0.00/0.01 c SCIP version 1.2.1.3 [precision: 8 byte] [memory: block] [mode: optimized] [LP solver: SoPlex 1.4.2]
0.00/0.01 c Copyright (c) 2002-2010 Konrad-Zuse-Zentrum fuer Informationstechnik Berlin (ZIB)
0.00/0.01 c
0.00/0.01 c user parameter file <scip.set> not found - using default parameters
0.00/0.01 c reading problem <HOME/instance-3739462-1338730360.opb>
0.03/0.08 c original problem has 3720 variables (3720 bin, 0 int, 0 impl, 0 cont) and 11555 constraints
0.03/0.08 c problem read
0.03/0.08 c No objective function, only one solution is needed.
0.03/0.08 c presolving settings loaded
0.09/0.10 c presolving:
0.18/0.28 c (round 1) 829 del vars, 2061 del conss, 525 chg bounds, 0 chg sides, 0 chg coeffs, 0 upgd conss, 575352 impls, 0 clqs
0.28/0.34 c (round 2) 1774 del vars, 5475 del conss, 1445 chg bounds, 0 chg sides, 0 chg coeffs, 0 upgd conss, 580204 impls, 0 clqs
0.28/0.35 c (round 3) 2127 del vars, 7062 del conss, 1567 chg bounds, 9 chg sides, 7 chg coeffs, 0 upgd conss, 581393 impls, 0 clqs
0.28/0.36 c (round 4) 2187 del vars, 7307 del conss, 1623 chg bounds, 41 chg sides, 39 chg coeffs, 0 upgd conss, 581639 impls, 0 clqs
0.28/0.36 c (round 5) 2214 del vars, 7435 del conss, 1632 chg bounds, 41 chg sides, 39 chg coeffs, 0 upgd conss, 581909 impls, 0 clqs
0.28/0.36 c (round 6) 2220 del vars, 7469 del conss, 1634 chg bounds, 41 chg sides, 39 chg coeffs, 0 upgd conss, 581940 impls, 0 clqs
0.28/0.36 c (round 7) 2221 del vars, 7477 del conss, 1634 chg bounds, 41 chg sides, 39 chg coeffs, 0 upgd conss, 581960 impls, 0 clqs
0.28/0.36 c (round 8) 2221 del vars, 7478 del conss, 1634 chg bounds, 41 chg sides, 39 chg coeffs, 0 upgd conss, 581960 impls, 0 clqs
0.28/0.38 c (round 9) 2221 del vars, 7479 del conss, 1634 chg bounds, 41 chg sides, 39 chg coeffs, 4077 upgd conss, 581960 impls, 0 clqs
0.38/0.40 c (round 10) 2222 del vars, 7484 del conss, 1635 chg bounds, 50 chg sides, 129 chg coeffs, 4077 upgd conss, 582673 impls, 429 clqs
0.38/0.41 c (round 11) 2223 del vars, 7485 del conss, 1635 chg bounds, 65 chg sides, 274 chg coeffs, 4077 upgd conss, 582673 impls, 450 clqs
0.38/0.42 c (round 12) 2223 del vars, 7485 del conss, 1635 chg bounds, 68 chg sides, 342 chg coeffs, 4077 upgd conss, 582883 impls, 457 clqs
0.38/0.42 c (round 13) 2223 del vars, 7485 del conss, 1635 chg bounds, 68 chg sides, 382 chg coeffs, 4077 upgd conss, 582891 impls, 469 clqs
0.38/0.43 c (round 14) 2223 del vars, 7485 del conss, 1635 chg bounds, 68 chg sides, 407 chg coeffs, 4077 upgd conss, 582891 impls, 473 clqs
0.38/0.44 c (round 15) 2223 del vars, 7485 del conss, 1635 chg bounds, 68 chg sides, 426 chg coeffs, 4077 upgd conss, 583311 impls, 479 clqs
0.38/0.44 c (round 16) 2223 del vars, 7485 del conss, 1635 chg bounds, 68 chg sides, 443 chg coeffs, 4077 upgd conss, 583409 impls, 481 clqs
0.38/0.45 c (round 17) 2223 del vars, 7485 del conss, 1635 chg bounds, 68 chg sides, 457 chg coeffs, 4077 upgd conss, 583409 impls, 483 clqs
0.38/0.46 c (round 18) 2223 del vars, 7485 del conss, 1635 chg bounds, 68 chg sides, 471 chg coeffs, 4077 upgd conss, 583409 impls, 485 clqs
0.38/0.46 c (round 19) 2223 del vars, 7485 del conss, 1635 chg bounds, 68 chg sides, 483 chg coeffs, 4077 upgd conss, 583409 impls, 487 clqs
0.38/0.47 c (round 20) 2223 del vars, 7485 del conss, 1635 chg bounds, 68 chg sides, 494 chg coeffs, 4077 upgd conss, 583409 impls, 488 clqs
0.38/0.47 c (round 21) 2223 del vars, 7485 del conss, 1635 chg bounds, 68 chg sides, 503 chg coeffs, 4077 upgd conss, 583409 impls, 491 clqs
0.38/0.48 c (round 22) 2223 del vars, 7485 del conss, 1635 chg bounds, 68 chg sides, 511 chg coeffs, 4077 upgd conss, 583409 impls, 493 clqs
0.38/0.49 c presolving (23 rounds):
0.38/0.49 c 2223 deleted vars, 7485 deleted constraints, 1635 tightened bounds, 0 added holes, 68 changed sides, 516 changed coefficients
0.38/0.49 c 583409 implications, 495 cliques
0.38/0.49 c presolved problem has 1497 variables (1497 bin, 0 int, 0 impl, 0 cont) and 4070 constraints
0.38/0.49 c 215 constraints of type <knapsack>
0.38/0.49 c 3171 constraints of type <setppc>
0.38/0.49 c 684 constraints of type <logicor>
0.38/0.49 c transformed objective value is always integral (scale: 1)
0.38/0.49 c Presolving Time: 0.39
0.38/0.49 c - non default parameters ----------------------------------------------------------------------
0.38/0.49 c # SCIP version 1.2.1.3
0.38/0.49 c
0.38/0.49 c # frequency for displaying node information lines
0.38/0.49 c # [type: int, range: [-1,2147483647], default: 100]
0.38/0.49 c display/freq = 10000
0.38/0.49 c
0.38/0.49 c # maximal time in seconds to run
0.38/0.49 c # [type: real, range: [0,1.79769313486232e+308], default: 1e+20]
0.38/0.49 c limits/time = 1789.93
0.38/0.49 c
0.38/0.49 c # maximal memory usage in MB; reported memory usage is lower than real memory usage!
0.38/0.49 c # [type: real, range: [0,1.79769313486232e+308], default: 1e+20]
0.38/0.49 c limits/memory = 13950
0.38/0.49 c
0.38/0.49 c # solving stops, if the given number of solutions were found (-1: no limit)
0.38/0.49 c # [type: int, range: [-1,2147483647], default: -1]
0.38/0.49 c limits/solutions = 1
0.38/0.49 c
0.38/0.49 c # maximal number of separation rounds per node (-1: unlimited)
0.38/0.49 c # [type: int, range: [-1,2147483647], default: 5]
0.38/0.49 c separating/maxrounds = 1
0.38/0.49 c
0.38/0.49 c # maximal number of separation rounds in the root node (-1: unlimited)
0.38/0.49 c # [type: int, range: [-1,2147483647], default: -1]
0.38/0.49 c separating/maxroundsroot = 5
0.38/0.49 c
0.38/0.49 c # default clock type (1: CPU user seconds, 2: wall clock time)
0.38/0.49 c # [type: int, range: [1,2], default: 1]
0.38/0.49 c timing/clocktype = 2
0.38/0.49 c
0.38/0.49 c # should presolving try to simplify inequalities
0.38/0.49 c # [type: bool, range: {TRUE,FALSE}, default: FALSE]
0.38/0.49 c constraints/linear/simplifyinequalities = TRUE
0.38/0.49 c
0.38/0.49 c # add initial coupling inequalities as linear constraints, if 'addCoupling' is true
0.38/0.49 c # [type: bool, range: {TRUE,FALSE}, default: FALSE]
0.38/0.49 c constraints/indicator/addCouplingCons = TRUE
0.38/0.49 c
0.38/0.49 c # should disaggregation of knapsack constraints be allowed in preprocessing?
0.38/0.49 c # [type: bool, range: {TRUE,FALSE}, default: TRUE]
0.38/0.49 c constraints/knapsack/disaggregation = FALSE
0.38/0.49 c
0.38/0.49 c # should presolving try to simplify knapsacks
0.38/0.49 c # [type: bool, range: {TRUE,FALSE}, default: FALSE]
0.38/0.49 c constraints/knapsack/simplifyinequalities = TRUE
0.38/0.49 c
0.38/0.49 c # maximal number of presolving rounds the presolver participates in (-1: no limit)
0.38/0.49 c # [type: int, range: [-1,2147483647], default: -1]
0.38/0.49 c presolving/probing/maxrounds = 0
0.38/0.49 c
0.38/0.49 c # frequency for calling primal heuristic <coefdiving> (-1: never, 0: only at depth freqofs)
0.38/0.49 c # [type: int, range: [-1,2147483647], default: 10]
0.38/0.49 c heuristics/coefdiving/freq = -1
0.38/0.49 c
0.38/0.49 c # maximal fraction of diving LP iterations compared to node LP iterations
0.38/0.49 c # [type: real, range: [0,1.79769313486232e+308], default: 0.05]
0.38/0.49 c heuristics/coefdiving/maxlpiterquot = 0.075
0.38/0.49 c
0.38/0.49 c # additional number of allowed LP iterations
0.38/0.49 c # [type: int, range: [0,2147483647], default: 1000]
0.38/0.49 c heuristics/coefdiving/maxlpiterofs = 1500
0.38/0.49 c
0.38/0.49 c # frequency for calling primal heuristic <crossover> (-1: never, 0: only at depth freqofs)
0.38/0.49 c # [type: int, range: [-1,2147483647], default: 30]
0.38/0.49 c heuristics/crossover/freq = -1
0.38/0.49 c
0.38/0.49 c # number of nodes added to the contingent of the total nodes
0.38/0.49 c # [type: longint, range: [0,9223372036854775807], default: 500]
0.38/0.49 c heuristics/crossover/nodesofs = 750
0.38/0.49 c
0.38/0.49 c # number of nodes without incumbent change that heuristic should wait
0.38/0.49 c # [type: longint, range: [0,9223372036854775807], default: 200]
0.38/0.49 c heuristics/crossover/nwaitingnodes = 100
0.38/0.49 c
0.38/0.49 c # contingent of sub problem nodes in relation to the number of nodes of the original problem
0.38/0.49 c # [type: real, range: [0,1], default: 0.1]
0.38/0.49 c heuristics/crossover/nodesquot = 0.15
0.38/0.49 c
0.38/0.49 c # minimum percentage of integer variables that have to be fixed
0.38/0.49 c # [type: real, range: [0,1], default: 0.666]
0.38/0.49 c heuristics/crossover/minfixingrate = 0.5
0.38/0.49 c
0.38/0.49 c # frequency for calling primal heuristic <feaspump> (-1: never, 0: only at depth freqofs)
0.38/0.49 c # [type: int, range: [-1,2147483647], default: 20]
0.38/0.49 c heuristics/feaspump/freq = -1
0.38/0.49 c
0.38/0.49 c # additional number of allowed LP iterations
0.38/0.49 c # [type: int, range: [0,2147483647], default: 1000]
0.38/0.49 c heuristics/feaspump/maxlpiterofs = 2000
0.38/0.49 c
0.38/0.49 c # frequency for calling primal heuristic <fracdiving> (-1: never, 0: only at depth freqofs)
0.38/0.49 c # [type: int, range: [-1,2147483647], default: 10]
0.38/0.49 c heuristics/fracdiving/freq = -1
0.38/0.49 c
0.38/0.49 c # maximal fraction of diving LP iterations compared to node LP iterations
0.38/0.49 c # [type: real, range: [0,1.79769313486232e+308], default: 0.05]
0.38/0.49 c heuristics/fracdiving/maxlpiterquot = 0.075
0.38/0.49 c
0.38/0.49 c # additional number of allowed LP iterations
0.38/0.49 c # [type: int, range: [0,2147483647], default: 1000]
0.38/0.49 c heuristics/fracdiving/maxlpiterofs = 1500
0.38/0.49 c
0.38/0.49 c # frequency for calling primal heuristic <guideddiving> (-1: never, 0: only at depth freqofs)
0.38/0.49 c # [type: int, range: [-1,2147483647], default: 10]
0.38/0.49 c heuristics/guideddiving/freq = -1
0.38/0.49 c
0.38/0.49 c # maximal fraction of diving LP iterations compared to node LP iterations
0.38/0.49 c # [type: real, range: [0,1.79769313486232e+308], default: 0.05]
0.38/0.49 c heuristics/guideddiving/maxlpiterquot = 0.075
0.38/0.49 c
0.38/0.49 c # additional number of allowed LP iterations
0.38/0.49 c # [type: int, range: [0,2147483647], default: 1000]
0.38/0.49 c heuristics/guideddiving/maxlpiterofs = 1500
0.38/0.49 c
0.38/0.49 c # maximal fraction of diving LP iterations compared to node LP iterations
0.38/0.49 c # [type: real, range: [0,1.79769313486232e+308], default: 0.05]
0.38/0.49 c heuristics/intdiving/maxlpiterquot = 0.075
0.38/0.49 c
0.38/0.49 c # frequency for calling primal heuristic <intshifting> (-1: never, 0: only at depth freqofs)
0.38/0.49 c # [type: int, range: [-1,2147483647], default: 10]
0.38/0.49 c heuristics/intshifting/freq = -1
0.38/0.49 c
0.38/0.49 c # frequency for calling primal heuristic <linesearchdiving> (-1: never, 0: only at depth freqofs)
0.38/0.49 c # [type: int, range: [-1,2147483647], default: 10]
0.38/0.49 c heuristics/linesearchdiving/freq = -1
0.38/0.49 c
0.38/0.49 c # maximal fraction of diving LP iterations compared to node LP iterations
0.38/0.49 c # [type: real, range: [0,1.79769313486232e+308], default: 0.05]
0.38/0.49 c heuristics/linesearchdiving/maxlpiterquot = 0.075
0.38/0.49 c
0.38/0.49 c # additional number of allowed LP iterations
0.38/0.49 c # [type: int, range: [0,2147483647], default: 1000]
0.38/0.49 c heuristics/linesearchdiving/maxlpiterofs = 1500
0.38/0.49 c
0.38/0.49 c # frequency for calling primal heuristic <nlp> (-1: never, 0: only at depth freqofs)
0.38/0.49 c # [type: int, range: [-1,2147483647], default: 1]
0.38/0.49 c heuristics/nlp/freq = -1
0.38/0.49 c
0.38/0.49 c # frequency for calling primal heuristic <objpscostdiving> (-1: never, 0: only at depth freqofs)
0.38/0.49 c # [type: int, range: [-1,2147483647], default: 20]
0.38/0.49 c heuristics/objpscostdiving/freq = -1
0.38/0.49 c
0.38/0.49 c # maximal fraction of diving LP iterations compared to total iteration number
0.38/0.49 c # [type: real, range: [0,1], default: 0.01]
0.38/0.49 c heuristics/objpscostdiving/maxlpiterquot = 0.015
0.38/0.49 c
0.38/0.49 c # additional number of allowed LP iterations
0.38/0.49 c # [type: int, range: [0,2147483647], default: 1000]
0.38/0.49 c heuristics/objpscostdiving/maxlpiterofs = 1500
0.38/0.49 c
0.38/0.49 c # frequency for calling primal heuristic <oneopt> (-1: never, 0: only at depth freqofs)
0.38/0.49 c # [type: int, range: [-1,2147483647], default: 1]
0.38/0.49 c heuristics/oneopt/freq = -1
0.38/0.49 c
0.38/0.49 c # frequency for calling primal heuristic <pscostdiving> (-1: never, 0: only at depth freqofs)
0.38/0.49 c # [type: int, range: [-1,2147483647], default: 10]
0.38/0.49 c heuristics/pscostdiving/freq = -1
0.38/0.49 c
0.38/0.49 c # maximal fraction of diving LP iterations compared to node LP iterations
0.38/0.49 c # [type: real, range: [0,1.79769313486232e+308], default: 0.05]
0.38/0.49 c heuristics/pscostdiving/maxlpiterquot = 0.075
0.38/0.49 c
0.38/0.49 c # additional number of allowed LP iterations
0.38/0.49 c # [type: int, range: [0,2147483647], default: 1000]
0.38/0.49 c heuristics/pscostdiving/maxlpiterofs = 1500
0.38/0.49 c
0.38/0.49 c # frequency for calling primal heuristic <rens> (-1: never, 0: only at depth freqofs)
0.38/0.49 c # [type: int, range: [-1,2147483647], default: 0]
0.38/0.49 c heuristics/rens/freq = -1
0.38/0.49 c
0.38/0.49 c # minimum percentage of integer variables that have to be fixable
0.38/0.49 c # [type: real, range: [0,1], default: 0.5]
0.38/0.49 c heuristics/rens/minfixingrate = 0.3
0.38/0.49 c
0.38/0.49 c # number of nodes added to the contingent of the total nodes
0.38/0.49 c # [type: longint, range: [0,9223372036854775807], default: 500]
0.38/0.49 c heuristics/rens/nodesofs = 2000
0.38/0.49 c
0.38/0.49 c # frequency for calling primal heuristic <rootsoldiving> (-1: never, 0: only at depth freqofs)
0.38/0.49 c # [type: int, range: [-1,2147483647], default: 20]
0.38/0.49 c heuristics/rootsoldiving/freq = -1
0.38/0.49 c
0.38/0.49 c # maximal fraction of diving LP iterations compared to node LP iterations
0.38/0.49 c # [type: real, range: [0,1.79769313486232e+308], default: 0.01]
0.38/0.49 c heuristics/rootsoldiving/maxlpiterquot = 0.015
0.38/0.49 c
0.38/0.49 c # additional number of allowed LP iterations
0.38/0.49 c # [type: int, range: [0,2147483647], default: 1000]
0.38/0.49 c heuristics/rootsoldiving/maxlpiterofs = 1500
0.38/0.49 c
0.38/0.49 c # frequency for calling primal heuristic <rounding> (-1: never, 0: only at depth freqofs)
0.38/0.49 c # [type: int, range: [-1,2147483647], default: 1]
0.38/0.49 c heuristics/rounding/freq = -1
0.38/0.49 c
0.38/0.49 c # frequency for calling primal heuristic <shifting> (-1: never, 0: only at depth freqofs)
0.38/0.49 c # [type: int, range: [-1,2147483647], default: 10]
0.38/0.49 c heuristics/shifting/freq = -1
0.38/0.49 c
0.38/0.49 c # frequency for calling primal heuristic <simplerounding> (-1: never, 0: only at depth freqofs)
0.38/0.49 c # [type: int, range: [-1,2147483647], default: 1]
0.38/0.49 c heuristics/simplerounding/freq = -1
0.38/0.49 c
0.38/0.49 c # frequency for calling primal heuristic <trivial> (-1: never, 0: only at depth freqofs)
0.38/0.49 c # [type: int, range: [-1,2147483647], default: 0]
0.38/0.49 c heuristics/trivial/freq = -1
0.38/0.49 c
0.38/0.49 c # frequency for calling primal heuristic <trysol> (-1: never, 0: only at depth freqofs)
0.38/0.49 c # [type: int, range: [-1,2147483647], default: 1]
0.38/0.49 c heuristics/trysol/freq = -1
0.38/0.49 c
0.38/0.49 c # frequency for calling primal heuristic <veclendiving> (-1: never, 0: only at depth freqofs)
0.38/0.49 c # [type: int, range: [-1,2147483647], default: 10]
0.38/0.49 c heuristics/veclendiving/freq = -1
0.38/0.49 c
0.38/0.49 c # maximal fraction of diving LP iterations compared to node LP iterations
0.38/0.49 c # [type: real, range: [0,1.79769313486232e+308], default: 0.05]
0.38/0.49 c heuristics/veclendiving/maxlpiterquot = 0.075
0.38/0.49 c
0.38/0.49 c # additional number of allowed LP iterations
0.38/0.49 c # [type: int, range: [0,2147483647], default: 1000]
0.38/0.49 c heuristics/veclendiving/maxlpiterofs = 1500
0.38/0.49 c
0.38/0.49 c # frequency for calling primal heuristic <zirounding> (-1: never, 0: only at depth freqofs)
0.38/0.49 c # [type: int, range: [-1,2147483647], default: 1]
0.38/0.49 c heuristics/zirounding/freq = -1
0.38/0.49 c
0.38/0.49 c # frequency for calling separator <cmir> (-1: never, 0: only in root node)
0.38/0.49 c # [type: int, range: [-1,2147483647], default: 0]
0.38/0.49 c separating/cmir/freq = -1
0.38/0.49 c
0.38/0.49 c # frequency for calling separator <flowcover> (-1: never, 0: only in root node)
0.38/0.49 c # [type: int, range: [-1,2147483647], default: 0]
0.38/0.49 c separating/flowcover/freq = -1
0.38/0.49 c
0.38/0.49 c # frequency for calling separator <rapidlearning> (-1: never, 0: only in root node)
0.38/0.49 c # [type: int, range: [-1,2147483647], default: -1]
0.38/0.49 c separating/rapidlearning/freq = 0
0.38/0.49 c
0.38/0.49 c -----------------------------------------------------------------------------------------------
0.38/0.49 c start solving
0.38/0.49 c
0.99/1.02 c time | node | left |LP iter|LP it/n| mem |mdpt |frac |vars |cons |cols |rows |cuts |confs|strbr| dualbound | primalbound | gap
0.99/1.02 c 0.9s| 1 | 0 | 2432 | - | 20M| 0 | 942 |1497 |4070 |1497 |4069 | 0 | 0 | 0 | 0.000000e+00 | -- | Inf
2.48/2.58 c y 2.5s| 1 | 0 | 2432 | - | 21M| 0 | - |1497 |4070 |1497 |4069 | 0 | 0 | 0 | 0.000000e+00 | 0.000000e+00 | 0.00%
2.48/2.59 c 2.5s| 1 | 0 | 2432 | - | 21M| 0 | - |1497 |4143 |1497 |4069 | 0 | 0 | 0 | 0.000000e+00 | 0.000000e+00 | 0.00%
2.48/2.59 c
2.48/2.59 c SCIP Status : problem is solved [optimal solution found]
2.48/2.59 c Solving Time (sec) : 2.51
2.48/2.59 c Solving Nodes : 1
2.48/2.59 c Primal Bound : +0.00000000000000e+00 (1 solutions)
2.48/2.59 c Dual Bound : +0.00000000000000e+00
2.48/2.59 c Gap : 0.00 %
2.48/2.60 s SATISFIABLE
2.48/2.60 v x3720 -x3719 -x3718 -x3717 -x3716 -x3715 -x3714 -x3713 -x3712 -x3711 -x3710 -x3709 -x3708 -x3707 -x3706 -x3705 -x3704 -x3703 -x3702
2.48/2.60 v -x3701 -x3700 -x3699 -x3698 -x3697 -x3696 -x3695 -x3694 -x3693 -x3692 -x3691 -x3690 -x3689 -x3688 -x3687 -x3686 -x3685 -x3684
2.48/2.60 v -x3683 -x3682 -x3681 -x3680 -x3679 -x3678 -x3677 -x3676 -x3675 -x3674 -x3673 -x3672 -x3671 -x3670 -x3669 -x3668 -x3667
2.48/2.60 v -x3666 -x3665 -x3664 -x3663 -x3662 -x3661 -x3660 -x3659 -x3658 -x3657 -x3656 -x3655 -x3654 -x3653 -x3652 -x3651 x3650 -x3649
2.48/2.60 v -x3648 -x3647 -x3646 -x3645 -x3644 -x3643 -x3642 -x3641 -x3640 -x3639 -x3638 -x3637 -x3636 -x3635 -x3634 -x3633 -x3632 -x3631
2.48/2.60 v -x3630 -x3629 -x3628 -x3627 -x3626 -x3625 -x3624 -x3623 -x3622 -x3621 -x3620 -x3619 -x3618 -x3617 -x3616 -x3615 -x3614 -x3613
2.48/2.60 v -x3612 -x3611 -x3610 -x3609 -x3608 -x3607 -x3606 -x3605 -x3604 -x3603 -x3602 -x3601 -x3600 -x3599 -x3598 -x3597 x3596 x3595
2.48/2.60 v x3594 x3593 -x3592 -x3591 -x3590 -x3589 -x3588 -x3587 -x3586 -x3585 -x3584 -x3583 -x3582 -x3581 -x3580 -x3579 -x3578 -x3577
2.48/2.60 v -x3576 -x3575 -x3574 -x3573 -x3572 -x3571 -x3570 -x3569 -x3568 -x3567 -x3566 -x3565 -x3564 -x3563 -x3562 -x3561 -x3560 -x3559
2.48/2.60 v -x3558 -x3557 -x3556 -x3555 -x3554 -x3553 -x3552 -x3551 -x3550 -x3549 -x3548 -x3547 -x3546 -x3545 -x3544 -x3543 -x3542 -x3541
2.48/2.60 v -x3540 x3539 -x3538 -x3537 -x3536 -x3535 -x3534 -x3533 -x3532 -x3531 -x3530 -x3529 -x3528 -x3527 -x3526 -x3525 -x3524 -x3523
2.48/2.60 v -x3522 -x3521 -x3520 -x3519 -x3518 -x3517 -x3516 -x3515 -x3514 -x3513 -x3512 -x3511 -x3510 -x3509 -x3508 -x3507 -x3506 -x3505
2.48/2.60 v -x3504 -x3503 -x3502 -x3501 -x3500 -x3499 -x3498 -x3497 -x3496 -x3495 -x3494 -x3493 -x3492 -x3491 -x3490 -x3489 -x3488 -x3487
2.48/2.60 v -x3486 -x3485 -x3484 -x3483 -x3482 -x3481 -x3480 -x3479 -x3478 -x3477 -x3476 -x3475 -x3474 -x3473 x3472 -x3471 -x3470 -x3469
2.48/2.60 v -x3468 -x3467 -x3466 -x3465 -x3464 -x3463 -x3462 -x3461 -x3460 -x3459 -x3458 -x3457 -x3456 -x3455 -x3454 -x3453 -x3452 -x3451
2.48/2.60 v -x3450 -x3449 -x3448 -x3447 -x3446 -x3445 -x3444 -x3443 -x3442 -x3441 -x3440 -x3439 -x3438 -x3437 -x3436 -x3435 -x3434 -x3433
2.48/2.60 v -x3432 -x3431 -x3430 -x3429 -x3428 -x3427 -x3426 -x3425 -x3424 -x3423 -x3422 -x3421 -x3420 -x3419 -x3418 -x3417 -x3416
2.48/2.60 v -x3415 -x3414 -x3413 x3412 x3411 x3410 x3409 x3408 x3407 x3406 x3405 x3404 x3403 -x3402 -x3401 -x3400 -x3399 -x3398 -x3397 -x3396
2.48/2.60 v -x3395 -x3394 -x3393 -x3392 -x3391 -x3390 -x3389 -x3388 -x3387 -x3386 -x3385 -x3384 -x3383 -x3382 -x3381 -x3380 -x3379 -x3378
2.48/2.60 v -x3377 -x3376 -x3375 -x3374 -x3373 -x3372 -x3371 -x3370 -x3369 -x3368 -x3367 -x3366 -x3365 -x3364 -x3363 -x3362 -x3361
2.48/2.60 v -x3360 -x3359 -x3358 -x3357 -x3356 -x3355 -x3354 -x3353 -x3352 -x3351 -x3350 -x3349 -x3348 -x3347 -x3346 -x3345 -x3344 -x3343
2.48/2.60 v x3342 x3341 x3340 x3339 x3338 x3337 x3336 x3335 -x3334 -x3333 -x3332 -x3331 -x3330 -x3329 -x3328 -x3327 -x3326 -x3325 -x3324
2.48/2.60 v -x3323 -x3322 -x3321 -x3320 -x3319 -x3318 -x3317 -x3316 -x3315 -x3314 -x3313 -x3312 -x3311 -x3310 -x3309 -x3308 -x3307 -x3306
2.48/2.60 v -x3305 -x3304 -x3303 -x3302 -x3301 -x3300 -x3299 -x3298 -x3297 -x3296 -x3295 -x3294 -x3293 -x3292 -x3291 -x3290 -x3289 -x3288
2.48/2.60 v -x3287 -x3286 -x3285 -x3284 -x3283 -x3282 -x3281 -x3280 -x3279 -x3278 -x3277 -x3276 -x3275 x3274 x3273 x3272 x3271 x3270 x3269
2.48/2.60 v x3268 -x3267 -x3266 -x3265 -x3264 -x3263 -x3262 -x3261 -x3260 -x3259 -x3258 -x3257 -x3256 -x3255 -x3254 -x3253 -x3252 -x3251
2.48/2.60 v -x3250 -x3249 -x3248 -x3247 -x3246 -x3245 -x3244 -x3243 -x3242 -x3241 -x3240 -x3239 x3238 x3237 -x3236 -x3235 -x3234 -x3233
2.48/2.60 v -x3232 -x3231 -x3230 -x3229 -x3228 -x3227 -x3226 -x3225 -x3224 -x3223 -x3222 -x3221 -x3220 -x3219 -x3218 -x3217 -x3216 -x3215
2.48/2.60 v -x3214 -x3213 -x3212 -x3211 -x3210 -x3209 -x3208 -x3207 -x3206 -x3205 -x3204 -x3203 -x3202 -x3201 -x3200 -x3199 -x3198 -x3197
2.48/2.60 v -x3196 -x3195 -x3194 -x3193 -x3192 -x3191 -x3190 -x3189 -x3188 -x3187 -x3186 -x3185 -x3184 -x3183 -x3182 -x3181 -x3180
2.48/2.60 v -x3179 -x3178 -x3177 -x3176 -x3175 -x3174 -x3173 -x3172 -x3171 -x3170 -x3169 -x3168 -x3167 -x3166 -x3165 -x3164 -x3163 -x3162
2.48/2.60 v -x3161 -x3160 -x3159 -x3158 -x3157 -x3156 -x3155 -x3154 -x3153 -x3152 -x3151 -x3150 -x3149 -x3148 -x3147 -x3146 -x3145 -x3144
2.48/2.60 v x3143 x3142 x3141 x3140 x3139 x3138 x3137 x3136 -x3135 -x3134 -x3133 -x3132 -x3131 -x3130 -x3129 -x3128 -x3127 -x3126 -x3125
2.48/2.60 v -x3124 -x3123 -x3122 -x3121 -x3120 -x3119 -x3118 -x3117 -x3116 -x3115 -x3114 -x3113 -x3112 -x3111 -x3110 -x3109 -x3108 -x3107
2.48/2.60 v -x3106 -x3105 -x3104 -x3103 -x3102 -x3101 -x3100 -x3099 -x3098 -x3097 -x3096 -x3095 x3094 x3093 x3092 x3091 x3090 x3089 x3088
2.48/2.60 v x3087 -x3086 -x3085 -x3084 -x3083 -x3082 -x3081 -x3080 -x3079 -x3078 -x3077 -x3076 -x3075 -x3074 -x3073 -x3072 -x3071 -x3070
2.48/2.60 v -x3069 -x3068 -x3067 -x3066 -x3065 -x3064 -x3063 -x3062 -x3061 -x3060 -x3059 -x3058 -x3057 -x3056 -x3055 -x3054 -x3053 -x3052
2.48/2.60 v -x3051 -x3050 -x3049 -x3048 -x3047 -x3046 -x3045 -x3044 -x3043 -x3042 -x3041 -x3040 -x3039 -x3038 -x3037 -x3036 -x3035 -x3034
2.48/2.60 v -x3033 -x3032 -x3031 -x3030 -x3029 -x3028 -x3027 x3026 x3025 -x3024 -x3023 -x3022 -x3021 -x3020 -x3019 -x3018 -x3017 -x3016
2.48/2.60 v -x3015 -x3014 -x3013 -x3012 -x3011 -x3010 -x3009 -x3008 -x3007 -x3006 -x3005 -x3004 -x3003 -x3002 -x3001 -x3000 -x2999 -x2998
2.48/2.60 v -x2997 -x2996 -x2995 -x2994 -x2993 -x2992 -x2991 -x2990 -x2989 -x2988 -x2987 -x2986 -x2985 -x2984 -x2983 -x2982 -x2981
2.48/2.60 v -x2980 -x2979 -x2978 -x2977 -x2976 -x2975 x2974 x2973 x2972 x2971 x2970 x2969 x2968 x2967 -x2966 -x2965 -x2964 -x2963 -x2962
2.48/2.60 v -x2961 -x2960 -x2959 -x2958 -x2957 -x2956 -x2955 -x2954 -x2953 -x2952 -x2951 -x2950 -x2949 -x2948 -x2947 -x2946 -x2945 -x2944
2.48/2.60 v -x2943 -x2942 -x2941 -x2940 -x2939 -x2938 -x2937 -x2936 -x2935 -x2934 -x2933 -x2932 -x2931 -x2930 x2929 x2928 x2927 x2926 x2925
2.48/2.60 v x2924 x2923 -x2922 -x2921 -x2920 -x2919 -x2918 -x2917 -x2916 -x2915 -x2914 -x2913 -x2912 -x2911 -x2910 -x2909 -x2908 -x2907
2.48/2.60 v -x2906 -x2905 -x2904 -x2903 -x2902 -x2901 -x2900 -x2899 -x2898 -x2897 -x2896 -x2895 -x2894 -x2893 -x2892 -x2891 -x2890 -x2889
2.48/2.60 v -x2888 -x2887 -x2886 -x2885 -x2884 -x2883 -x2882 -x2881 -x2880 -x2879 -x2878 -x2877 -x2876 -x2875 -x2874 -x2873 -x2872 -x2871
2.48/2.60 v -x2870 -x2869 -x2868 -x2867 -x2866 -x2865 -x2864 -x2863 -x2862 -x2861 -x2860 -x2859 -x2858 -x2857 -x2856 -x2855 -x2854 -x2853
2.58/2.60 v -x2852 -x2851 -x2850 -x2849 -x2848 -x2847 -x2846 -x2845 -x2844 -x2843 -x2842 -x2841 -x2840 -x2839 -x2838 -x2837 -x2836
2.58/2.60 v x2835 -x2834 -x2833 -x2832 -x2831 -x2830 -x2829 -x2828 -x2827 -x2826 -x2825 -x2824 -x2823 -x2822 -x2821 -x2820 -x2819 -x2818
2.58/2.60 v -x2817 -x2816 -x2815 -x2814 -x2813 -x2812 -x2811 -x2810 -x2809 -x2808 -x2807 -x2806 -x2805 -x2804 -x2803 -x2802 -x2801 -x2800
2.58/2.60 v -x2799 -x2798 -x2797 -x2796 -x2795 -x2794 -x2793 -x2792 -x2791 -x2790 -x2789 -x2788 -x2787 -x2786 -x2785 -x2784 -x2783 -x2782
2.58/2.60 v -x2781 -x2780 -x2779 -x2778 -x2777 -x2776 -x2775 x2774 x2773 x2772 -x2771 -x2770 -x2769 -x2768 -x2767 -x2766 -x2765 -x2764
2.58/2.60 v -x2763 -x2762 -x2761 -x2760 -x2759 -x2758 -x2757 -x2756 -x2755 -x2754 -x2753 -x2752 -x2751 -x2750 -x2749 -x2748 -x2747 -x2746
2.58/2.60 v -x2745 -x2744 -x2743 -x2742 -x2741 x2740 x2739 x2738 x2737 x2736 -x2735 -x2734 -x2733 -x2732 -x2731 -x2730 -x2729 -x2728 -x2727
2.58/2.60 v -x2726 -x2725 -x2724 -x2723 -x2722 -x2721 -x2720 -x2719 -x2718 -x2717 -x2716 -x2715 -x2714 -x2713 -x2712 -x2711 -x2710 -x2709
2.58/2.60 v -x2708 -x2707 -x2706 -x2705 -x2704 -x2703 -x2702 -x2701 -x2700 -x2699 -x2698 -x2697 -x2696 -x2695 -x2694 -x2693 -x2692 -x2691
2.58/2.60 v -x2690 -x2689 -x2688 -x2687 -x2686 -x2685 -x2684 -x2683 -x2682 -x2681 x2680 x2679 x2678 x2677 x2676 x2675 -x2674 -x2673
2.58/2.60 v -x2672 -x2671 -x2670 -x2669 -x2668 -x2667 -x2666 -x2665 -x2664 -x2663 -x2662 -x2661 -x2660 -x2659 -x2658 -x2657 -x2656 -x2655
2.58/2.60 v -x2654 -x2653 -x2652 -x2651 -x2650 -x2649 -x2648 -x2647 -x2646 -x2645 -x2644 -x2643 -x2642 -x2641 -x2640 -x2639 -x2638 -x2637
2.58/2.60 v -x2636 -x2635 -x2634 -x2633 -x2632 -x2631 -x2630 -x2629 -x2628 -x2627 -x2626 -x2625 -x2624 -x2623 -x2622 -x2621 -x2620 -x2619
2.58/2.60 v -x2618 -x2617 -x2616 -x2615 -x2614 -x2613 -x2612 -x2611 -x2610 -x2609 -x2608 -x2607 -x2606 -x2605 -x2604 -x2603 -x2602 -x2601
2.58/2.60 v -x2600 -x2599 -x2598 -x2597 -x2596 -x2595 -x2594 -x2593 -x2592 -x2591 -x2590 -x2589 x2588 x2587 x2586 -x2585 -x2584 -x2583
2.58/2.60 v -x2582 -x2581 -x2580 -x2579 -x2578 -x2577 -x2576 -x2575 -x2574 -x2573 -x2572 -x2571 -x2570 -x2569 -x2568 -x2567 -x2566 -x2565
2.58/2.60 v -x2564 -x2563 -x2562 -x2561 -x2560 -x2559 -x2558 -x2557 -x2556 -x2555 -x2554 -x2553 -x2552 -x2551 -x2550 -x2549 -x2548 -x2547
2.58/2.60 v -x2546 -x2545 x2544 x2543 x2542 x2541 x2540 x2539 x2538 x2537 -x2536 -x2535 -x2534 -x2533 -x2532 -x2531 -x2530 -x2529 -x2528
2.58/2.60 v -x2527 -x2526 -x2525 -x2524 -x2523 -x2522 -x2521 -x2520 -x2519 -x2518 -x2517 x2516 x2515 x2514 x2513 -x2512 -x2511 -x2510
2.58/2.60 v -x2509 -x2508 -x2507 -x2506 -x2505 -x2504 -x2503 -x2502 -x2501 -x2500 -x2499 -x2498 -x2497 -x2496 -x2495 -x2494 -x2493 -x2492
2.58/2.60 v -x2491 -x2490 -x2489 -x2488 -x2487 -x2486 -x2485 -x2484 -x2483 -x2482 -x2481 -x2480 -x2479 -x2478 -x2477 -x2476 -x2475 -x2474
2.58/2.60 v -x2473 -x2472 -x2471 -x2470 -x2469 -x2468 -x2467 -x2466 -x2465 -x2464 -x2463 -x2462 -x2461 -x2460 -x2459 -x2458 -x2457 -x2456
2.58/2.60 v -x2455 -x2454 -x2453 -x2452 -x2451 -x2450 -x2449 -x2448 -x2447 -x2446 -x2445 -x2444 -x2443 -x2442 -x2441 -x2440 -x2439 -x2438
2.58/2.60 v -x2437 -x2436 -x2435 -x2434 -x2433 -x2432 -x2431 -x2430 -x2429 -x2428 -x2427 -x2426 -x2425 -x2424 -x2423 -x2422 -x2421
2.58/2.60 v -x2420 -x2419 -x2418 -x2417 -x2416 x2415 x2414 x2413 x2412 x2411 -x2410 -x2409 -x2408 -x2407 -x2406 -x2405 -x2404 -x2403 -x2402
2.58/2.60 v -x2401 -x2400 -x2399 -x2398 -x2397 -x2396 -x2395 -x2394 -x2393 x2392 x2391 -x2390 -x2389 -x2388 -x2387 -x2386 -x2385 -x2384
2.58/2.60 v -x2383 -x2382 -x2381 -x2380 -x2379 -x2378 -x2377 -x2376 -x2375 -x2374 -x2373 -x2372 -x2371 -x2370 -x2369 -x2368 -x2367 -x2366
2.58/2.60 v -x2365 -x2364 -x2363 -x2362 -x2361 -x2360 -x2359 -x2358 -x2357 -x2356 -x2355 -x2354 -x2353 -x2352 -x2351 -x2350 -x2349 -x2348
2.58/2.60 v -x2347 -x2346 -x2345 -x2344 -x2343 -x2342 -x2341 -x2340 -x2339 -x2338 -x2337 -x2336 -x2335 -x2334 -x2333 -x2332 -x2331 x2330
2.58/2.60 v x2329 x2328 x2327 x2326 x2325 x2324 x2323 x2322 x2321 -x2320 -x2319 -x2318 -x2317 -x2316 -x2315 -x2314 -x2313 -x2312 -x2311
2.58/2.60 v -x2310 -x2309 -x2308 -x2307 -x2306 -x2305 -x2304 -x2303 -x2302 -x2301 -x2300 -x2299 -x2298 -x2297 -x2296 -x2295 -x2294 -x2293
2.58/2.60 v -x2292 -x2291 -x2290 -x2289 -x2288 -x2287 -x2286 -x2285 -x2284 -x2283 -x2282 -x2281 -x2280 -x2279 -x2278 -x2277 -x2276 -x2275
2.58/2.60 v -x2274 -x2273 -x2272 -x2271 -x2270 -x2269 -x2268 -x2267 -x2266 -x2265 -x2264 -x2263 x2262 x2261 -x2260 -x2259 -x2258 -x2257
2.58/2.60 v -x2256 -x2255 -x2254 -x2253 -x2252 -x2251 -x2250 -x2249 -x2248 -x2247 -x2246 -x2245 -x2244 -x2243 -x2242 -x2241 -x2240 -x2239
2.58/2.60 v -x2238 -x2237 -x2236 -x2235 -x2234 -x2233 -x2232 -x2231 -x2230 -x2229 -x2228 -x2227 -x2226 -x2225 -x2224 -x2223 -x2222 -x2221
2.58/2.60 v -x2220 -x2219 -x2218 -x2217 -x2216 -x2215 -x2214 -x2213 -x2212 -x2211 -x2210 -x2209 -x2208 -x2207 -x2206 -x2205 -x2204
2.58/2.60 v -x2203 -x2202 -x2201 -x2200 -x2199 -x2198 -x2197 -x2196 -x2195 -x2194 -x2193 -x2192 -x2191 -x2190 -x2189 -x2188 -x2187 -x2186
2.58/2.60 v -x2185 -x2184 -x2183 -x2182 -x2181 -x2180 -x2179 -x2178 -x2177 -x2176 -x2175 -x2174 -x2173 -x2172 -x2171 x2170 x2169 x2168 x2167
2.58/2.60 v x2166 x2165 x2164 x2163 x2162 -x2161 -x2160 -x2159 -x2158 -x2157 -x2156 -x2155 -x2154 -x2153 -x2152 -x2151 -x2150 -x2149
2.58/2.60 v -x2148 -x2147 -x2146 -x2145 -x2144 -x2143 -x2142 -x2141 -x2140 -x2139 -x2138 -x2137 -x2136 -x2135 -x2134 -x2133 -x2132 -x2131
2.58/2.60 v -x2130 -x2129 -x2128 -x2127 x2126 x2125 x2124 -x2123 -x2122 -x2121 -x2120 -x2119 -x2118 -x2117 -x2116 -x2115 -x2114 -x2113
2.58/2.60 v -x2112 -x2111 -x2110 -x2109 -x2108 -x2107 -x2106 -x2105 -x2104 -x2103 -x2102 -x2101 -x2100 -x2099 -x2098 -x2097 -x2096 -x2095
2.58/2.60 v -x2094 -x2093 -x2092 -x2091 -x2090 -x2089 -x2088 -x2087 -x2086 -x2085 -x2084 -x2083 -x2082 -x2081 -x2080 -x2079 -x2078 -x2077
2.58/2.60 v -x2076 -x2075 -x2074 -x2073 -x2072 -x2071 -x2070 -x2069 -x2068 -x2067 -x2066 -x2065 -x2064 -x2063 -x2062 -x2061 -x2060 -x2059
2.58/2.60 v -x2058 -x2057 x2056 -x2055 -x2054 -x2053 -x2052 -x2051 -x2050 -x2049 -x2048 -x2047 -x2046 -x2045 -x2044 -x2043 -x2042 -x2041
2.58/2.60 v -x2040 -x2039 -x2038 -x2037 -x2036 -x2035 -x2034 -x2033 -x2032 -x2031 -x2030 -x2029 -x2028 -x2027 -x2026 -x2025 -x2024 -x2023
2.58/2.60 v -x2022 -x2021 x2020 x2019 x2018 x2017 x2016 x2015 -x2014 -x2013 -x2012 -x2011 -x2010 -x2009 -x2008 -x2007 -x2006 -x2005 -x2004
2.58/2.60 v -x2003 -x2002 -x2001 -x2000 -x1999 -x1998 -x1997 -x1996 -x1995 -x1994 -x1993 -x1992 -x1991 -x1990 -x1989 -x1988 -x1987
2.58/2.60 v -x1986 -x1985 -x1984 -x1983 -x1982 -x1981 -x1980 -x1979 -x1978 -x1977 -x1976 -x1975 -x1974 -x1973 -x1972 -x1971 -x1970 -x1969
2.58/2.60 v -x1968 -x1967 -x1966 -x1965 -x1964 -x1963 -x1962 -x1961 -x1960 -x1959 -x1958 -x1957 -x1956 -x1955 -x1954 -x1953 -x1952 -x1951
2.58/2.60 v -x1950 -x1949 -x1948 -x1947 -x1946 -x1945 -x1944 -x1943 -x1942 -x1941 -x1940 -x1939 -x1938 -x1937 -x1936 -x1935 -x1934 -x1933
2.58/2.60 v -x1932 x1931 x1930 x1929 x1928 x1927 x1926 x1925 x1924 x1923 x1922 -x1921 -x1920 -x1919 -x1918 -x1917 -x1916 -x1915 -x1914
2.58/2.60 v -x1913 -x1912 -x1911 -x1910 -x1909 -x1908 -x1907 -x1906 -x1905 -x1904 -x1903 -x1902 -x1901 -x1900 -x1899 -x1898 -x1897 -x1896
2.58/2.60 v -x1895 -x1894 -x1893 -x1892 -x1891 -x1890 -x1889 -x1888 -x1887 -x1886 -x1885 -x1884 -x1883 -x1882 -x1881 -x1880 -x1879 -x1878
2.58/2.60 v -x1877 -x1876 -x1875 -x1874 -x1873 -x1872 -x1871 -x1870 -x1869 -x1868 -x1867 -x1866 -x1865 -x1864 -x1863 -x1862 x1861 -x1859
2.58/2.60 v -x1858 -x1857 -x1856 -x1855 -x1854 -x1853 -x1852 -x1851 -x1850 -x1849 -x1848 -x1847 -x1846 -x1845 -x1844 -x1843 -x1842 -x1841
2.58/2.60 v -x1840 -x1839 -x1838 -x1837 -x1836 -x1835 -x1834 -x1833 -x1832 -x1831 -x1830 -x1829 -x1828 -x1827 -x1826 -x1825 -x1824 -x1823
2.58/2.60 v -x1822 -x1821 -x1820 -x1819 -x1818 -x1817 -x1816 -x1815 -x1814 -x1813 -x1812 -x1811 -x1810 -x1809 -x1808 -x1807 -x1806 -x1805
2.58/2.60 v -x1804 -x1803 -x1802 -x1801 x1800 x1799 x1798 x1797 x1796 x1795 x1794 x1793 x1792 x1791 x1790 -x1789 -x1788 -x1787 -x1786
2.58/2.60 v -x1785 -x1784 -x1783 -x1782 -x1781 -x1780 -x1779 -x1778 -x1777 -x1776 -x1775 -x1774 -x1773 -x1772 -x1771 -x1770 -x1769 -x1768
2.58/2.60 v -x1767 -x1766 -x1765 -x1764 -x1763 -x1762 -x1761 -x1760 -x1759 -x1758 -x1757 -x1756 -x1755 -x1754 -x1753 -x1752 -x1751 -x1750
2.58/2.60 v -x1749 -x1748 -x1747 -x1746 -x1745 -x1744 -x1743 -x1742 -x1741 x1740 x1739 x1738 x1737 x1736 x1735 x1734 x1733 -x1732 -x1731
2.58/2.60 v -x1730 -x1729 -x1728 -x1727 -x1726 -x1725 -x1724 -x1723 -x1722 -x1721 -x1720 -x1719 -x1718 -x1717 -x1716 -x1715 -x1714 -x1713
2.58/2.60 v -x1712 -x1711 -x1710 -x1709 -x1708 -x1707 -x1706 -x1705 -x1704 -x1703 -x1702 -x1701 -x1700 -x1699 -x1698 -x1697 -x1696
2.58/2.60 v -x1695 -x1694 -x1693 -x1692 -x1691 -x1690 -x1689 -x1688 -x1687 -x1686 -x1685 -x1684 -x1683 -x1682 -x1681 x1680 x1679 -x1678 -x1677
2.58/2.60 v -x1676 -x1675 -x1674 -x1673 -x1672 -x1671 -x1670 -x1669 -x1668 -x1667 -x1666 -x1665 -x1664 -x1663 -x1662 -x1661 -x1660
2.58/2.60 v -x1659 -x1658 -x1657 -x1656 -x1655 -x1654 -x1653 -x1652 -x1651 -x1650 -x1649 -x1648 -x1647 -x1646 -x1645 -x1644 -x1643 -x1642
2.58/2.60 v -x1641 -x1640 -x1639 -x1638 -x1637 -x1636 -x1635 -x1634 -x1633 -x1632 -x1631 -x1630 -x1629 -x1628 -x1627 -x1626 -x1625 -x1624
2.58/2.60 v -x1623 -x1622 -x1621 x1620 x1619 x1618 x1617 x1616 x1615 x1614 x1613 x1612 -x1611 -x1610 -x1609 -x1608 -x1607 -x1606 -x1605
2.58/2.60 v -x1604 -x1603 -x1602 -x1601 -x1600 -x1599 -x1598 -x1597 -x1596 -x1595 -x1594 -x1593 -x1592 -x1591 -x1590 -x1589 -x1588 -x1587
2.58/2.60 v -x1586 -x1585 -x1584 -x1583 -x1582 -x1581 -x1580 -x1579 -x1578 -x1577 -x1576 -x1575 -x1574 -x1573 -x1572 -x1571 -x1570 -x1569
2.58/2.60 v -x1568 -x1567 -x1566 -x1565 -x1564 -x1563 -x1562 -x1561 x1560 x1559 x1558 x1557 x1556 x1555 x1554 x1553 x1552 x1551 x1550
2.58/2.60 v x1549 x1548 x1547 x1546 x1545 x1544 x1543 -x1542 -x1541 -x1540 -x1539 -x1538 -x1537 -x1536 -x1535 -x1534 -x1533 -x1532 -x1531
2.58/2.60 v -x1530 -x1529 -x1528 -x1527 -x1526 -x1525 -x1524 -x1523 -x1522 -x1521 -x1520 -x1519 -x1518 -x1517 -x1516 -x1515 -x1514 -x1513
2.58/2.60 v -x1512 -x1511 -x1510 -x1509 -x1508 -x1507 -x1506 -x1505 -x1504 -x1503 -x1502 -x1501 x1500 x1499 x1498 x1497 x1496 x1495 x1494
2.58/2.60 v x1493 x1492 x1491 x1490 x1489 x1488 x1487 x1486 x1485 x1484 x1483 x1482 x1481 x1480 x1479 x1478 x1477 x1476 x1475 -x1474 -x1473
2.58/2.60 v -x1472 -x1471 -x1470 -x1469 -x1468 -x1467 -x1466 -x1465 -x1464 -x1463 -x1462 -x1461 -x1460 -x1459 -x1458 -x1457 -x1456
2.58/2.60 v -x1455 -x1454 -x1453 -x1452 -x1451 -x1450 -x1449 -x1448 -x1447 -x1446 -x1445 -x1444 -x1443 -x1442 -x1441 x1440 x1439 x1438 x1437
2.58/2.60 v x1436 x1435 x1434 x1433 x1432 x1431 x1430 x1429 x1428 x1427 x1426 x1425 x1424 x1423 x1422 x1421 x1420 x1419 x1418 x1417 x1416
2.58/2.60 v x1415 x1414 x1413 x1412 x1411 x1410 x1409 x1408 -x1407 -x1406 -x1405 -x1404 -x1403 -x1402 -x1401 -x1400 -x1399 -x1398 -x1397
2.58/2.60 v -x1396 -x1395 -x1394 -x1393 -x1392 -x1391 -x1390 -x1389 -x1388 -x1387 -x1386 -x1385 -x1384 -x1383 -x1382 -x1381 x1380 x1379
2.58/2.60 v x1378 x1377 -x1376 -x1375 -x1374 -x1373 -x1372 -x1371 -x1370 -x1369 -x1368 -x1367 -x1366 -x1365 -x1364 -x1363 -x1362 -x1361
2.58/2.60 v -x1360 -x1359 -x1358 -x1357 -x1356 -x1355 -x1354 -x1353 -x1352 -x1351 -x1350 -x1349 -x1348 -x1347 -x1346 -x1345 -x1344 -x1343
2.58/2.60 v -x1342 -x1341 -x1340 -x1339 -x1338 -x1337 -x1336 -x1335 -x1334 -x1333 -x1332 -x1331 -x1330 -x1329 -x1328 -x1327 -x1326 -x1325
2.58/2.60 v -x1324 -x1323 -x1322 -x1321 x1320 x1319 x1318 x1317 x1316 x1315 x1314 x1313 x1312 x1311 x1310 x1309 x1308 x1307 x1306 x1305
2.58/2.60 v x1304 x1303 x1302 x1301 x1300 x1299 x1298 x1297 x1296 x1295 x1294 x1293 x1292 x1291 x1290 x1289 x1288 x1287 x1286 x1285 x1284
2.58/2.60 v x1283 x1282 x1281 x1280 x1279 x1278 x1277 x1276 -x1275 -x1274 -x1273 -x1272 -x1271 -x1270 -x1269 -x1268 -x1267 -x1266 -x1265
2.58/2.60 v -x1264 -x1263 -x1262 -x1261 x1260 x1259 x1258 x1257 x1256 x1255 x1254 x1253 x1252 x1251 x1250 x1249 x1248 x1247 x1246 x1245
2.58/2.60 v x1244 x1243 x1242 x1241 x1240 x1239 x1238 x1237 x1236 x1235 x1234 x1233 x1232 x1231 x1230 x1229 x1228 x1227 -x1226 -x1225
2.58/2.60 v -x1224 -x1223 -x1222 -x1221 -x1220 -x1219 -x1218 -x1217 -x1216 -x1215 -x1214 -x1213 -x1212 -x1211 -x1210 -x1209 -x1208 -x1207
2.58/2.60 v -x1206 -x1205 -x1204 -x1203 -x1202 -x1201 x1200 x1199 x1198 x1197 x1196 x1195 x1194 x1193 x1192 x1191 x1190 x1189 x1188 x1187
2.58/2.60 v x1186 x1185 x1184 x1183 x1182 x1181 x1180 x1179 x1178 x1177 x1176 x1175 x1174 x1173 x1172 x1171 x1170 x1169 x1168 x1167 x1166
2.58/2.60 v x1165 -x1164 -x1163 -x1162 -x1161 -x1160 -x1159 -x1158 -x1157 -x1156 -x1155 -x1154 -x1153 -x1152 -x1151 -x1150 -x1149 -x1148
2.58/2.60 v -x1147 -x1146 -x1145 -x1144 -x1143 -x1142 -x1141 x1140 x1139 x1138 x1137 x1136 x1135 x1134 x1133 x1132 x1131 x1130 x1129
2.58/2.60 v x1128 x1127 x1126 x1125 x1124 x1123 x1122 x1121 x1120 x1119 x1118 x1117 x1116 x1115 x1114 x1113 x1112 x1111 x1110 x1109 x1108
2.58/2.60 v x1107 -x1106 -x1105 -x1104 -x1103 -x1102 -x1101 -x1100 -x1099 -x1098 -x1097 -x1096 -x1095 -x1094 -x1093 -x1092 -x1091 -x1090
2.58/2.60 v -x1089 -x1088 -x1087 -x1086 -x1085 -x1084 -x1083 -x1082 -x1081 x1080 x1079 x1078 x1077 x1076 x1075 x1074 x1073 x1072 x1071 x1070
2.58/2.60 v x1069 x1068 x1067 x1066 x1065 x1064 x1063 -x1062 -x1061 -x1060 -x1059 -x1058 -x1057 -x1056 -x1055 -x1054 -x1053 -x1052 -x1051
2.58/2.60 v -x1050 -x1049 -x1048 -x1047 -x1046 -x1045 -x1044 -x1043 -x1042 -x1041 -x1040 -x1039 -x1038 -x1037 -x1036 -x1035 -x1034
2.58/2.60 v -x1033 -x1032 -x1031 -x1030 -x1029 -x1028 -x1027 -x1026 -x1025 -x1024 -x1023 -x1022 -x1021 x1020 x1019 x1018 x1017 x1016 x1015
2.58/2.60 v x1014 x1013 x1012 x1011 x1010 x1009 x1008 x1007 x1006 x1005 x1004 x1003 x1002 x1001 x1000 x999 x998 x997 x996 x995 x994 x993
2.58/2.60 v x992 x991 x990 x989 x988 x987 x986 x985 x984 x983 x982 x981 x980 x979 x978 x977 x976 x975 -x974 -x973 -x972 -x971 -x970 -x969
2.58/2.60 v -x968 -x967 -x966 -x965 -x964 -x963 -x962 -x961 x960 x959 x958 x957 x956 x955 x954 x953 x952 x951 x950 x949 x948 x947 x946
2.58/2.60 v x945 x944 x943 x942 x941 x940 x939 x938 x937 x936 x935 x934 x933 x932 x931 x930 x929 x928 x927 x926 x925 x924 x923 x922 x921
2.58/2.60 v x920 x919 x918 x917 x916 x915 x914 x913 x912 -x911 -x910 -x909 -x908 -x907 -x906 -x905 -x904 -x903 -x902 -x901 x900 x899 x898
2.58/2.60 v x897 x896 x895 x894 x893 x892 x891 x890 x889 x888 x887 x886 x885 x884 x883 x882 x881 x880 x879 x878 x877 x876 -x875 -x874 -x873
2.58/2.60 v -x872 -x871 -x870 -x869 -x868 -x867 -x866 -x865 -x864 -x863 -x862 -x861 -x860 -x859 -x858 -x857 -x856 -x855 -x854 -x853
2.58/2.60 v -x852 -x851 -x850 -x849 -x848 -x847 -x846 -x845 -x844 -x843 -x842 -x841 x840 x839 x838 x837 x836 x835 x834 x833 x832 x831 x830
2.58/2.60 v x829 x828 x827 x826 x825 x824 x823 x822 x821 x820 x819 x818 x817 x816 x815 -x814 -x813 -x812 -x811 -x810 -x809 -x808 -x807
2.58/2.60 v -x806 -x805 -x804 -x803 -x802 -x801 -x800 -x799 -x798 -x797 -x796 -x795 -x794 -x793 -x792 -x791 -x790 -x789 -x788 -x787 -x786
2.58/2.60 v -x785 -x784 -x783 -x782 -x781 x780 x779 x778 x777 x776 x775 x774 x773 x772 x771 x770 x769 x768 x767 x766 x765 x764 x763 x762
2.58/2.60 v x761 x760 x759 x758 x757 x756 x755 x754 x753 x752 x751 x750 x749 x748 x747 x746 x745 x744 x743 x742 x741 x740 x739 x738 x737
2.58/2.60 v x736 x735 x734 x733 x732 x731 x730 x729 x728 x727 x726 -x725 -x724 -x723 -x722 -x721 x720 x719 x718 x717 x716 x715 x714 x713
2.58/2.60 v x712 x711 x710 x709 x708 x707 x706 x705 x704 x703 x702 x701 x700 x699 x698 x697 x696 x695 x694 x693 x692 x691 x690 x689 x688
2.58/2.60 v x687 x686 x685 x684 x683 x682 x681 x680 x679 x678 x677 -x676 -x675 -x674 -x673 -x672 -x671 -x670 -x669 -x668 -x667 -x666 -x665
2.58/2.60 v -x664 -x663 -x662 -x661 x660 x659 x658 x657 x656 x655 x654 x653 -x652 -x651 -x650 -x649 -x648 -x647 -x646 -x645 -x644 -x643
2.58/2.60 v -x642 -x641 -x640 -x639 -x638 -x637 -x636 -x635 -x634 -x633 -x632 -x631 -x630 -x629 -x628 -x627 -x626 -x625 -x624 -x623 -x622
2.58/2.60 v -x621 -x620 -x619 -x618 -x617 -x616 -x615 -x614 -x613 -x612 -x611 -x610 -x609 -x608 -x607 -x606 -x605 -x604 -x603 -x602 -x601
2.58/2.60 v x600 x599 x598 x597 x596 x595 x594 x593 x592 x591 x590 x589 x588 x587 x586 x585 x584 x583 x582 x581 x580 x579 x578 x577 x576
2.58/2.60 v x575 x574 x573 x572 x571 x570 x569 x568 x567 x566 x565 x564 x563 x562 x561 x560 x559 x558 x557 x556 x555 x554 x553 x552 x551
2.58/2.60 v -x550 -x549 -x548 -x547 -x546 -x545 -x544 -x543 -x542 -x541 x540 x539 x538 x537 x536 x535 x534 x533 x532 x531 -x530 -x529
2.58/2.60 v -x528 -x527 -x526 -x525 -x524 -x523 -x522 -x521 -x520 -x519 -x518 -x517 -x516 -x515 -x514 -x513 -x512 -x511 -x510 -x509 -x508
2.58/2.60 v -x507 -x506 -x505 -x504 -x503 -x502 -x501 -x500 -x499 -x498 -x497 -x496 -x495 -x494 -x493 -x492 -x491 -x490 -x489 -x488 -x487
2.58/2.60 v -x486 -x485 -x484 -x483 -x482 -x481 x480 x479 x478 x477 x476 x475 x474 x473 x472 x471 x470 x469 x468 x467 x466 x465 x464 x463
2.58/2.60 v x462 x461 -x460 -x459 -x458 -x457 -x456 -x455 -x454 -x453 -x452 -x451 -x450 -x449 -x448 -x447 -x446 -x445 -x444 -x443 -x442
2.58/2.60 v -x441 -x440 -x439 -x438 -x437 -x436 -x435 -x434 -x433 -x432 -x431 -x430 -x429 -x428 -x427 -x426 -x425 -x424 -x423 -x422 -x421
2.58/2.60 v x420 x419 x418 x417 x416 x415 x414 x413 x412 x411 x410 x409 x408 x407 x406 x405 x404 x403 x402 x401 -x400 -x399 -x398 -x397
2.58/2.60 v -x396 -x395 -x394 -x393 -x392 -x391 -x390 -x389 -x388 -x387 -x386 -x385 -x384 -x383 -x382 -x381 -x380 -x379 -x378 -x377 -x376
2.58/2.60 v -x375 -x374 -x373 -x372 -x371 -x370 -x369 -x368 -x367 -x366 -x365 -x364 -x363 -x362 -x361 x360 x359 x358 x357 x356 x355 x354
2.58/2.60 v x353 x352 x351 x350 x349 x348 x347 x346 x345 x344 x343 x342 x341 x340 x339 x338 x337 x336 x335 x334 x333 x332 x331 x330 x329
2.58/2.60 v x328 x327 x326 x325 x324 x323 x322 x321 x320 x319 x318 x317 x316 x315 x314 x313 x312 x311 x310 x309 x308 x307 x306 x305 x304
2.58/2.60 v x303 x302 -x301 x300 x299 x298 x297 x296 x295 x294 x293 x292 x291 x290 x289 x288 x287 x286 x285 x284 x283 x282 x281 x280
2.58/2.60 v x279 x278 x277 x276 x275 x274 x273 x272 x271 x270 x269 x268 x267 x266 x265 x264 -x263 -x262 -x261 -x260 -x259 -x258 -x257 -x256
2.58/2.60 v -x255 -x254 -x253 -x252 -x251 -x250 -x249 -x248 -x247 -x246 -x245 -x244 -x243 -x242 -x241 x240 x239 x238 x237 x236 x235 x234
2.58/2.60 v x233 x232 x231 x230 x229 x228 x227 x226 x225 x224 x223 x222 x221 x220 x219 x218 x217 x216 x215 x214 x213 x212 x211 x210 x209
2.58/2.60 v x208 x207 x206 x205 x204 x203 x202 x201 x200 x199 x198 x197 x196 -x195 -x194 -x193 -x192 -x191 -x190 -x189 -x188 -x187 -x186
2.58/2.60 v -x185 -x184 -x183 -x182 -x181 x180 x179 x178 x177 x176 x175 x174 x173 x172 x171 x170 x169 x168 x167 x166 x165 x164 x163 x162
2.58/2.60 v x161 x160 x159 x158 x157 x156 x155 -x154 -x153 -x152 -x151 -x150 -x149 -x148 -x147 -x146 -x145 -x144 -x143 -x142 -x141 -x140
2.58/2.60 v -x139 -x138 -x137 -x136 -x135 -x134 -x133 -x132 -x131 -x130 -x129 -x128 -x127 -x126 -x125 -x124 -x123 -x122 -x121 x120 x119
2.58/2.60 v x118 x117 x116 x115 x114 x113 x112 x111 x110 x109 x108 x107 x106 x105 x104 x103 x102 x101 x100 x99 x98 x97 x96 x95 x94 x93
2.58/2.60 v x92 x91 x90 x89 x88 x87 x86 x85 x84 x83 x82 x81 x80 x79 x78 x77 x76 x75 x74 x73 x72 x71 x70 x69 x68 x67 x66 x65 x64 x63 x62 -x61
2.58/2.60 v x60 x59 x58 x57 x56 x55 x54 x53 x52 x51 x50 x49 x48 x47 x46 x45 x44 x43 x42 x41 x40 x39 x38 x37 x36 x35 x34 x33 x32 x31 x30
2.58/2.60 v x29 x28 x27 x26 x25 x24 x23 x22 x21 x20 x19 x18 x17 x16 x15 x14 x13 x12 x11 x10 x9 x8 x7 x6 x5 x4 x3 x2 x1 x1860
2.58/2.60 c SCIP Status : problem is solved [optimal solution found]
2.58/2.60 c Solving Time : 2.51
2.58/2.60 c Original Problem :
2.58/2.60 c Problem name : HOME/instance-3739462-1338730360.opb
2.58/2.60 c Variables : 3720 (3720 binary, 0 integer, 0 implicit integer, 0 continuous)
2.58/2.60 c Constraints : 11555 initial, 11555 maximal
2.58/2.60 c Presolved Problem :
2.58/2.60 c Problem name : t_HOME/instance-3739462-1338730360.opb
2.58/2.60 c Variables : 1497 (1497 binary, 0 integer, 0 implicit integer, 0 continuous)
2.58/2.60 c Constraints : 4070 initial, 4143 maximal
2.58/2.60 c Presolvers : Time FixedVars AggrVars ChgTypes ChgBounds AddHoles DelCons ChgSides ChgCoefs
2.58/2.60 c trivial : 0.00 169 0 0 0 0 0 0 0
2.58/2.60 c dualfix : 0.00 25 0 0 0 0 0 0 0
2.58/2.60 c boundshift : 0.00 0 0 0 0 0 0 0 0
2.58/2.60 c inttobinary : 0.00 0 0 0 0 0 0 0 0
2.58/2.60 c implics : 0.01 0 1 0 0 0 0 0 0
2.58/2.60 c probing : 0.00 0 0 0 0 0 0 0 0
2.58/2.60 c knapsack : 0.05 0 0 0 1 0 0 27 477
2.58/2.60 c setppc : 0.04 0 0 0 0 0 6 0 0
2.58/2.60 c linear : 0.26 1466 562 0 1634 0 7478 41 39
2.58/2.60 c logicor : 0.01 0 0 0 0 0 1 0 0
2.58/2.60 c root node : - 0 - - 0 - - - -
2.58/2.60 c Constraints : Number #Separate #Propagate #EnfoLP #EnfoPS Cutoffs DomReds Cuts Conss Children
2.58/2.60 c integral : 0 0 0 0 0 0 0 0 0 0
2.58/2.60 c knapsack : 215 1 1 0 0 0 0 194 0 0
2.58/2.60 c setppc : 3171 1 1 0 0 0 0 0 0 0
2.58/2.60 c linear : 0+ 0 0 0 0 0 0 0 0 0
2.58/2.60 c logicor : 684 1 1 0 0 0 0 0 0 0
2.58/2.60 c countsols : 0 0 0 0 0 0 0 0 0 0
2.58/2.60 c Constraint Timings : TotalTime Separate Propagate EnfoLP EnfoPS
2.58/2.60 c integral : 0.00 0.00 0.00 0.00 0.00
2.58/2.60 c knapsack : 0.00 0.00 0.00 0.00 0.00
2.58/2.60 c setppc : 0.00 0.00 0.00 0.00 0.00
2.58/2.60 c linear : 0.00 0.00 0.00 0.00 0.00
2.58/2.60 c logicor : 0.00 0.00 0.00 0.00 0.00
2.58/2.60 c countsols : 0.00 0.00 0.00 0.00 0.00
2.58/2.60 c Propagators : Time Calls Cutoffs DomReds
2.58/2.60 c vbounds : 0.00 1 0 0
2.58/2.60 c rootredcost : 0.00 0 0 0
2.58/2.60 c pseudoobj : 0.00 0 0 0
2.58/2.60 c Conflict Analysis : Time Calls Success Conflicts Literals Reconvs ReconvLits LP Iters
2.58/2.60 c propagation : 0.00 0 0 0 0.0 0 0.0 -
2.58/2.60 c infeasible LP : 0.00 0 0 0 0.0 0 0.0 0
2.58/2.60 c bound exceed. LP : 0.00 0 0 0 0.0 0 0.0 0
2.58/2.60 c strong branching : 0.00 0 0 0 0.0 0 0.0 0
2.58/2.60 c pseudo solution : 0.00 1 0 0 0.0 0 0.0 -
2.58/2.60 c applied globally : - - - 0 0.0 - - -
2.58/2.60 c applied locally : - - - 0 0.0 - - -
2.58/2.60 c Separators : Time Calls Cutoffs DomReds Cuts Conss
2.58/2.60 c cut pool : 0.00 0 - - 0 - (maximal pool size: 19)
2.58/2.60 c redcost : 0.00 1 0 0 0 0
2.58/2.60 c impliedbounds : 0.00 1 0 0 16 0
2.58/2.60 c intobj : 0.00 0 0 0 0 0
2.58/2.60 c cgmip : 0.00 0 0 0 0 0
2.58/2.60 c gomory : 0.70 1 0 0 0 0
2.58/2.60 c strongcg : 0.60 1 0 0 0 0
2.58/2.60 c cmir : 0.00 0 0 0 0 0
2.58/2.60 c flowcover : 0.00 0 0 0 0 0
2.58/2.60 c clique : 0.06 1 0 0 10 0
2.58/2.60 c zerohalf : 0.00 0 0 0 0 0
2.58/2.60 c mcf : 0.01 1 0 0 0 0
2.58/2.60 c rapidlearning : 0.20 1 0 0 0 73
2.58/2.60 c Pricers : Time Calls Vars
2.58/2.60 c problem variables: 0.00 0 0
2.58/2.60 c Branching Rules : Time Calls Cutoffs DomReds Cuts Conss Children
2.58/2.60 c pscost : 0.00 0 0 0 0 0 0
2.58/2.60 c inference : 0.00 0 0 0 0 0 0
2.58/2.60 c mostinf : 0.00 0 0 0 0 0 0
2.58/2.60 c leastinf : 0.00 0 0 0 0 0 0
2.58/2.60 c fullstrong : 0.00 0 0 0 0 0 0
2.58/2.60 c allfullstrong : 0.00 0 0 0 0 0 0
2.58/2.60 c random : 0.00 0 0 0 0 0 0
2.58/2.60 c relpscost : 0.00 0 0 0 0 0 0
2.58/2.60 c Primal Heuristics : Time Calls Found
2.58/2.60 c LP solutions : 0.00 - 0
2.58/2.60 c pseudo solutions : 0.00 - 0
2.58/2.60 c trivial : 0.00 1 0
2.58/2.60 c simplerounding : 0.00 0 0
2.58/2.60 c zirounding : 0.00 0 0
2.58/2.60 c rounding : 0.00 0 0
2.58/2.60 c shifting : 0.00 0 0
2.58/2.60 c intshifting : 0.00 0 0
2.58/2.60 c oneopt : 0.00 0 0
2.58/2.60 c twoopt : 0.00 0 0
2.58/2.60 c fixandinfer : 0.00 0 0
2.58/2.60 c feaspump : 0.00 0 0
2.58/2.60 c coefdiving : 0.00 0 0
2.58/2.60 c pscostdiving : 0.00 0 0
2.58/2.60 c fracdiving : 0.00 0 0
2.58/2.60 c veclendiving : 0.00 0 0
2.58/2.60 c intdiving : 0.00 0 0
2.58/2.60 c actconsdiving : 0.00 0 0
2.58/2.60 c objpscostdiving : 0.00 0 0
2.58/2.60 c rootsoldiving : 0.00 0 0
2.58/2.60 c linesearchdiving : 0.00 0 0
2.58/2.60 c guideddiving : 0.00 0 0
2.58/2.60 c octane : 0.00 0 0
2.58/2.60 c rens : 0.00 0 0
2.58/2.60 c rins : 0.00 0 0
2.58/2.60 c localbranching : 0.00 0 0
2.58/2.60 c mutation : 0.00 0 0
2.58/2.60 c crossover : 0.00 0 0
2.58/2.60 c dins : 0.00 0 0
2.58/2.60 c undercover : 0.00 0 0
2.58/2.60 c nlp : 0.00 0 0
2.58/2.60 c trysol : 0.00 0 0
2.58/2.60 c LP : Time Calls Iterations Iter/call Iter/sec
2.58/2.60 c primal LP : 0.00 0 0 0.00 -
2.58/2.60 c dual LP : 0.53 1 2432 2432.00 4620.89
2.58/2.60 c lex dual LP : 0.00 0 0 0.00 -
2.58/2.60 c barrier LP : 0.00 0 0 0.00 -
2.58/2.60 c diving/probing LP: 0.00 0 0 0.00 -
2.58/2.60 c strong branching : 0.00 0 0 0.00 -
2.58/2.60 c (at root node) : - 0 0 0.00 -
2.58/2.60 c conflict analysis: 0.00 0 0 0.00 -
2.58/2.60 c B&B Tree :
2.58/2.60 c number of runs : 1
2.58/2.60 c nodes : 1
2.58/2.60 c nodes (total) : 1
2.58/2.60 c nodes left : 0
2.58/2.60 c max depth : 0
2.58/2.60 c max depth (total): 0
2.58/2.60 c backtracks : 0 (0.0%)
2.58/2.60 c delayed cutoffs : 0
2.58/2.60 c repropagations : 0 (0 domain reductions, 0 cutoffs)
2.58/2.60 c avg switch length: 2.00
2.58/2.60 c switching time : 0.00
2.58/2.60 c Solution :
2.58/2.60 c Solutions found : 1 (1 improvements)
2.58/2.60 c First Solution : +0.00000000000000e+00 (in run 1, after 1 nodes, 2.50 seconds, depth 0, found by <trysol>)
2.58/2.60 c Primal Bound : +0.00000000000000e+00 (in run 1, after 1 nodes, 2.50 seconds, depth 0, found by <trysol>)
2.58/2.60 c Dual Bound : +0.00000000000000e+00
2.58/2.60 c Gap : 0.00 %
2.58/2.60 c Root Dual Bound : +0.00000000000000e+00
2.58/2.60 c Root Iterations : 2432
2.58/2.61 c Time complete: 2.6.