1: never, 0: only at depth freqofs)
0.29/0.36 c # [type: int, range: [-1,2147483647], default: 10]
0.29/0.36 c heuristics/coefdiving/freq = c -1
0.29/0.36 c # maximal number of presolving rounds the presolver participates in (-1: no limit)
0.29/0.36 c # [type: int, range: [-1,2147483647], default: -1]
0.29/0.36 c presolving/probing/maxrounds = c 0
0.29/0.36 c # should presolving try to simplify knapsacks
0.29/0.36 c # [type: bool, range: {TRUE,FALSE}, default: FALSE]
0.29/0.36 c constraints/knapsack/simplifyinequalities = c TRUE
0.29/0.36 c # should disaggregation of knapsack constraints be allowed in preprocessing?
0.29/0.36 c # [type: bool, range: {TRUE,FALSE}, default: TRUE]
0.29/0.36 c constraints/knapsack/disaggregation = c FALSE
0.29/0.36 c # maximal number of cardinality inequalities lifted per separation round (-1: unlimited)
0.29/0.36 c # [type: int, range: [-1,2147483647], default: -1]
0.29/0.36 c constraints/knapsack/maxnumcardlift = c 0
0.29/0.36 c # should presolving try to simplify inequalities
0.29/0.36 c # [type: bool, range: {TRUE,FALSE}, default: FALSE]
0.29/0.36 c constraints/linear/simplifyinequalities = c TRUE
0.29/0.36 c # maximal number of separation rounds in the root node (-1: unlimited)
0.29/0.36 c # [type: int, range: [-1,2147483647], default: -1]
0.29/0.36 c separating/maxroundsroot = c 5
0.29/0.36 c # maximal number of separation rounds per node (-1: unlimited)
0.29/0.36 c # [type: int, range: [-1,2147483647], default: 5]
0.29/0.36 c separating/maxrounds = c 1
0.29/0.36 c # solving stops, if the given number of solutions were found (-1: no limit)
0.29/0.36 c # [type: int, range: [-1,2147483647], default: -1]
0.29/0.36 c limits/solutions = c 1
0.29/0.36 c # maximal memory usage in MB; reported memory usage is lower than real memory usage!
0.29/0.36 c # [type: real, range: [0,1.79769313486232e+308], default: 1e+20]
0.29/0.36 c limits/memory = c 13950
0.29/0.36 c # maximal time in seconds to run
0.29/0.36 c # [type: real, range: [0,1.79769313486232e+308], default: 1e+20]
0.29/0.36 c limits/time = c 1791
0.29/0.36 c # frequency for displaying node information lines
0.29/0.36 c # [type: int, range: [-1,2147483647], default: 100]
0.29/0.36 c display/freq = c 10000
0.29/0.36 c -----------------------------------------------------------------------------------------------
0.29/0.36 c start solving problem
0.29/0.36 c
0.29/0.37 c time | node | left |LP iter| mem |mdpt |frac |vars |cons |ccons|cols |rows |cuts |confs|strbr| dualbound | primalbound | gap
0.29/0.37 c 0.3s| 1 | 0 | 194 | 11M| 0 | 62 | 407 |1060 |1060 | 407 |1030 | 0 | 0 | 0 | 9.187891e+02 | -- | Inf
0.39/0.40 c 0.3s| 1 | 0 | 277 | 11M| 0 | 87 | 407 |1060 |1060 | 407 |1048 | 18 | 0 | 0 | 9.231357e+02 | -- | Inf
0.39/0.42 c 0.3s| 1 | 0 | 335 | 12M| 0 | 34 | 407 |1060 |1060 | 407 |1100 | 70 | 0 | 0 | 9.245070e+02 | -- | Inf
0.39/0.43 c 0.3s| 1 | 0 | 346 | 12M| 0 | 0 | 407 |1060 |1060 | 407 |1105 | 75 | 0 | 0 | 9.250000e+02 | -- | Inf
0.39/0.44 c * 0.3s| 1 | 0 | 346 | 12M| 0 | - | 407 |1060 |1060 | 407 |1105 | 75 | 0 | 0 | 9.250000e+02 | 9.250000e+02 | 0.00%
0.39/0.44 c
0.39/0.44 c SCIP Status : problem is solved [optimal solution found]
0.39/0.44 c Solving Time (sec) : 0.34
0.39/0.44 c Solving Nodes : 1
0.39/0.44 c Primal Bound : +9.25000000000000e+02 (1 solutions)
0.39/0.44 c Dual Bound : +9.25000000000000e+02
0.39/0.44 c Gap : 0.00 %
0.39/0.44 c NODE 1
0.39/0.44 c DUAL BOUND 925
0.39/0.44 c PRIMAL BOUND 925
0.39/0.44 c GAP 0
0.39/0.44 s SATISFIABLE
0.39/0.44 v x3224 -x3223 -x3222 -x3221 -x3220 -x3219 -x3218 -x3217 -x3216 -x3215 -x3214 -x3213 -x3212 -x3211 -x3210 -x3209 -x3208 -x3207 -x3206
0.39/0.44 v -x3205 -x3204 -x3203 -x3202 -x3201 -x3200 -x3199 -x3198 -x3197 -x3196 -x3195 -x3194 -x3193 -x3192 -x3191 -x3190 -x3189 -x3188
0.39/0.44 v -x3187 -x3186 -x3185 -x3184 -x3183 -x3182 -x3181 -x3180 -x3179 -x3178 -x3177 -x3176 -x3175 -x3174 -x3173 -x3172 x3171 x3170
0.39/0.44 v x3169 x3168 x3167 x3166 x3165 x3164 -x3163 -x3162 -x3161 -x3160 -x3159 -x3158 -x3157 -x3156 -x3155 -x3154 -x3153 -x3152
0.39/0.44 v -x3151 -x3150 -x3149 -x3148 -x3147 -x3146 -x3145 -x3144 -x3143 -x3142 -x3141 -x3140 -x3139 -x3138 -x3137 -x3136 -x3135 -x3134
0.39/0.44 v -x3133 -x3132 -x3131 -x3130 -x3129 -x3128 -x3127 -x3126 -x3125 -x3124 -x3123 -x3122 -x3121 -x3120 x3119 x3118 -x3117 -x3116
0.39/0.44 v -x3115 -x3114 -x3113 -x3112 -x3111 -x3110 -x3109 -x3108 -x3107 -x3106 -x3105 -x3104 -x3103 -x3102 -x3101 -x3100 -x3099 -x3098
0.39/0.44 v -x3097 -x3096 -x3095 -x3094 -x3093 -x3092 -x3091 -x3090 -x3089 -x3088 -x3087 -x3086 -x3085 -x3084 -x3083 -x3082 -x3081 -x3080
0.39/0.44 v -x3079 -x3078 -x3077 -x3076 -x3075 -x3074 -x3073 -x3072 -x3071 -x3070 -x3069 -x3068 x3067 x3066 x3065 -x3064 -x3063 -x3062
0.39/0.44 v -x3061 -x3060 -x3059 -x3058 -x3057 -x3056 -x3055 -x3054 -x3053 -x3052 -x3051 -x3050 -x3049 -x3048 -x3047 -x3046 -x3045 -x3044
0.39/0.44 v -x3043 -x3042 -x3041 -x3040 -x3039 -x3038 -x3037 -x3036 -x3035 -x3034 -x3033 -x3032 -x3031 -x3030 -x3029 -x3028 -x3027 -x3026
0.39/0.44 v -x3025 -x3024 -x3023 -x3022 -x3021 -x3020 -x3019 -x3018 -x3017 -x3016 -x3015 -x3014 -x3013 x3012 x3011 x3010 x3009 x3008 -x3007
0.39/0.44 v -x3006 -x3005 -x3004 -x3003 -x3002 -x3001 -x3000 -x2999 -x2998 -x2997 -x2996 -x2995 -x2994 -x2993 -x2992 -x2991 -x2990 -x2989
0.39/0.44 v -x2988 -x2987 -x2986 -x2985 -x2984 -x2983 -x2982 -x2981 -x2980 -x2979 -x2978 -x2977 -x2976 -x2975 -x2974 -x2973 -x2972
0.39/0.44 v -x2971 -x2970 -x2969 -x2968 -x2967 -x2966 -x2965 -x2964 -x2963 -x2962 -x2961 x2960 x2959 x2958 -x2957 -x2956 -x2955 -x2954 -x2953
0.39/0.44 v -x2952 -x2951 -x2950 -x2949 -x2948 -x2947 -x2946 -x2945 -x2944 -x2943 -x2942 -x2941 -x2940 -x2939 -x2938 -x2937 -x2936 -x2935
0.39/0.44 v -x2934 -x2933 -x2932 -x2931 -x2930 -x2929 -x2928 -x2927 -x2926 -x2925 -x2924 -x2923 -x2922 -x2921 -x2920 -x2919 -x2918
0.39/0.44 v -x2917 -x2916 -x2915 -x2914 -x2913 -x2912 -x2911 -x2910 -x2909 -x2908 -x2907 -x2906 x2905 x2904 -x2903 -x2902 -x2901 -x2900 -x2899
0.39/0.44 v -x2898 -x2897 -x2896 -x2895 -x2894 -x2893 -x2892 -x2891 -x2890 -x2889 -x2888 -x2887 -x2886 -x2885 -x2884 -x2883 -x2882
0.39/0.44 v -x2881 -x2880 -x2879 -x2878 -x2877 -x2876 -x2875 -x2874 -x2873 -x2872 -x2871 -x2870 -x2869 -x2868 -x2867 -x2866 -x2865 -x2864
0.39/0.44 v -x2863 -x2862 -x2861 -x2860 -x2859 -x2858 -x2857 -x2856 -x2855 -x2854 -x2853 -x2852 x2851 x2850 x2849 x2848 -x2847 -x2846 -x2845
0.39/0.44 v -x2844 -x2843 -x2842 -x2841 -x2840 -x2839 -x2838 -x2837 -x2836 -x2835 -x2834 -x2833 -x2832 -x2831 -x2830 -x2829 -x2828 -x2827
0.39/0.44 v -x2826 -x2825 -x2824 -x2823 -x2822 -x2821 -x2820 -x2819 -x2818 -x2817 -x2816 -x2815 -x2814 -x2813 -x2812 -x2811 -x2810
0.39/0.44 v -x2809 -x2808 -x2807 -x2806 -x2805 -x2804 -x2803 -x2802 -x2801 -x2800 x2799 x2798 x2797 x2796 x2795 x2794 x2793 x2792 -x2791
0.39/0.44 v -x2790 -x2789 -x2788 -x2787 -x2786 -x2785 -x2784 -x2783 -x2782 -x2781 -x2780 -x2779 -x2778 -x2777 -x2776 -x2775 -x2774 -x2773
0.39/0.44 v -x2772 -x2771 -x2770 -x2769 -x2768 -x2767 -x2766 -x2765 -x2764 -x2763 -x2762 -x2761 -x2760 -x2759 -x2758 -x2757 -x2756 -x2755
0.39/0.44 v -x2754 -x2753 -x2752 -x2751 -x2750 -x2749 -x2748 x2747 x2746 x2745 x2744 x2743 x2742 x2741 x2740 -x2739 -x2738 -x2737 -x2736
0.39/0.44 v -x2735 -x2734 -x2733 -x2732 -x2731 -x2730 -x2729 -x2728 -x2727 -x2726 -x2725 -x2724 -x2723 -x2722 -x2721 -x2720 -x2719 -x2718
0.39/0.44 v -x2717 -x2716 -x2715 -x2714 -x2713 -x2712 -x2711 -x2710 -x2709 -x2708 -x2707 -x2706 -x2705 -x2704 -x2703 -x2702 -x2701 -x2700
0.39/0.44 v -x2699 -x2698 -x2697 -x2696 -x2695 -x2694 -x2693 -x2692 -x2691 -x2690 -x2689 -x2688 x2687 x2686 x2685 -x2684 -x2683 -x2682
0.39/0.44 v -x2681 -x2680 -x2679 -x2678 -x2677 -x2676 -x2675 -x2674 -x2673 -x2672 -x2671 -x2670 -x2669 -x2668 -x2667 -x2666 -x2665 -x2664
0.39/0.44 v -x2663 -x2662 -x2661 -x2660 -x2659 -x2658 -x2657 -x2656 -x2655 -x2654 -x2653 -x2652 -x2651 -x2650 -x2649 -x2648 -x2647 -x2646
0.39/0.44 v -x2645 -x2644 -x2643 -x2642 -x2641 -x2640 -x2639 -x2638 -x2637 -x2636 x2635 x2634 x2633 x2632 x2631 x2630 x2629 -x2628 -x2627
0.39/0.44 v -x2626 -x2625 -x2624 -x2623 -x2622 -x2621 -x2620 -x2619 -x2618 -x2617 -x2616 -x2615 -x2614 -x2613 -x2612 -x2611 -x2610 -x2609
0.39/0.44 v -x2608 -x2607 -x2606 -x2605 -x2604 -x2603 -x2602 -x2601 -x2600 -x2599 -x2598 -x2597 -x2596 -x2595 -x2594 -x2593 -x2592
0.39/0.44 v -x2591 -x2590 -x2589 -x2588 -x2587 -x2586 -x2585 -x2584 -x2583 -x2582 -x2581 -x2580 -x2579 -x2578 -x2577 x2576 x2575 x2574 x2573
0.39/0.44 v x2572 x2571 -x2570 -x2569 -x2568 -x2567 -x2566 -x2565 -x2564 -x2563 -x2562 -x2561 -x2560 -x2559 -x2558 -x2557 -x2556 -x2555
0.39/0.44 v -x2554 -x2553 -x2552 -x2551 -x2550 -x2549 -x2548 -x2547 -x2546 -x2545 -x2544 -x2543 -x2542 -x2541 -x2540 -x2539 -x2538 -x2537
0.39/0.44 v -x2536 -x2535 -x2534 -x2533 -x2532 x2531 x2530 x2529 x2528 x2527 x2526 -x2525 -x2524 -x2523 -x2522 -x2521 -x2520 -x2519 -x2518
0.39/0.44 v -x2517 -x2516 -x2515 -x2514 -x2513 -x2512 -x2511 -x2510 -x2509 -x2508 -x2507 -x2506 -x2505 -x2504 -x2503 -x2502 -x2501
0.39/0.44 v -x2500 -x2499 -x2498 -x2497 -x2496 -x2495 -x2494 -x2493 -x2492 -x2491 -x2490 -x2489 -x2488 -x2487 -x2486 -x2485 -x2484 -x2483
0.39/0.44 v -x2482 -x2481 -x2480 -x2479 -x2478 -x2477 -x2476 -x2475 -x2474 -x2473 -x2472 -x2471 -x2470 -x2469 -x2468 -x2467 x2466 x2465
0.39/0.44 v x2464 x2463 x2462 -x2461 -x2460 -x2459 -x2458 -x2457 -x2456 -x2455 -x2454 -x2453 -x2452 -x2451 -x2450 -x2449 -x2448 -x2447 -x2446
0.39/0.44 v -x2445 -x2444 -x2443 -x2442 -x2441 -x2440 -x2439 -x2438 -x2437 -x2436 -x2435 -x2434 -x2433 -x2432 -x2431 -x2430 -x2429 -x2428
0.39/0.44 v -x2427 -x2426 -x2425 x2424 x2423 x2422 x2421 -x2420 -x2419 -x2418 -x2417 -x2416 -x2415 -x2414 -x2413 -x2412 -x2411 -x2410
0.39/0.44 v -x2409 -x2408 -x2407 -x2406 -x2405 -x2404 -x2403 -x2402 -x2401 -x2400 -x2399 -x2398 -x2397 -x2396 -x2395 -x2394 -x2393 -x2392
0.39/0.44 v -x2391 -x2390 -x2389 -x2388 -x2387 -x2386 -x2385 -x2384 -x2383 -x2382 -x2381 -x2380 -x2379 -x2378 -x2377 -x2376 -x2375 -x2374
0.39/0.44 v -x2373 -x2372 -x2371 -x2370 -x2369 -x2368 -x2367 -x2366 -x2365 -x2364 -x2363 -x2362 -x2361 -x2360 -x2359 -x2358 x2357 x2356
0.39/0.44 v x2355 x2354 x2353 x2352 -x2351 -x2350 -x2349 -x2348 -x2347 -x2346 -x2345 -x2344 -x2343 -x2342 -x2341 -x2340 -x2339 -x2338
0.39/0.44 v x2337 x2336 -x2335 -x2334 -x2333 -x2332 -x2331 -x2330 -x2329 -x2328 -x2327 -x2326 -x2325 -x2324 -x2323 -x2322 -x2321 -x2320
0.39/0.44 v -x2319 -x2318 -x2317 -x2316 -x2315 -x2314 -x2313 -x2312 -x2311 -x2310 -x2309 -x2308 -x2307 -x2306 -x2305 -x2304 -x2303 -x2302
0.39/0.44 v -x2301 -x2300 -x2299 -x2298 -x2297 -x2296 -x2295 -x2294 -x2293 -x2292 -x2291 -x2290 -x2289 -x2288 -x2287 -x2286 -x2285 -x2284
0.39/0.44 v -x2283 -x2282 -x2281 -x2280 -x2279 -x2278 -x2277 -x2276 -x2275 -x2274 -x2273 -x2272 -x2271 -x2270 -x2269 -x2268 -x2267 -x2266
0.39/0.44 v x2265 x2264 x2263 -x2262 -x2261 -x2260 -x2259 -x2258 -x2257 -x2256 -x2255 -x2254 -x2253 -x2252 -x2251 -x2250 -x2249 -x2248
0.39/0.44 v -x2247 -x2246 -x2245 -x2244 -x2243 -x2242 -x2241 -x2240 -x2239 -x2238 -x2237 -x2236 -x2235 -x2234 -x2233 -x2232 -x2231 -x2230
0.39/0.44 v -x2229 -x2228 -x2227 -x2226 -x2225 -x2224 -x2223 -x2222 -x2221 -x2220 -x2219 -x2218 -x2217 -x2216 -x2215 -x2214 x2213 x2212
0.39/0.44 v x2211 x2210 x2209 x2208 x2207 x2206 x2205 x2204 -x2203 -x2202 -x2201 -x2200 -x2199 -x2198 -x2197 -x2196 -x2195 -x2194 -x2193
0.39/0.44 v -x2192 -x2191 -x2190 -x2189 -x2188 -x2187 -x2186 -x2185 -x2184 -x2183 -x2182 -x2181 -x2180 -x2179 -x2178 -x2177 -x2176 -x2175
0.39/0.44 v -x2174 -x2173 -x2172 -x2171 -x2170 -x2169 -x2168 -x2167 -x2166 -x2165 -x2164 -x2163 -x2162 -x2161 x2160 x2159 x2158 x2157 x2156
0.39/0.44 v x2155 x2154 -x2153 -x2152 -x2151 -x2150 -x2149 -x2148 -x2147 -x2146 -x2145 -x2144 -x2143 -x2142 -x2141 -x2140 -x2139 -x2138
0.39/0.44 v -x2137 -x2136 -x2135 -x2134 -x2133 -x2132 -x2131 -x2130 -x2129 -x2128 -x2127 -x2126 -x2125 -x2124 -x2123 -x2122 -x2121 -x2120
0.39/0.44 v -x2119 -x2118 -x2117 -x2116 -x2115 -x2114 -x2113 -x2112 -x2111 -x2110 -x2109 x2108 x2107 x2106 x2105 x2104 -x2103 -x2102
0.39/0.44 v -x2101 -x2100 -x2099 -x2098 -x2097 -x2096 -x2095 -x2094 -x2093 -x2092 -x2091 -x2090 -x2089 -x2088 -x2087 -x2086 -x2085 -x2084
0.39/0.44 v -x2083 -x2082 -x2081 -x2080 -x2079 -x2078 -x2077 -x2076 -x2075 -x2074 -x2073 -x2072 -x2071 -x2070 -x2069 -x2068 -x2067 -x2066
0.39/0.44 v -x2065 -x2064 -x2063 -x2062 -x2061 -x2060 -x2059 -x2058 -x2057 -x2056 -x2055 -x2054 -x2053 -x2052 -x2051 -x2050 -x2049 -x2048
0.39/0.44 v x2047 -x2046 -x2045 -x2044 -x2043 -x2042 -x2041 -x2040 -x2039 -x2038 -x2037 -x2036 -x2035 -x2034 -x2033 -x2032 -x2031 -x2030
0.39/0.44 v -x2029 -x2028 -x2027 -x2026 -x2025 -x2024 -x2023 -x2022 -x2021 -x2020 -x2019 -x2018 -x2017 -x2016 -x2015 -x2014 -x2013 -x2012
0.39/0.44 v x2011 x2010 x2009 x2008 x2007 x2006 x2005 x2004 x2003 x2002 -x2001 -x2000 -x1999 -x1998 -x1997 -x1996 -x1995 -x1994 -x1993
0.39/0.44 v -x1992 -x1991 -x1990 -x1989 -x1988 -x1987 -x1986 -x1985 -x1984 -x1983 -x1982 -x1981 -x1980 -x1979 -x1978 -x1977 -x1976 -x1975
0.39/0.44 v -x1974 -x1973 -x1972 -x1971 -x1970 -x1969 -x1968 -x1967 -x1966 -x1965 -x1964 -x1963 -x1962 -x1961 -x1960 -x1959 -x1958 -x1957
0.39/0.44 v -x1956 -x1955 -x1954 -x1953 -x1952 -x1951 x1950 x1949 x1948 x1947 x1946 x1945 x1944 x1943 -x1942 -x1941 -x1940 -x1939 -x1938
0.39/0.44 v -x1937 -x1936 -x1935 -x1934 -x1933 -x1932 -x1931 -x1930 -x1929 -x1928 -x1927 -x1926 -x1925 -x1924 -x1923 -x1922 -x1921 -x1920
0.39/0.44 v -x1919 -x1918 -x1917 -x1916 -x1915 -x1914 -x1913 -x1912 -x1911 -x1910 -x1909 -x1908 -x1907 -x1906 -x1905 -x1904 -x1903
0.39/0.44 v -x1902 -x1901 -x1900 -x1899 -x1898 x1897 x1896 x1895 x1894 x1893 x1892 x1891 x1890 -x1889 -x1888 -x1887 -x1886 -x1885 -x1884
0.39/0.44 v -x1883 -x1882 -x1881 -x1880 -x1879 -x1878 -x1877 -x1876 -x1875 -x1874 -x1873 -x1872 -x1871 -x1870 -x1869 -x1868 -x1867 -x1866
0.39/0.44 v -x1865 -x1864 -x1863 -x1862 -x1861 -x1860 -x1859 -x1858 -x1857 -x1856 -x1855 -x1854 -x1853 -x1852 -x1851 -x1850 -x1849 -x1848
0.39/0.44 v -x1847 -x1846 -x1845 -x1844 -x1843 -x1842 -x1841 -x1840 -x1839 -x1838 x1837 x1836 x1835 x1834 x1833 x1832 -x1831 -x1830 -x1829
0.39/0.44 v -x1828 -x1827 -x1826 -x1825 -x1824 -x1823 -x1822 -x1821 -x1820 -x1819 -x1818 -x1817 -x1816 -x1815 -x1814 -x1813 -x1812 -x1811
0.39/0.44 v -x1810 -x1809 -x1808 -x1807 -x1806 -x1805 -x1804 -x1803 -x1802 -x1801 -x1800 -x1799 -x1798 -x1797 -x1796 -x1795 -x1794 -x1793
0.39/0.44 v -x1792 -x1791 -x1790 -x1789 -x1788 -x1787 -x1786 -x1785 -x1784 -x1783 -x1782 -x1781 -x1780 x1779 x1778 x1777 -x1776 -x1775
0.39/0.44 v -x1774 -x1773 -x1772 -x1771 -x1770 -x1769 -x1768 -x1767 -x1766 -x1765 -x1764 -x1763 -x1762 -x1761 -x1760 -x1759 -x1758 -x1757
0.39/0.44 v -x1756 -x1755 -x1754 -x1753 -x1752 -x1751 -x1750 -x1749 -x1748 -x1747 -x1746 -x1745 -x1744 -x1743 -x1742 -x1741 -x1740 -x1739
0.39/0.44 v -x1738 -x1737 -x1736 -x1735 x1734 x1733 x1732 x1731 x1730 x1729 x1728 x1727 x1726 -x1725 -x1724 -x1723 -x1722 -x1721 -x1720
0.39/0.44 v -x1719 -x1718 -x1717 -x1716 -x1715 -x1714 -x1713 -x1712 -x1711 -x1710 -x1709 -x1708 -x1707 -x1706 -x1705 -x1704 -x1703 -x1702
0.39/0.44 v -x1701 -x1700 -x1699 -x1698 -x1697 -x1696 -x1695 -x1694 -x1693 -x1692 -x1691 -x1690 -x1689 -x1688 -x1687 -x1686 -x1685
0.39/0.44 v -x1684 -x1683 x1682 x1681 x1680 x1679 x1678 -x1677 -x1676 -x1675 -x1674 -x1673 -x1672 -x1671 -x1670 -x1669 -x1668 -x1667 -x1666
0.39/0.44 v -x1665 -x1664 -x1663 -x1662 -x1661 -x1660 -x1659 -x1658 -x1657 -x1656 -x1655 -x1654 -x1653 -x1652 -x1651 -x1650 -x1649 -x1648
0.39/0.44 v -x1647 -x1646 -x1645 -x1644 -x1643 -x1642 -x1641 -x1640 -x1639 -x1638 -x1637 -x1636 -x1635 -x1634 -x1633 -x1632 -x1631 -x1630
0.39/0.44 v -x1629 -x1628 -x1627 -x1626 -x1625 -x1624 -x1623 -x1622 -x1621 x1620 x1619 x1618 x1617 x1616 x1615 x1614 x1613 -x1611 -x1610
0.39/0.44 v -x1609 -x1608 -x1607 -x1606 -x1605 -x1604 -x1603 -x1602 -x1601 -x1600 -x1599 -x1598 -x1597 -x1596 -x1595 -x1594 -x1593 -x1592
0.39/0.44 v -x1591 -x1590 -x1589 -x1588 -x1587 -x1586 -x1585 -x1584 -x1583 -x1582 -x1581 -x1580 -x1579 -x1578 -x1577 -x1576 -x1575
0.39/0.44 v -x1574 -x1573 -x1572 -x1571 -x1570 -x1569 -x1568 -x1567 -x1566 -x1565 -x1564 -x1563 -x1562 -x1561 x1560 x1559 x1558 x1557 x1556
0.39/0.44 v x1555 x1554 x1553 x1552 -x1551 -x1550 -x1549 -x1548 -x1547 -x1546 -x1545 -x1544 -x1543 -x1542 -x1541 -x1540 -x1539 -x1538
0.39/0.44 v -x1537 -x1536 -x1535 -x1534 -x1533 -x1532 -x1531 -x1530 -x1529 -x1528 -x1527 -x1526 -x1525 -x1524 -x1523 -x1522 -x1521 -x1520
0.39/0.44 v -x1519 -x1518 -x1517 -x1516 -x1515 -x1514 -x1513 -x1512 -x1511 -x1510 -x1509 x1508 x1507 x1506 -x1505 -x1504 -x1503 -x1502 -x1501
0.39/0.44 v -x1500 -x1499 -x1498 -x1497 -x1496 -x1495 -x1494 -x1493 -x1492 -x1491 -x1490 -x1489 -x1488 -x1487 -x1486 -x1485 -x1484
0.39/0.44 v -x1483 -x1482 -x1481 -x1480 -x1479 -x1478 -x1477 -x1476 -x1475 -x1474 -x1473 -x1472 -x1471 -x1470 -x1469 -x1468 -x1467 -x1466
0.39/0.44 v -x1465 -x1464 -x1463 -x1462 -x1461 -x1460 -x1459 -x1458 -x1457 x1456 x1455 x1454 x1453 -x1452 -x1451 -x1450 -x1449 -x1448 -x1447
0.39/0.44 v -x1446 -x1445 -x1444 -x1443 -x1442 -x1441 -x1440 -x1439 -x1438 -x1437 -x1436 -x1435 -x1434 -x1433 -x1432 -x1431 -x1430 -x1429
0.39/0.44 v -x1428 -x1427 -x1426 -x1425 -x1424 -x1423 -x1422 -x1421 -x1420 -x1419 -x1418 -x1417 -x1416 -x1415 -x1414 -x1413 -x1412
0.39/0.44 v -x1411 -x1410 -x1409 -x1408 -x1407 -x1406 -x1405 x1404 x1403 x1402 x1401 x1400 x1399 x1398 x1397 x1396 -x1395 -x1394 -x1393 -x1392
0.39/0.44 v -x1391 -x1390 -x1389 -x1388 -x1387 -x1386 -x1385 -x1384 -x1383 -x1382 -x1381 -x1380 -x1379 -x1378 -x1377 -x1376 -x1375
0.39/0.44 v -x1374 -x1373 -x1372 -x1371 -x1370 -x1369 -x1368 -x1367 -x1366 -x1365 -x1364 -x1363 -x1362 -x1361 -x1360 -x1359 -x1358 -x1357
0.39/0.44 v -x1356 -x1355 -x1354 -x1353 x1352 x1351 x1350 x1349 x1348 x1347 x1346 -x1345 -x1344 -x1343 -x1342 -x1341 -x1340 -x1339 -x1338
0.39/0.44 v -x1337 -x1336 -x1335 -x1334 -x1333 -x1332 -x1331 -x1330 -x1329 -x1328 -x1327 -x1326 -x1325 -x1324 -x1323 -x1322 -x1321 -x1320
0.39/0.44 v -x1319 -x1318 -x1317 -x1316 -x1315 -x1314 -x1313 -x1312 -x1311 -x1310 -x1309 -x1308 -x1307 -x1306 -x1305 -x1304 -x1303 -x1302
0.39/0.44 v -x1301 x1300 x1299 x1298 x1297 x1296 x1295 x1294 x1293 x1292 -x1291 -x1290 -x1289 -x1288 -x1287 -x1286 -x1285 -x1284 -x1283
0.39/0.44 v -x1282 -x1281 -x1280 -x1279 -x1278 -x1277 -x1276 -x1275 -x1274 -x1273 -x1272 -x1271 -x1270 -x1269 -x1268 -x1267 -x1266 -x1265
0.39/0.44 v -x1264 -x1263 -x1262 -x1261 -x1260 -x1259 -x1258 -x1257 -x1256 -x1255 -x1254 -x1253 -x1252 -x1251 -x1250 -x1249 x1248 x1247
0.39/0.44 v x1246 x1245 x1244 x1243 x1242 x1241 x1240 x1239 x1238 x1237 x1236 -x1235 -x1234 -x1233 -x1232 -x1231 -x1230 -x1229 -x1228
0.39/0.44 v -x1227 -x1226 -x1225 -x1224 -x1223 -x1222 -x1221 -x1220 -x1219 -x1218 -x1217 -x1216 -x1215 -x1214 -x1213 -x1212 -x1211 -x1210
0.39/0.44 v -x1209 -x1208 -x1207 -x1206 -x1205 -x1204 -x1203 -x1202 -x1201 -x1200 -x1199 -x1198 -x1197 x1196 x1195 x1194 x1193 x1192 x1191
0.39/0.44 v x1190 x1189 x1188 x1187 x1186 x1185 x1184 x1183 x1182 x1181 x1180 -x1179 -x1178 -x1177 -x1176 -x1175 -x1174 -x1173 -x1172
0.39/0.44 v -x1171 -x1170 -x1169 -x1168 -x1167 -x1166 -x1165 -x1164 -x1163 -x1162 -x1161 -x1160 -x1159 -x1158 -x1157 -x1156 -x1155 -x1154
0.39/0.44 v -x1153 -x1152 -x1151 -x1150 -x1149 -x1148 -x1147 -x1146 -x1145 x1144 x1143 x1142 x1141 x1140 x1139 x1138 x1137 x1136 x1135 x1134
0.39/0.44 v x1133 x1132 x1131 x1130 x1129 x1128 -x1127 -x1126 -x1125 -x1124 -x1123 -x1122 -x1121 -x1120 -x1119 -x1118 -x1117 -x1116
0.39/0.44 v -x1115 -x1114 -x1113 -x1112 -x1111 -x1110 -x1109 -x1108 -x1107 -x1106 -x1105 -x1104 -x1103 -x1102 -x1101 -x1100 -x1099 -x1098
0.39/0.44 v -x1097 -x1096 -x1095 -x1094 -x1093 x1092 x1091 x1090 x1089 x1088 x1087 x1086 x1085 x1084 x1083 x1082 x1081 x1080 x1079 x1078
0.39/0.44 v x1077 x1076 x1075 x1074 x1073 -x1072 -x1071 -x1070 -x1069 -x1068 -x1067 -x1066 -x1065 -x1064 -x1063 -x1062 -x1061 -x1060 -x1059
0.39/0.44 v -x1058 -x1057 -x1056 -x1055 -x1054 -x1053 -x1052 -x1051 -x1050 -x1049 -x1048 -x1047 -x1046 -x1045 -x1044 -x1043 -x1042 -x1041
0.39/0.44 v x1040 x1039 x1038 x1037 x1036 x1035 x1034 x1033 x1032 x1031 x1030 x1029 x1028 x1027 x1026 x1025 x1024 x1023 x1022 x1021
0.39/0.44 v x1020 x1019 x1018 x1017 -x1016 -x1015 -x1014 -x1013 -x1012 -x1011 -x1010 -x1009 -x1008 -x1007 -x1006 -x1005 -x1004 -x1003 -x1002
0.39/0.44 v -x1001 -x1000 -x999 -x998 -x997 -x996 -x995 -x994 -x993 -x992 -x991 -x990 -x989 x988 x987 x986 x985 x984 x983 x982 x981 x980
0.39/0.44 v x979 x978 x977 x976 x975 x974 x973 x972 x971 x970 x969 x968 x967 x966 x965 x964 x963 x962 x961 x960 x959 -x958 -x957 -x956
0.39/0.44 v -x955 -x954 -x953 -x952 -x951 -x950 -x949 -x948 -x947 -x946 -x945 -x944 -x943 -x942 -x941 -x940 -x939 -x938 -x937 x936 x935
0.39/0.44 v x934 x933 x932 x931 x930 x929 x928 x927 x926 x925 x924 x923 x922 x921 x920 x919 x918 x917 x916 x915 x914 -x913 -x912 -x911 -x910
0.39/0.44 v -x909 -x908 -x907 -x906 -x905 -x904 -x903 -x902 -x901 -x900 -x899 -x898 -x897 -x896 -x895 -x894 -x893 -x892 -x891 -x890
0.39/0.44 v -x889 -x888 -x887 -x886 -x885 x884 x883 x882 x881 x880 x879 x878 x877 x876 x875 x874 x873 x872 x871 x870 x869 x868 x867 x866
0.39/0.44 v x865 x864 x863 x862 x861 x860 x859 x858 x857 x856 x855 x854 x853 x852 x851 x850 -x849 -x848 -x847 -x846 -x845 -x844 -x843 -x842
0.39/0.44 v -x841 -x840 -x839 -x838 -x837 -x836 -x835 -x834 -x833 x832 x831 x830 x829 x828 x827 x826 x825 x824 x823 x822 x821 x820 x819
0.39/0.44 v x818 x817 x816 x815 x814 x813 x812 x811 x810 x809 -x808 -x807 -x806 -x805 -x804 -x803 -x802 -x801 -x800 -x799 -x798 -x797 -x796
0.39/0.44 v -x795 -x794 -x793 -x792 -x791 -x790 -x789 -x788 -x787 -x786 -x785 -x784 -x783 -x782 -x781 x780 x779 x778 x777 x776 x775
0.39/0.44 v x774 x773 x772 x771 x770 x769 x768 x767 x766 x765 x764 x763 x762 x761 x760 x759 x758 x757 x756 x755 x754 x753 x752 x751 x750
0.39/0.44 v x749 x748 x747 x746 x745 x744 x743 x742 x741 x740 -x739 -x738 -x737 -x736 -x735 -x734 -x733 -x732 -x731 -x730 -x729 x728 x727
0.39/0.44 v x726 x725 x724 -x723 -x722 -x721 -x720 -x719 -x718 -x717 -x716 -x715 -x714 -x713 -x712 -x711 -x710 -x709 -x708 -x707 -x706 -x705
0.39/0.44 v -x704 -x703 -x702 -x701 -x700 -x699 -x698 -x697 -x696 -x695 -x694 -x693 -x692 -x691 -x690 -x689 -x688 -x687 -x686 -x685
0.39/0.44 v -x684 -x683 -x682 -x681 -x680 -x679 -x678 -x677 x676 x675 x674 x673 x672 x671 x670 x669 x668 x667 x666 x665 x664 x663 x662 x661
0.39/0.44 v x660 x659 x658 x657 x656 x655 x654 x653 x652 x651 -x650 -x649 -x648 -x647 -x646 -x645 -x644 -x643 -x642 -x641 -x640 -x639
0.39/0.44 v -x638 -x637 -x636 -x635 -x634 -x633 -x632 -x631 -x630 -x629 -x628 -x627 -x626 -x625 x624 x623 x622 x621 x620 x619 x618 x617 x616
0.39/0.44 v x615 x614 x613 x612 x611 x610 x609 x608 x607 x606 x605 x604 x603 x602 x601 x600 x599 x598 x597 x596 x595 x594 x593 x592 -x591
0.39/0.44 v -x590 -x589 -x588 -x587 -x586 -x585 -x584 -x583 -x582 -x581 -x580 -x579 -x578 -x577 -x576 -x575 -x574 -x573 x572 x571 x570
0.39/0.44 v x569 x568 x567 x566 x565 x564 x563 x562 x561 x560 x559 x558 x557 x556 x555 x554 x553 x552 x551 x550 x549 x548 x547 x546 x545
0.39/0.44 v x544 x543 x542 -x541 -x540 -x539 -x538 -x537 -x536 -x535 -x534 -x533 -x532 -x531 -x530 -x529 -x528 -x527 -x526 -x525 -x524
0.39/0.44 v -x523 -x522 -x521 x520 x519 x518 x517 x516 x515 x514 x513 x512 x511 x510 x509 x508 x507 x506 x505 x504 x503 x502 x501 x500 x499
0.39/0.44 v x498 x497 x496 x495 x494 x493 x492 -x491 -x490 -x489 -x488 -x487 -x486 -x485 -x484 -x483 -x482 -x481 -x480 -x479 -x478 -x477
0.39/0.44 v -x476 -x475 -x474 -x473 -x472 -x471 -x470 -x469 x468 x467 x466 x465 x464 x463 x462 x461 x460 x459 x458 x457 x456 x455 x454
0.39/0.44 v x453 x452 x451 x450 x449 x448 x447 x446 x445 x444 x443 x442 x441 x440 x439 x438 x437 x436 x435 -x434 -x433 -x432 -x431 -x430
0.39/0.44 v -x429 -x428 -x427 -x426 -x425 -x424 -x423 -x422 -x421 -x420 -x419 -x418 -x417 x416 x415 x414 x413 x412 x411 x410 x409 x408
0.39/0.44 v x407 x406 x405 x404 x403 x402 x401 x400 x399 x398 x397 x396 x395 x394 x393 x392 x391 x390 -x389 -x388 -x387 -x386 -x385 -x384
0.39/0.44 v -x383 -x382 -x381 -x380 -x379 -x378 -x377 -x376 -x375 -x374 -x373 -x372 -x371 -x370 -x369 -x368 -x367 -x366 -x365 x364 x363
0.39/0.44 v x362 x361 x360 x359 x358 x357 x356 x355 x354 x353 x352 x351 x350 x349 x348 x347 x346 x345 x344 x343 x342 x341 x340 x339 x338
0.39/0.44 v x337 x336 x335 x334 x333 x332 x331 -x330 -x329 -x328 -x327 -x326 -x325 -x324 -x323 -x322 -x321 -x320 -x319 -x318 -x317 -x316
0.39/0.44 v -x315 -x314 -x313 x312 x311 x310 x309 x308 x307 x306 x305 x304 x303 x302 x301 x300 x299 x298 x297 x296 x295 x294 x293 x292 x291
0.39/0.44 v x290 x289 x288 x287 x286 x285 x284 x283 x282 x281 x280 x279 x278 -x277 -x276 -x275 -x274 -x273 -x272 -x271 -x270 -x269 -x268
0.39/0.44 v -x267 -x266 -x265 -x264 -x263 -x262 -x261 x260 x259 x258 x257 x256 x255 x254 x253 x252 x251 x250 x249 x248 x247 x246 x245
0.39/0.44 v x244 x243 x242 x241 x240 x239 x238 x237 x236 x235 x234 x233 x232 x231 x230 x229 x228 x227 x226 x225 x224 x223 x222 x221 x220
0.39/0.44 v -x219 -x218 -x217 -x216 -x215 -x214 -x213 -x212 -x211 -x210 -x209 x208 x207 x206 x205 x204 x203 x202 x201 x200 x199 x198 x197
0.39/0.44 v x196 x195 x194 x193 x192 x191 x190 x189 x188 x187 x186 x185 x184 x183 x182 x181 x180 x179 x178 x177 x176 x175 x174 x173 x172
0.39/0.44 v x171 x170 x169 x168 x167 x166 x165 -x164 -x163 -x162 -x161 -x160 -x159 -x158 -x157 x156 x155 x154 x153 x152 x151 x150 x149 x148
0.39/0.44 v x147 x146 x145 x144 x143 x142 x141 x140 x139 x138 x137 x136 x135 x134 x133 x132 x131 x130 x129 x128 x127 x126 x125 x124 x123
0.39/0.44 v x122 x121 x120 x119 x118 x117 x116 x115 x114 -x113 -x112 -x111 -x110 -x109 -x108 -x107 -x106 -x105 x104 x103 x102 x101 x100
0.39/0.44 v x99 x98 x97 x96 x95 x94 x93 x92 x91 x90 x89 x88 x87 x86 x85 x84 x83 x82 x81 x80 x79 x78 x77 x76 x75 x74 x73 x72 x71 x70 x69
0.39/0.44 v x68 x67 x66 -x65 -x64 -x63 -x62 -x61 -x60 -x59 -x58 -x57 -x56 -x55 -x54 -x53 x52 x51 x50 x49 x48 x47 x46 x45 x44 x43 x42 x41
0.39/0.44 v x40 x39 x38 x37 x36 x35 x34 x33 x32 x31 x30 x29 x28 x27 x26 x25 x24 x23 x22 x21 x20 x19 x18 x17 x16 x15 x14 x13 x12 x11 x10
0.39/0.44 v x9 x8 x7 x6 x5 x4 x3 x2 x1 x1612
0.39/0.44 c SCIP Status : problem is solved [optimal solution found]
0.39/0.44 c Solving Time : 0.34
0.39/0.44 c Original Problem :
0.39/0.44 c Problem name : HOME/instance-3739470-1338756422.opb
0.39/0.44 c Variables : 3224 (3224 binary, 0 integer, 0 implicit integer, 0 continuous)
0.39/0.44 c Constraints : 10369 initial, 10369 maximal
0.39/0.44 c Presolved Problem :
0.39/0.44 c Problem name : t_HOME/instance-3739470-1338756422.opb
0.39/0.44 c Variables : 407 (407 binary, 0 integer, 0 implicit integer, 0 continuous)
0.39/0.44 c Constraints : 1060 initial, 1060 maximal
0.39/0.44 c Presolvers : Time FixedVars AggrVars ChgTypes ChgBounds AddHoles DelCons ChgSides ChgCoefs
0.39/0.44 c trivial : 0.00 145 0 0 0 0 0 0 0
0.39/0.44 c dualfix : 0.00 2 0 0 0 0 0 0 0
0.39/0.44 c boundshift : 0.00 0 0 0 0 0 0 0 0
0.39/0.44 c inttobinary : 0.00 0 0 0 0 0 0 0 0
0.39/0.44 c implics : 0.00 0 15 0 0 0 0 0 0
0.39/0.44 c probing : 0.00 0 0 0 0 0 0 0 0
0.39/0.44 c knapsack : 0.00 0 0 0 13 0 0 37 205
0.39/0.44 c linear : 0.24 1971 680 0 2093 0 9219 160 175
0.39/0.44 c logicor : 0.02 4 0 0 10 0 90 0 0
0.39/0.44 c root node : - 0 - - 0 - - - -
0.39/0.44 c Constraints : Number #Separate #Propagate #EnfoLP #EnfoPS Cutoffs DomReds Cuts Conss Children
0.39/0.44 c integral : 0 0 0 1 0 0 0 0 0 0
0.39/0.44 c knapsack : 69 4 1 1 0 0 0 25 0 0
0.39/0.44 c logicor : 991 4 1 1 0 0 0 0 0 0
0.39/0.44 c countsols : 0 0 0 1 0 0 0 0 0 0
0.39/0.44 c Constraint Timings : TotalTime Separate Propagate EnfoLP EnfoPS
0.39/0.44 c integral : 0.00 0.00 0.00 0.00 0.00
0.39/0.44 c knapsack : 0.00 0.00 0.00 0.00 0.00
0.39/0.44 c logicor : 0.00 0.00 0.00 0.00 0.00
0.39/0.44 c countsols : 0.00 0.00 0.00 0.00 0.00
0.39/0.44 c Propagators : Time Calls Cutoffs DomReds
0.39/0.44 c rootredcost : 0.00 0 0 0
0.39/0.44 c pseudoobj : 0.00 5 0 0
0.39/0.44 c Conflict Analysis : Time Calls Success Conflicts Literals Reconvs ReconvLits LP Iters
0.39/0.44 c propagation : 0.00 0 0 0 0.0 0 0.0 -
0.39/0.44 c infeasible LP : 0.00 0 0 0 0.0 0 0.0 0
0.39/0.44 c bound exceed. LP : 0.00 0 0 0 0.0 0 0.0 0
0.39/0.44 c strong branching : 0.00 0 0 0 0.0 0 0.0 0
0.39/0.44 c pseudo solution : 0.00 0 0 0 0.0 0 0.0 -
0.39/0.44 c applied globally : - - - 0 0.0 - - -
0.39/0.44 c applied locally : - - - 0 0.0 - - -
0.39/0.44 c Separators : Time Calls Cutoffs DomReds Cuts Conss
0.39/0.44 c cut pool : 0.00 3 - - 5 - (maximal pool size: 325)
0.39/0.44 c redcost : 0.00 4 0 0 0 0
0.39/0.44 c impliedbounds : 0.00 3 0 0 53 0
0.39/0.44 c intobj : 0.00 0 0 0 0 0
0.39/0.44 c gomory : 0.01 4 0 0 322 0
0.39/0.44 c strongcg : 0.02 4 0 0 565 0
0.39/0.44 c cmir : 0.00 0 0 0 0 0
0.39/0.44 c flowcover : 0.00 0 0 0 0 0
0.39/0.44 c clique : 0.01 4 0 0 13 0
0.39/0.44 c zerohalf : 0.00 0 0 0 0 0
0.39/0.44 c mcf : 0.00 1 0 0 0 0
0.39/0.44 c Pricers : Time Calls Vars
0.39/0.44 c problem variables: 0.00 0 0
0.39/0.44 c Branching Rules : Time Calls Cutoffs DomReds Cuts Conss Children
0.39/0.44 c pscost : 0.00 0 0 0 0 0 0
0.39/0.44 c inference : 0.00 0 0 0 0 0 0
0.39/0.44 c mostinf : 0.00 0 0 0 0 0 0
0.39/0.44 c leastinf : 0.00 0 0 0 0 0 0
0.39/0.44 c fullstrong : 0.00 0 0 0 0 0 0
0.39/0.44 c allfullstrong : 0.00 0 0 0 0 0 0
0.39/0.44 c random : 0.00 0 0 0 0 0 0
0.39/0.44 c relpscost : 0.00 0 0 0 0 0 0
0.39/0.44 c Primal Heuristics : Time Calls Found
0.39/0.44 c LP solutions : 0.00 - 1
0.39/0.44 c pseudo solutions : 0.00 - 0
0.39/0.44 c simplerounding : 0.00 0 0
0.39/0.44 c rounding : 0.00 0 0
0.39/0.44 c shifting : 0.00 0 0
0.39/0.44 c intshifting : 0.00 0 0
0.39/0.44 c oneopt : 0.00 0 0
0.39/0.44 c fixandinfer : 0.00 0 0
0.39/0.44 c feaspump : 0.00 0 0
0.39/0.44 c coefdiving : 0.00 0 0
0.39/0.44 c pscostdiving : 0.00 0 0
0.39/0.44 c fracdiving : 0.00 0 0
0.39/0.44 c veclendiving : 0.00 0 0
0.39/0.44 c intdiving : 0.00 0 0
0.39/0.44 c actconsdiving : 0.00 0 0
0.39/0.44 c objpscostdiving : 0.00 0 0
0.39/0.44 c rootsoldiving : 0.00 0 0
0.39/0.44 c linesearchdiving : 0.00 0 0
0.39/0.44 c guideddiving : 0.00 0 0
0.39/0.44 c octane : 0.00 0 0
0.39/0.44 c rens : 0.00 0 0
0.39/0.44 c rins : 0.00 0 0
0.39/0.44 c localbranching : 0.00 0 0
0.39/0.44 c mutation : 0.00 0 0
0.39/0.44 c crossover : 0.00 0 0
0.39/0.44 c dins : 0.00 0 0
0.39/0.44 c LP : Time Calls Iterations Iter/call Iter/sec
0.39/0.44 c primal LP : 0.00 0 0 0.00 -
0.39/0.44 c dual LP : 0.03 4 346 86.50 11533.33
0.39/0.44 c barrier LP : 0.00 0 0 0.00 -
0.39/0.44 c diving/probing LP: 0.00 0 0 0.00 -
0.39/0.44 c strong branching : 0.00 0 0 0.00 -
0.39/0.44 c (at root node) : - 0 0 0.00 -
0.39/0.44 c conflict analysis: 0.00 0 0 0.00 -
0.39/0.44 c B&B Tree :
0.39/0.44 c number of runs : 1
0.39/0.44 c nodes : 1
0.39/0.44 c nodes (total) : 1
0.39/0.44 c nodes left : 0
0.39/0.44 c max depth : 0
0.39/0.44 c max depth (total): 0
0.39/0.44 c backtracks : 0 (0.0%)
0.39/0.44 c delayed cutoffs : 0
0.39/0.44 c repropagations : 0 (0 domain reductions, 0 cutoffs)
0.39/0.44 c avg switch length: 2.00
0.39/0.44 c switching time : 0.00
0.39/0.44 c Solution :
0.39/0.44 c Solutions found : 1 (1 improvements)
0.39/0.44 c Primal Bound : +9.25000000000000e+02 (in run 1, after 1 nodes, 0.34 seconds, depth 0, found by <relaxation>)
0.39/0.44 c Dual Bound : +9.25000000000000e+02
0.39/0.44 c Gap : 0.00 %
0.39/0.44 c Root Dual Bound : +9.25000000000000e+02
0.39/0.45 c Time complete: 0.44.