0.00/0.01 c SCIP version 1.2.1.3 [precision: 8 byte] [memory: block] [mode: optimized] [LP solver: SoPlex 1.4.2]
0.00/0.01 c Copyright (c) 2002-2010 Konrad-Zuse-Zentrum fuer Informationstechnik Berlin (ZIB)
0.00/0.01 c
0.00/0.01 c user parameter file <scip.set> not found - using default parameters
0.00/0.01 c reading problem <HOME/instance-3738603-1338727899.opb>
0.08/0.17 c original problem has 5756 variables (5756 bin, 0 int, 0 impl, 0 cont) and 25625 constraints
0.08/0.17 c problem read
0.08/0.17 c presolving settings loaded
0.18/0.22 c presolving:
0.18/0.27 c (round 1) 633 del vars, 1252 del conss, 32 chg bounds, 0 chg sides, 0 chg coeffs, 0 upgd conss, 53894 impls, 286 clqs
0.18/0.28 c (round 2) 736 del vars, 1633 del conss, 74 chg bounds, 0 chg sides, 3 chg coeffs, 0 upgd conss, 60929 impls, 285 clqs
0.18/0.29 c (round 3) 883 del vars, 4315 del conss, 162 chg bounds, 0 chg sides, 3 chg coeffs, 0 upgd conss, 61887 impls, 282 clqs
0.28/0.30 c (round 4) 1556 del vars, 8632 del conss, 239 chg bounds, 10 chg sides, 37 chg coeffs, 0 upgd conss, 62630 impls, 276 clqs
0.28/0.31 c (round 5) 1632 del vars, 9219 del conss, 282 chg bounds, 14 chg sides, 44 chg coeffs, 0 upgd conss, 63045 impls, 275 clqs
0.28/0.31 c (round 6) 1679 del vars, 9570 del conss, 294 chg bounds, 15 chg sides, 46 chg coeffs, 0 upgd conss, 63134 impls, 275 clqs
0.28/0.32 c (round 7) 1690 del vars, 9636 del conss, 294 chg bounds, 16 chg sides, 47 chg coeffs, 0 upgd conss, 63136 impls, 275 clqs
0.28/0.32 c (round 8) 1693 del vars, 9637 del conss, 294 chg bounds, 16 chg sides, 47 chg coeffs, 0 upgd conss, 63136 impls, 275 clqs
0.28/0.39 c (round 9) 1693 del vars, 11023 del conss, 294 chg bounds, 32 chg sides, 47 chg coeffs, 14555 upgd conss, 63136 impls, 275 clqs
0.39/0.41 c (round 10) 1695 del vars, 11032 del conss, 294 chg bounds, 32 chg sides, 47 chg coeffs, 14555 upgd conss, 63136 impls, 275 clqs
0.39/0.44 c (round 11) 1695 del vars, 11037 del conss, 294 chg bounds, 34 chg sides, 47 chg coeffs, 14555 upgd conss, 63136 impls, 275 clqs
0.39/0.45 c (round 12) 1696 del vars, 11038 del conss, 294 chg bounds, 34 chg sides, 47 chg coeffs, 14597 upgd conss, 63136 impls, 275 clqs
0.39/0.47 c (round 13) 1696 del vars, 11039 del conss, 294 chg bounds, 34 chg sides, 47 chg coeffs, 14598 upgd conss, 63136 impls, 275 clqs
0.59/0.63 c (round 14) 1746 del vars, 11039 del conss, 294 chg bounds, 34 chg sides, 47 chg coeffs, 14598 upgd conss, 79367 impls, 270 clqs
0.59/0.63 c (round 15) 1749 del vars, 11163 del conss, 294 chg bounds, 34 chg sides, 47 chg coeffs, 14598 upgd conss, 79502 impls, 270 clqs
0.59/0.64 c (round 16) 1753 del vars, 11184 del conss, 294 chg bounds, 34 chg sides, 47 chg coeffs, 14598 upgd conss, 79502 impls, 270 clqs
0.59/0.65 c (round 17) 1753 del vars, 11232 del conss, 294 chg bounds, 34 chg sides, 47 chg coeffs, 14598 upgd conss, 79502 impls, 270 clqs
0.79/0.83 c (round 18) 1803 del vars, 11232 del conss, 294 chg bounds, 34 chg sides, 47 chg coeffs, 14598 upgd conss, 83156 impls, 269 clqs
0.79/0.83 c (round 19) 1803 del vars, 11305 del conss, 294 chg bounds, 34 chg sides, 47 chg coeffs, 14598 upgd conss, 83156 impls, 269 clqs
0.79/0.85 c (round 20) 1803 del vars, 11341 del conss, 294 chg bounds, 34 chg sides, 47 chg coeffs, 14598 upgd conss, 83156 impls, 269 clqs
0.99/1.03 c (round 21) 1853 del vars, 11341 del conss, 294 chg bounds, 34 chg sides, 47 chg coeffs, 14598 upgd conss, 87873 impls, 268 clqs
0.99/1.03 c (round 22) 1855 del vars, 11410 del conss, 294 chg bounds, 34 chg sides, 47 chg coeffs, 14598 upgd conss, 87883 impls, 268 clqs
0.99/1.04 c (round 23) 1855 del vars, 11412 del conss, 294 chg bounds, 34 chg sides, 47 chg coeffs, 14598 upgd conss, 87883 impls, 268 clqs
0.99/1.06 c (round 24) 1855 del vars, 11444 del conss, 294 chg bounds, 34 chg sides, 47 chg coeffs, 14598 upgd conss, 87883 impls, 268 clqs
1.19/1.21 c (1.0s) probing: 1000/4060 (24.6%) - 27 fixings, 159 aggregations, 6357 implications, 0 bound changes
1.19/1.25 c (round 25) 1905 del vars, 11444 del conss, 294 chg bounds, 34 chg sides, 47 chg coeffs, 14598 upgd conss, 91173 impls, 267 clqs
1.19/1.26 c (round 26) 1909 del vars, 11498 del conss, 294 chg bounds, 34 chg sides, 47 chg coeffs, 14598 upgd conss, 91211 impls, 267 clqs
1.49/1.57 c (round 27) 1909 del vars, 12069 del conss, 294 chg bounds, 34 chg sides, 47 chg coeffs, 14598 upgd conss, 91211 impls, 267 clqs
1.49/1.58 c (round 28) 1912 del vars, 12075 del conss, 294 chg bounds, 34 chg sides, 47 chg coeffs, 14598 upgd conss, 91211 impls, 267 clqs
1.49/1.59 c (round 29) 1912 del vars, 12111 del conss, 294 chg bounds, 34 chg sides, 47 chg coeffs, 14598 upgd conss, 91211 impls, 267 clqs
1.69/1.75 c (round 30) 1962 del vars, 12111 del conss, 294 chg bounds, 34 chg sides, 47 chg coeffs, 14598 upgd conss, 93452 impls, 266 clqs
1.69/1.76 c (round 31) 1964 del vars, 12167 del conss, 294 chg bounds, 34 chg sides, 47 chg coeffs, 14598 upgd conss, 93486 impls, 266 clqs
1.69/1.77 c (round 32) 1964 del vars, 12169 del conss, 294 chg bounds, 34 chg sides, 47 chg coeffs, 14598 upgd conss, 93486 impls, 266 clqs
1.69/1.78 c (round 33) 1964 del vars, 12198 del conss, 294 chg bounds, 34 chg sides, 47 chg coeffs, 14598 upgd conss, 93486 impls, 266 clqs
1.89/1.94 c (round 34) 1964 del vars, 12262 del conss, 294 chg bounds, 34 chg sides, 47 chg coeffs, 14598 upgd conss, 93486 impls, 266 clqs
1.89/1.95 c (round 35) 1966 del vars, 12266 del conss, 294 chg bounds, 34 chg sides, 47 chg coeffs, 14598 upgd conss, 93486 impls, 266 clqs
1.99/2.02 c (round 36) 1966 del vars, 12291 del conss, 294 chg bounds, 34 chg sides, 47 chg coeffs, 14598 upgd conss, 93486 impls, 266 clqs
2.09/2.15 c (round 37) 2016 del vars, 12291 del conss, 294 chg bounds, 34 chg sides, 47 chg coeffs, 14598 upgd conss, 94694 impls, 265 clqs
2.09/2.15 c (round 38) 2021 del vars, 12356 del conss, 294 chg bounds, 34 chg sides, 47 chg coeffs, 14598 upgd conss, 94816 impls, 265 clqs
2.09/2.18 c (round 39) 2021 del vars, 12377 del conss, 294 chg bounds, 34 chg sides, 47 chg coeffs, 14598 upgd conss, 94816 impls, 265 clqs
2.09/2.19 c (round 40) 2021 del vars, 12398 del conss, 294 chg bounds, 34 chg sides, 47 chg coeffs, 14598 upgd conss, 94816 impls, 265 clqs
2.29/2.34 c (round 41) 2071 del vars, 12398 del conss, 294 chg bounds, 34 chg sides, 47 chg coeffs, 14598 upgd conss, 95676 impls, 265 clqs
2.49/2.54 c (round 42) 2075 del vars, 12670 del conss, 294 chg bounds, 34 chg sides, 47 chg coeffs, 14598 upgd conss, 95746 impls, 265 clqs
2.49/2.56 c (round 43) 2076 del vars, 12675 del conss, 294 chg bounds, 34 chg sides, 47 chg coeffs, 14598 upgd conss, 95746 impls, 265 clqs
2.49/2.57 c (round 44) 2076 del vars, 12697 del conss, 294 chg bounds, 34 chg sides, 47 chg coeffs, 14598 upgd conss, 95746 impls, 265 clqs
2.59/2.61 c (2.4s) probing: 2000/4060 (49.3%) - 52 fixings, 309 aggregations, 8400 implications, 0 bound changes
2.69/2.70 c (round 45) 2126 del vars, 12697 del conss, 294 chg bounds, 34 chg sides, 47 chg coeffs, 14598 upgd conss, 96336 impls, 264 clqs
2.69/2.71 c (round 46) 2128 del vars, 12756 del conss, 294 chg bounds, 34 chg sides, 47 chg coeffs, 14598 upgd conss, 96344 impls, 264 clqs
2.69/2.76 c (round 47) 2128 del vars, 12779 del conss, 294 chg bounds, 34 chg sides, 47 chg coeffs, 14598 upgd conss, 96344 impls, 264 clqs
2.69/2.77 c (round 48) 2128 del vars, 12807 del conss, 294 chg bounds, 34 chg sides, 47 chg coeffs, 14598 upgd conss, 96344 impls, 264 clqs
2.69/2.79 c (round 49) 2128 del vars, 12813 del conss, 294 chg bounds, 34 chg sides, 47 chg coeffs, 14598 upgd conss, 96344 impls, 264 clqs
2.89/2.90 c (round 50) 2178 del vars, 12813 del conss, 294 chg bounds, 34 chg sides, 47 chg coeffs, 14598 upgd conss, 97182 impls, 264 clqs
2.89/2.91 c (round 51) 2181 del vars, 12880 del conss, 294 chg bounds, 34 chg sides, 47 chg coeffs, 14598 upgd conss, 97302 impls, 264 clqs
2.89/2.95 c (round 52) 2181 del vars, 12893 del conss, 294 chg bounds, 34 chg sides, 47 chg coeffs, 14598 upgd conss, 97302 impls, 264 clqs
2.89/2.96 c (round 53) 2181 del vars, 12924 del conss, 294 chg bounds, 34 chg sides, 47 chg coeffs, 14598 upgd conss, 97302 impls, 264 clqs
2.99/3.07 c (round 54) 2231 del vars, 12924 del conss, 294 chg bounds, 34 chg sides, 47 chg coeffs, 14598 upgd conss, 97712 impls, 263 clqs
3.19/3.22 c (round 55) 2234 del vars, 13102 del conss, 294 chg bounds, 34 chg sides, 47 chg coeffs, 14598 upgd conss, 97724 impls, 263 clqs
3.19/3.23 c (round 56) 2236 del vars, 13110 del conss, 294 chg bounds, 34 chg sides, 47 chg coeffs, 14598 upgd conss, 97724 impls, 263 clqs
3.19/3.24 c (round 57) 2237 del vars, 13113 del conss, 294 chg bounds, 34 chg sides, 47 chg coeffs, 14598 upgd conss, 97724 impls, 263 clqs
3.19/3.25 c (round 58) 2238 del vars, 13115 del conss, 294 chg bounds, 34 chg sides, 47 chg coeffs, 14598 upgd conss, 97724 impls, 263 clqs
3.19/3.28 c (round 59) 2238 del vars, 13161 del conss, 294 chg bounds, 34 chg sides, 47 chg coeffs, 14598 upgd conss, 97724 impls, 263 clqs
3.39/3.45 c (3.3s) probing: 3000/4060 (73.9%) - 83 fixings, 466 aggregations, 9965 implications, 0 bound changes
3.39/3.45 c (round 60) 2288 del vars, 13161 del conss, 294 chg bounds, 34 chg sides, 47 chg coeffs, 14598 upgd conss, 99065 impls, 263 clqs
3.49/3.58 c (round 61) 2289 del vars, 13232 del conss, 294 chg bounds, 34 chg sides, 47 chg coeffs, 14598 upgd conss, 99067 impls, 263 clqs
3.49/3.58 c (round 62) 2289 del vars, 13260 del conss, 294 chg bounds, 34 chg sides, 47 chg coeffs, 14598 upgd conss, 99067 impls, 263 clqs
3.49/3.58 c (round 63) 2289 del vars, 13298 del conss, 294 chg bounds, 34 chg sides, 47 chg coeffs, 14598 upgd conss, 99067 impls, 263 clqs
3.49/3.58 c (round 64) 2289 del vars, 13301 del conss, 294 chg bounds, 34 chg sides, 47 chg coeffs, 14598 upgd conss, 99067 impls, 263 clqs
3.49/3.58 c (round 65) 2289 del vars, 13308 del conss, 294 chg bounds, 34 chg sides, 47 chg coeffs, 14598 upgd conss, 99067 impls, 263 clqs
3.69/3.72 c (round 66) 2339 del vars, 13308 del conss, 294 chg bounds, 34 chg sides, 47 chg coeffs, 14598 upgd conss, 101223 impls, 263 clqs
3.69/3.73 c (round 67) 2347 del vars, 13417 del conss, 294 chg bounds, 34 chg sides, 47 chg coeffs, 14598 upgd conss, 101351 impls, 263 clqs
3.99/4.01 c (round 68) 2347 del vars, 13955 del conss, 294 chg bounds, 34 chg sides, 47 chg coeffs, 14598 upgd conss, 101351 impls, 263 clqs
3.99/4.02 c (round 69) 2352 del vars, 13958 del conss, 294 chg bounds, 34 chg sides, 47 chg coeffs, 14598 upgd conss, 101351 impls, 263 clqs
3.99/4.02 c (round 70) 2352 del vars, 13977 del conss, 294 chg bounds, 34 chg sides, 47 chg coeffs, 14598 upgd conss, 101351 impls, 263 clqs
4.19/4.24 c (round 71) 2402 del vars, 13977 del conss, 294 chg bounds, 34 chg sides, 47 chg coeffs, 14598 upgd conss, 104799 impls, 263 clqs
4.19/4.25 c (round 72) 2444 del vars, 14084 del conss, 294 chg bounds, 34 chg sides, 47 chg coeffs, 14598 upgd conss, 105385 impls, 263 clqs
4.49/4.58 c (round 73) 2444 del vars, 14661 del conss, 294 chg bounds, 34 chg sides, 47 chg coeffs, 14598 upgd conss, 105385 impls, 263 clqs
4.59/4.62 c (round 74) 2446 del vars, 14681 del conss, 294 chg bounds, 34 chg sides, 47 chg coeffs, 14598 upgd conss, 105385 impls, 263 clqs
4.59/4.64 c (round 75) 2447 del vars, 14711 del conss, 294 chg bounds, 34 chg sides, 47 chg coeffs, 14598 upgd conss, 105385 impls, 263 clqs
4.59/4.64 c (round 76) 2447 del vars, 14715 del conss, 294 chg bounds, 34 chg sides, 47 chg coeffs, 14598 upgd conss, 105385 impls, 263 clqs
4.69/4.74 c (4.6s) probing: 4000/4060 (98.5%) - 202 fixings, 486 aggregations, 14590 implications, 0 bound changes
4.69/4.75 c (round 77) 2485 del vars, 14715 del conss, 294 chg bounds, 34 chg sides, 47 chg coeffs, 14598 upgd conss, 107895 impls, 263 clqs
4.69/4.76 c (round 78) 2524 del vars, 14791 del conss, 294 chg bounds, 34 chg sides, 47 chg coeffs, 14598 upgd conss, 108013 impls, 263 clqs
4.99/5.05 c (round 79) 2524 del vars, 15354 del conss, 294 chg bounds, 34 chg sides, 47 chg coeffs, 14598 upgd conss, 108013 impls, 263 clqs
4.99/5.05 c (round 80) 2534 del vars, 15371 del conss, 294 chg bounds, 34 chg sides, 47 chg coeffs, 14598 upgd conss, 108013 impls, 263 clqs
4.99/5.06 c presolving (81 rounds):
4.99/5.06 c 2534 deleted vars, 15371 deleted constraints, 294 tightened bounds, 0 added holes, 34 changed sides, 47 changed coefficients
4.99/5.06 c 108013 implications, 263 cliques
4.99/5.06 c presolved problem has 3222 variables (3222 bin, 0 int, 0 impl, 0 cont) and 10258 constraints
4.99/5.06 c 5958 constraints of type <setppc>
4.99/5.06 c 4300 constraints of type <logicor>
4.99/5.06 c transformed objective value is always integral (scale: 1)
4.99/5.06 c Presolving Time: 4.85
4.99/5.06 c - non default parameters ----------------------------------------------------------------------
4.99/5.06 c # SCIP version 1.2.1.3
4.99/5.06 c
4.99/5.06 c # frequency for displaying node information lines
4.99/5.06 c # [type: int, range: [-1,2147483647], default: 100]
4.99/5.06 c display/freq = 10000
4.99/5.06 c
4.99/5.06 c # maximal time in seconds to run
4.99/5.06 c # [type: real, range: [0,1.79769313486232e+308], default: 1e+20]
4.99/5.06 c limits/time = 1789.83
4.99/5.06 c
4.99/5.06 c # maximal memory usage in MB; reported memory usage is lower than real memory usage!
4.99/5.06 c # [type: real, range: [0,1.79769313486232e+308], default: 1e+20]
4.99/5.06 c limits/memory = 13950
4.99/5.06 c
4.99/5.06 c # default clock type (1: CPU user seconds, 2: wall clock time)
4.99/5.06 c # [type: int, range: [1,2], default: 1]
4.99/5.06 c timing/clocktype = 2
4.99/5.06 c
4.99/5.06 c # should presolving try to simplify inequalities
4.99/5.06 c # [type: bool, range: {TRUE,FALSE}, default: FALSE]
4.99/5.06 c constraints/linear/simplifyinequalities = TRUE
4.99/5.06 c
4.99/5.06 c # add initial coupling inequalities as linear constraints, if 'addCoupling' is true
4.99/5.06 c # [type: bool, range: {TRUE,FALSE}, default: FALSE]
4.99/5.06 c constraints/indicator/addCouplingCons = TRUE
4.99/5.06 c
4.99/5.06 c # should presolving try to simplify knapsacks
4.99/5.06 c # [type: bool, range: {TRUE,FALSE}, default: FALSE]
4.99/5.06 c constraints/knapsack/simplifyinequalities = TRUE
4.99/5.06 c
4.99/5.06 c # frequency for calling separator <rapidlearning> (-1: never, 0: only in root node)
4.99/5.06 c # [type: int, range: [-1,2147483647], default: -1]
4.99/5.06 c separating/rapidlearning/freq = 0
4.99/5.06 c
4.99/5.06 c -----------------------------------------------------------------------------------------------
4.99/5.06 c start solving
4.99/5.06 c
5.08/5.12 c time | node | left |LP iter|LP it/n| mem |mdpt |frac |vars |cons |cols |rows |cuts |confs|strbr| dualbound | primalbound | gap
5.08/5.12 c 4.9s| 1 | 0 | 353 | - | 33M| 0 | 111 |3222 | 10k|3222 |9538 | 0 | 0 | 0 | 1.865556e+03 | -- | Inf
5.08/5.13 o 1888
5.08/5.13 c s 5.0s| 1 | 0 | 353 | - | 34M| 0 | 111 |3222 | 10k|3222 |9538 | 0 | 0 | 0 | 1.865556e+03 | 1.888000e+03 | 1.20%
5.39/5.45 c 5.3s| 1 | 0 | 459 | - | 32M| 0 | 84 |3222 |8765 |3222 |7975 | 127 | 0 | 0 | 1.875993e+03 | 1.888000e+03 | 0.64%
5.79/5.88 c 5.7s| 1 | 0 | 516 | - | 31M| 0 | 64 |3222 |6286 |3222 |5763 | 216 | 0 | 0 | 1.878083e+03 | 1.888000e+03 | 0.53%
5.98/6.05 c 5.9s| 1 | 0 | 573 | - | 31M| 0 | 58 |3222 |6286 |3222 |5779 | 232 | 0 | 0 | 1.879250e+03 | 1.888000e+03 | 0.47%
6.18/6.21 c 6.0s| 1 | 0 | 630 | - | 31M| 0 | 22 |3222 |6286 |3222 |5794 | 247 | 0 | 0 | 1.881167e+03 | 1.888000e+03 | 0.36%
6.28/6.35 c 6.2s| 1 | 0 | 667 | - | 31M| 0 | 13 |3222 |6258 |3222 |5764 | 262 | 0 | 0 | 1.882000e+03 | 1.888000e+03 | 0.32%
6.38/6.47 c 6.3s| 1 | 0 | 682 | - | 31M| 0 | 22 |3222 |6258 |3222 |5770 | 268 | 0 | 0 | 1.882000e+03 | 1.888000e+03 | 0.32%
6.38/6.48 o 1885
6.38/6.48 c s 6.3s| 1 | 0 | 682 | - | 31M| 0 | 22 |3222 |6258 |3222 |5770 | 268 | 0 | 0 | 1.882000e+03 | 1.885000e+03 | 0.16%
6.59/6.61 c 6.4s| 1 | 0 | 683 | - | 31M| 0 | 0 |3222 |6180 |3222 |5650 | 271 | 0 | 0 | 1.882000e+03 | 1.885000e+03 | 0.16%
6.59/6.61 o 1882
6.59/6.61 c * 6.4s| 1 | 0 | 683 | - | 31M| 0 | - |3222 |6180 |3222 |5650 | 271 | 0 | 0 | 1.882000e+03 | 1.882000e+03 | 0.00%
6.59/6.61 c
6.59/6.61 c SCIP Status : problem is solved [optimal solution found]
6.59/6.61 c Solving Time (sec) : 6.44
6.59/6.61 c Solving Nodes : 1
6.59/6.61 c Primal Bound : +1.88200000000000e+03 (3 solutions)
6.59/6.61 c Dual Bound : +1.88200000000000e+03
6.59/6.61 c Gap : 0.00 %
6.59/6.63 s OPTIMUM FOUND
6.59/6.63 v -x3619 -x3618 -x3617 -x3616 -x3615 -x3614 -x3613 -x3612 -x3611 -x3610 -x3609 -x3608 -x3607 -x3606 -x3605 -x3604 -x3603 -x3602 -x3601
6.59/6.63 v -x3600 -x3599 -x3598 -x3597 -x3596 -x3595 -x3594 -x3593 -x3592 -x3591 -x3590 -x3589 -x3588 -x3587 x3586 -x3585 -x3584 -x3583
6.59/6.63 v -x3582 -x3581 -x3580 -x3579 -x3578 -x3577 -x3576 -x3575 -x3574 -x3573 -x3572 -x3571 -x3570 -x3569 -x3568 -x3567 -x3566
6.59/6.63 v -x3565 -x3564 -x3563 -x3562 -x3561 -x3560 -x3559 -x3558 -x3557 -x3556 -x3555 -x3554 -x3553 -x3552 -x3551 -x3550 -x3549 -x3548
6.59/6.63 v -x3547 -x3546 -x3545 -x3544 -x3543 -x3542 -x3541 -x3540 -x3539 -x3538 -x3537 -x3536 -x3535 -x3534 -x3533 -x3532 -x3531 -x3530
6.59/6.63 v -x3529 -x3528 -x3527 -x3526 -x3525 -x3524 -x3523 -x3522 -x3521 -x3520 -x3519 -x3518 -x3517 -x3516 -x3515 -x3514 -x3513 -x3512
6.59/6.63 v -x3511 -x3510 -x3509 -x3508 -x3507 -x3506 -x3505 -x3504 -x3503 -x3502 -x3501 -x3500 -x3499 -x3498 -x3497 -x3496 -x3495 -x3494
6.59/6.63 v -x3493 -x3492 -x3491 -x3490 -x3489 -x3488 -x3487 -x3486 -x3485 -x3484 -x3483 -x3482 -x3481 -x3480 -x3479 -x3478 -x3477 -x3476
6.59/6.63 v -x3475 -x3474 -x3473 -x3472 -x3471 -x3470 -x3469 -x3468 -x3467 -x3466 -x3465 -x3464 -x3463 -x3462 -x3461 -x3460 -x3459 -x3458
6.59/6.63 v -x3457 -x3456 -x3455 -x3454 -x3453 -x3452 -x3451 -x3450 -x3449 -x3448 -x3447 -x3446 -x3445 -x3444 -x3443 -x3442 -x3441
6.59/6.63 v -x3440 -x3439 -x3438 -x3437 -x3436 -x3435 -x3434 -x3433 -x3432 -x3431 -x3430 -x3429 -x3428 -x3427 -x3426 -x3425 -x3424 -x3423
6.59/6.63 v -x3422 -x3421 -x3420 -x3419 -x3418 -x3417 -x3416 -x3415 -x3414 -x3413 -x3412 -x3411 -x3410 -x3409 -x3408 -x3407 -x3406 -x3405
6.59/6.63 v -x3404 -x3403 -x3402 -x3401 -x3400 -x3399 -x3398 -x3397 -x3396 -x3395 -x3394 -x3393 -x3392 -x3391 -x3390 -x3389 -x3388 -x3387
6.59/6.63 v -x3386 -x3385 -x3384 -x3383 -x3382 -x3381 -x3380 -x3379 -x3378 -x3377 -x3376 -x3375 -x3374 -x3373 -x3372 -x3371 -x3370 -x3369
6.59/6.63 v -x3368 -x3367 -x3366 -x3365 -x3364 -x3363 -x3362 -x3361 -x3360 -x3359 -x3358 -x3357 -x3356 -x3355 -x3354 -x3353 -x3352 -x3351
6.59/6.63 v -x3350 -x3349 -x3348 -x3347 -x3346 -x3345 -x3344 -x3343 -x3342 -x3341 -x3340 -x3339 -x3338 -x3337 -x3336 -x3335 -x3334 -x3333
6.59/6.63 v -x3332 -x3331 -x3330 -x3329 -x3328 -x3327 -x3326 -x3325 -x3324 -x3323 -x3322 -x3321 -x3320 -x3319 -x3318 -x3317 -x3316
6.59/6.63 v -x3315 -x3314 -x3313 -x3312 -x3311 -x3310 -x3309 -x3308 -x3307 -x3306 -x3305 -x3304 -x3303 -x3302 -x3301 -x3300 -x3299 -x3298
6.59/6.63 v -x3297 -x3296 -x3295 -x3294 -x3293 -x3292 -x3291 -x3290 -x3289 -x3288 -x3287 -x3286 -x3285 -x3284 -x3283 -x3282 -x3281 -x3280
6.59/6.63 v -x3279 -x3278 -x3277 -x3276 -x3275 -x3274 -x3273 -x3272 x3271 -x3270 -x3269 -x3268 -x3267 -x3266 -x3265 -x3264 -x3263 -x3262
6.59/6.63 v -x3261 -x3260 -x3259 -x3258 -x3257 -x3256 -x3255 -x3254 -x3253 -x3252 -x3251 -x3250 -x3249 -x3248 -x3247 -x3246 -x3245 -x3244
6.59/6.63 v -x3243 -x3242 -x3241 -x3240 -x3239 -x3238 -x3237 -x3236 -x3235 -x3234 -x3233 -x3232 -x3231 -x3230 -x3229 -x3228 -x3227 -x3226
6.59/6.63 v -x3225 -x3224 -x3223 -x3222 -x3221 -x3220 -x3219 -x3218 -x3217 -x3216 -x3215 -x3214 -x3213 -x3212 -x3211 -x3210 -x3209 -x3208
6.59/6.63 v -x3207 -x3206 -x3205 -x3204 -x3203 -x3202 -x3201 -x3200 -x3199 -x3198 -x3197 -x3196 -x3195 -x3194 -x3193 -x3192 -x3191 -x3190
6.59/6.63 v -x3189 -x3188 -x3187 -x3186 -x3185 -x3184 -x3183 -x3182 -x3181 -x3180 -x3179 -x3178 -x3177 -x3176 -x3175 -x3174 -x3173
6.59/6.63 v -x3172 -x3171 -x3170 -x3169 -x3168 -x3167 -x3166 -x3165 -x3164 -x3163 x3162 -x3161 -x3160 -x3159 -x3158 -x3157 -x3156 -x3155
6.59/6.63 v -x3154 -x3153 -x3152 -x3151 -x3150 -x3149 -x3148 -x3147 -x3146 -x3145 -x3144 -x3143 -x3142 -x3141 -x3140 -x3139 -x3138 -x3137
6.59/6.63 v -x3136 -x3135 -x3134 -x3133 -x3132 -x3131 -x3130 -x3129 -x3128 -x3127 -x3126 -x3125 -x3124 -x3123 -x3122 -x3121 -x3120 -x3119
6.59/6.63 v -x3118 -x3117 -x3116 -x3115 -x3114 -x3113 -x3112 -x3111 -x3110 -x3109 -x3108 -x3107 -x3106 -x3105 -x3104 -x3103 -x3102 -x3101
6.59/6.63 v -x3100 -x3099 -x3098 -x3097 -x3096 -x3095 -x3094 -x3093 -x3092 -x3091 -x3090 -x3089 -x3088 -x3087 -x3086 -x3085 -x3084 -x3083
6.59/6.63 v -x3082 -x3081 -x3080 -x3079 -x3078 -x3077 -x3076 -x3075 -x3074 -x3073 -x3072 -x3071 -x3070 -x3069 -x3068 x3067 x3066 -x3065
6.59/6.63 v -x3064 -x3063 -x3062 -x3061 x3060 -x3059 -x3058 -x3057 x3056 -x3055 x3054 -x3053 -x3052 -x3051 x3050 x3049 -x3048 -x3047 -x3046
6.59/6.63 v x3045 -x3044 x3043 -x3042 -x3041 -x3040 -x3039 -x3038 -x3037 -x3036 -x3035 -x3034 -x3033 -x3032 -x3031 -x3030 -x3029 -x3028
6.59/6.63 v x3027 -x3026 x3025 -x3024 -x3023 -x3022 x3021 -x3020 -x3019 -x3018 x3017 -x3016 -x3015 -x3014 -x3013 -x3012 -x3011 -x3010
6.59/6.63 v -x3009 -x3008 x3007 x3006 x3005 x3004 x3003 -x3002 -x3001 x3000 -x2999 -x2998 -x2997 x2996 -x2995 -x2994 -x2993 -x2992 x2991
6.59/6.63 v -x2990 x2989 -x2988 -x2987 -x2986 -x2985 -x2984 -x2983 -x2982 -x2981 -x2980 -x2979 -x2978 -x2977 -x2976 -x2975 -x2974 -x2973
6.59/6.63 v x2972 -x2971 -x2970 x2969 -x2968 x2967 x2966 -x2965 x2964 -x2963 x2962 -x2961 x2960 -x2959 x2958 x2957 -x2956 x2955 x2954 x2953
6.59/6.63 v -x2952 x2951 -x2950 x2949 -x2948 x2947 -x2946 -x2945 x2944 -x2943 -x2942 -x2941 x2940 -x2939 -x2938 -x2937 x2936 -x2935
6.59/6.63 v x2934 -x2933 -x2932 -x2931 -x2930 -x2929 -x2928 -x2927 x2926 x2925 -x2924 -x2923 -x2922 x2921 -x2920 x2919 -x2918 -x2917 -x2916
6.59/6.63 v x2915 -x2914 x2913 -x2912 x2911 -x2910 x2909 -x2908 -x2907 -x2906 x2905 -x2904 -x2903 -x2902 -x2901 -x2900 -x2899 x2898 -x2897
6.59/6.63 v -x2896 -x2895 -x2894 -x2893 -x2892 -x2891 x2890 -x2889 x2888 -x2887 -x2886 -x2885 -x2884 x2883 -x2882 -x2881 -x2880 -x2879
6.59/6.63 v -x2878 x2877 -x2876 -x2875 -x2874 -x2873 x2872 -x2871 -x2870 -x2869 -x2868 -x2867 x2866 -x2865 x2864 -x2863 -x2862 x2861 -x2860
6.59/6.63 v x2859 -x2858 -x2857 -x2856 x2855 -x2854 -x2853 -x2852 -x2851 x2850 -x2849 -x2848 -x2847 x2846 -x2845 -x2844 -x2843 x2842
6.59/6.63 v x2841 -x2840 x2839 x2838 -x2837 -x2836 -x2835 x2834 x2833 -x2832 x2831 -x2830 -x2829 -x2828 -x2827 x2826 -x2825 -x2824 -x2823
6.59/6.63 v -x2822 -x2821 -x2820 -x2819 -x2818 x2817 -x2816 -x2815 -x2814 -x2813 -x2812 x2811 -x2810 -x2809 -x2808 -x2807 -x2806 -x2805
6.59/6.63 v -x2804 -x2803 -x2802 -x2801 -x2800 -x2799 -x2798 -x2797 -x2796 -x2795 x2794 x2793 -x2792 -x2791 x2790 -x2789 x2788 -x2787 -x2786
6.59/6.63 v x2785 x2784 x2783 x2782 -x2781 -x2780 -x2779 x2778 x2777 -x2776 -x2775 -x2774 -x2773 x2772 -x2771 -x2770 x2769 x2768 -x2767
6.59/6.63 v -x2766 x2765 -x2764 -x2763 -x2762 -x2761 -x2760 x2759 -x2758 -x2757 x2756 -x2755 -x2754 -x2753 -x2752 x2751 -x2750 -x2749
6.59/6.63 v x2748 -x2747 x2746 -x2745 -x2744 -x2743 -x2742 x2741 -x2740 -x2739 -x2738 -x2737 x2736 -x2735 -x2734 -x2733 x2732 -x2731 -x2730
6.59/6.63 v -x2729 -x2728 -x2727 -x2726 -x2725 -x2724 -x2723 -x2722 x2721 x2720 -x2719 -x2718 -x2717 -x2716 x2715 x2714 -x2713 x2712
6.59/6.63 v -x2711 -x2710 -x2709 -x2708 -x2707 -x2706 -x2705 -x2704 -x2703 -x2702 -x2701 -x2700 -x2699 -x2698 -x2697 -x2696 -x2695 -x2694
6.59/6.63 v -x2693 -x2692 -x2691 -x2690 -x2689 -x2688 x2687 -x2686 -x2685 -x2684 x2683 x2682 -x2681 -x2680 x2679 -x2678 x2677 -x2676 -x2675
6.59/6.63 v -x2674 -x2673 -x2672 -x2671 x2670 -x2669 x2668 -x2667 -x2666 -x2665 -x2664 -x2663 -x2662 -x2661 -x2660 -x2659 -x2658 -x2657
6.59/6.63 v -x2656 x2655 -x2654 x2653 -x2652 -x2651 x2650 -x2649 x2648 -x2647 x2646 x2645 -x2644 -x2643 -x2642 -x2641 -x2640 -x2639 -x2638
6.59/6.63 v -x2637 -x2636 x2635 -x2634 x2633 -x2632 x2631 -x2630 -x2629 x2628 -x2627 x2626 -x2625 -x2624 -x2623 -x2622 -x2621 -x2620
6.59/6.63 v -x2619 -x2618 x2617 -x2616 x2615 -x2614 x2613 -x2612 x2611 -x2610 -x2609 x2608 -x2607 x2606 x2605 -x2604 x2603 -x2602 x2601
6.59/6.63 v -x2600 -x2599 -x2598 -x2597 -x2596 -x2595 -x2594 -x2593 -x2592 -x2591 x2590 x2589 x2588 -x2587 -x2586 -x2585 -x2584 x2583 -x2582
6.59/6.63 v x2581 x2580 -x2579 -x2578 -x2577 -x2576 -x2575 -x2574 -x2573 x2572 -x2571 x2570 -x2569 x2568 -x2567 -x2566 -x2565 -x2564
6.59/6.63 v x2563 x2562 x2561 -x2560 -x2559 -x2558 -x2557 -x2556 -x2555 -x2554 x2553 x2552 -x2551 -x2550 -x2549 -x2548 x2547 -x2546 -x2545
6.59/6.63 v -x2544 -x2543 -x2542 x2541 x2540 -x2539 -x2538 -x2537 -x2536 x2535 -x2534 x2533 -x2532 -x2531 -x2530 -x2529 -x2528 -x2527
6.59/6.63 v -x2526 -x2525 -x2524 -x2523 -x2522 x2521 -x2520 -x2519 -x2518 x2517 -x2516 -x2515 -x2514 x2513 x2512 -x2511 -x2510 -x2509 -x2508
6.59/6.63 v -x2507 x2506 -x2505 x2504 -x2503 x2502 x2501 -x2500 -x2499 -x2498 -x2497 -x2496 -x2495 x2494 -x2493 x2492 -x2491 -x2490 -x2489
6.59/6.63 v -x2488 x2487 -x2486 x2485 -x2484 -x2483 -x2482 -x2481 -x2480 -x2479 -x2478 x2477 x2476 -x2475 -x2474 -x2473 x2472 -x2471
6.59/6.63 v -x2470 x2469 x2468 -x2467 -x2466 x2465 -x2464 x2463 -x2462 -x2461 -x2460 -x2459 x2458 x2457 -x2456 -x2455 -x2454 -x2453 x2452
6.59/6.63 v -x2451 -x2450 -x2449 -x2448 x2447 x2446 -x2445 -x2444 x2443 x2442 -x2441 -x2440 -x2439 -x2438 -x2437 -x2436 -x2435 -x2434
6.59/6.63 v -x2433 -x2432 x2431 x2430 -x2429 -x2428 x2427 -x2426 -x2425 x2424 -x2423 -x2422 x2421 -x2420 -x2419 -x2418 -x2417 -x2416 -x2415
6.59/6.63 v -x2414 -x2413 x2412 x2411 -x2410 x2409 -x2408 x2407 -x2406 -x2405 -x2404 x2403 -x2402 -x2401 x2400 -x2399 -x2398 -x2397 x2396
6.59/6.63 v -x2395 x2394 -x2393 x2392 -x2391 -x2390 -x2389 -x2388 -x2387 -x2386 -x2385 -x2384 -x2383 x2382 x2381 -x2380 -x2379 -x2378
6.59/6.63 v -x2377 -x2376 -x2375 x2374 -x2373 -x2372 -x2371 x2370 x2369 -x2368 -x2367 x2366 -x2365 -x2364 -x2363 -x2362 -x2361 -x2360 -x2359
6.59/6.63 v -x2358 -x2357 x2356 -x2355 -x2354 -x2353 -x2352 -x2351 x2350 -x2349 x2348 -x2347 -x2346 x2345 -x2344 -x2343 -x2342 -x2341
6.59/6.63 v -x2340 -x2339 -x2338 -x2337 -x2336 -x2335 -x2334 -x2333 x2332 x2331 x2330 -x2329 -x2328 x2327 -x2326 -x2325 -x2324 -x2323 -x2322
6.59/6.63 v -x2321 -x2320 -x2319 -x2318 -x2317 -x2316 -x2315 x2314 -x2313 -x2312 -x2311 -x2310 x2309 -x2308 -x2307 x2306 -x2305 x2304
6.59/6.63 v -x2303 -x2302 x2301 x2300 -x2299 x2298 x2297 -x2296 -x2295 -x2294 -x2293 -x2292 x2291 -x2290 x2289 -x2288 x2287 -x2286 x2285
6.59/6.63 v -x2284 -x2283 -x2282 -x2281 -x2280 x2279 x2278 x2277 x2276 -x2275 x2274 -x2273 -x2272 x2271 x2270 -x2269 -x2268 x2267 x2266
6.59/6.63 v -x2265 x2264 -x2263 -x2262 -x2261 -x2260 x2259 -x2258 -x2257 -x2256 -x2255 -x2254 -x2253 x2252 -x2251 -x2250 x2249 -x2248 -x2247
6.59/6.63 v -x2246 -x2245 -x2244 -x2243 -x2242 -x2241 -x2240 -x2239 x2238 -x2237 x2236 x2235 x2234 x2233 x2232 -x2231 x2230 -x2229
6.59/6.63 v -x2228 x2227 -x2226 x2225 -x2224 x2223 -x2222 x2221 x2220 -x2219 -x2218 x2217 x2216 -x2215 -x2214 x2213 -x2212 -x2211 -x2210
6.59/6.63 v x2209 -x2208 -x2207 -x2206 -x2205 x2204 -x2203 -x2202 x2201 -x2200 -x2199 x2198 -x2197 -x2196 -x2195 x2194 -x2193 x2192 x2191
6.59/6.63 v -x2190 -x2189 -x2188 x2187 x2186 -x2185 -x2184 -x2183 -x2182 -x2181 -x2180 -x2179 -x2178 x2177 -x2176 -x2175 -x2174 x2173 x2172
6.59/6.63 v -x2171 -x2170 -x2169 -x2168 -x2166 x2167 x2165 x2164 -x2163 -x2162 -x2161 x2160 -x2159 -x2158 -x2157 -x2156 -x2155 x2154
6.59/6.63 v -x2153 -x2152 -x2151 -x2150 -x2149 -x2148 x2147 -x2146 x2145 x2144 -x2143 x2142 -x2141 x2140 x2139 -x2138 -x2137 -x2136 -x2135
6.59/6.63 v -x2134 x2133 x2132 -x2131 -x2130 -x2129 x2128 x2127 -x2126 -x2125 x2124 -x2123 -x2122 -x2121 x2120 -x2119 -x2118 -x2117 x2116
6.59/6.63 v -x2115 -x2114 x2113 -x2112 -x2111 x2110 -x2109 -x2108 -x2107 -x2106 -x2105 -x2104 -x2103 x2102 -x2101 x2100 x2099 -x2098 -x2097
6.59/6.63 v x2096 x2095 -x2094 x2093 -x2092 -x2091 -x2090 -x2089 x2088 -x2087 x2086 -x2085 -x2084 x2083 x2082 -x2081 -x2080 -x2079
6.59/6.63 v -x2078 x2077 -x2076 -x2075 x2074 -x2073 -x2072 x2071 -x2070 -x2069 -x2068 -x2067 x2066 -x2065 -x2064 -x2063 -x2062 -x2061 x2060
6.59/6.63 v -x2059 x2058 x2057 -x2056 x2055 x2054 -x2053 -x2052 x2051 -x2050 x2049 -x2048 -x2047 -x2046 x2045 -x2044 -x2043 -x2042 -x2041
6.59/6.63 v x2040 -x2039 -x2038 -x2037 -x2036 -x2035 -x2034 x2033 x2032 x2031 -x2030 -x2029 -x2028 -x2027 -x2026 x2025 -x2024 x2023 -x2022
6.59/6.63 v x2021 -x2020 x2019 -x2018 -x2017 -x2016 -x2015 x2014 x2013 -x2012 x2011 -x2010 -x2009 -x2008 -x2007 x2006 x2005 -x2004
6.59/6.63 v x2003 -x2002 x2001 -x2000 x1999 -x1998 x1997 x1996 -x1995 x1994 x1993 -x1992 -x1991 x1990 x1989 -x1988 -x1987 -x1986 x1985 -x1984
6.59/6.63 v x1983 x1982 -x1981 -x1980 x1979 -x1978 -x1977 -x1976 -x1975 -x1974 -x1973 -x1972 -x1971 -x1970 x1969 -x1968 x1967 -x1966
6.59/6.63 v x1965 x1964 x1963 -x1962 -x1961 -x1960 x1959 -x1958 -x1957 -x1956 -x1955 -x1954 -x1953 -x1952 -x1951 -x1950 -x1949 x1948 x1947
6.59/6.63 v -x1946 -x1945 x1944 x1943 -x1942 -x1941 x1940 -x1939 -x1938 x1937 x1936 -x1935 -x1934 -x1933 -x1932 x1931 x1930 -x1929 x1928
6.59/6.63 v x1927 -x1926 x1925 -x1924 -x1923 -x1922 -x1921 -x1920 -x1919 -x1918 -x1917 -x1916 -x1915 x1914 -x1913 -x1912 -x1911 -x1910
6.59/6.63 v x1909 -x1908 -x1907 -x1906 -x1905 x1904 -x1903 x1902 -x1901 x1900 x1899 -x1898 x1897 x1896 x1895 x1894 -x1893 x1892 -x1891 x1890
6.59/6.63 v x1889 -x1888 -x1887 x1886 -x1885 -x1884 -x1883 x1882 x1881 -x1880 x1879 -x1878 -x1877 -x1876 -x1875 -x1874 x1873 -x1872
6.59/6.63 v -x1871 x1870 -x1869 x1868 -x1867 x1866 -x1865 x1864 -x1863 -x1862 x1861 -x1860 x1859 x1858 -x1857 x1856 -x1855 x1854 -x1853 x1852
6.59/6.63 v x1851 x1850 -x1849 x1848 -x1847 x1846 -x1845 -x1844 -x1843 -x1842 -x1841 -x1840 -x1839 -x1838 -x1837 -x1836 -x1835 -x1834
6.59/6.63 v -x1833 -x1832 x1831 x1830 -x1829 -x1828 x1827 -x1826 -x1825 -x1824 x1823 -x1822 -x1821 x1820 -x1819 -x1818 -x1817 -x1816 -x1815
6.59/6.63 v -x1814 -x1813 -x1812 -x1811 -x1810 x1809 -x1808 x1807 -x1806 -x1805 x1804 x1803 -x1802 x1801 -x1800 -x1799 -x1798 -x1797
6.59/6.63 v x1796 -x1795 -x1794 -x1793 -x1792 -x1791 x1790 -x1789 -x1788 -x1787 -x1786 x1785 -x1784 x1783 -x1782 x1781 -x1780 x1779 x1778
6.59/6.63 v -x1777 x1776 -x1775 x1774 -x1773 x1772 -x1771 -x1770 x1769 -x1768 -x1767 x1766 x1765 -x1764 -x1763 -x1762 x1761 -x1760 -x1759
6.59/6.63 v x1758 -x1757 x1756 -x1755 -x1754 -x1753 -x1752 x1751 -x1750 x1749 -x1748 x1747 -x1746 x1745 -x1744 -x1743 -x1742 -x1741 x1740
6.59/6.63 v -x1739 -x1738 x1737 x1736 -x1735 -x1734 x1733 -x1732 -x1731 -x1730 -x1729 -x1728 x1727 x1726 -x1725 x1724 -x1723 x1722 -x1721
6.59/6.63 v -x1720 x1719 x1718 -x1717 -x1716 x1715 -x1714 -x1713 -x1712 -x1711 -x1710 x1709 x1708 x1707 -x1706 x1705 -x1704 -x1703 x1702
6.59/6.63 v -x1701 x1700 -x1699 -x1698 -x1697 -x1696 -x1695 -x1694 -x1693 x1692 -x1691 -x1690 -x1689 -x1688 -x1687 x1686 -x1685 -x1684
6.59/6.63 v x1683 -x1682 -x1681 -x1680 -x1679 -x1678 x1677 -x1676 -x1675 -x1674 -x1673 -x1672 -x1671 -x1670 x1669 -x1668 -x1667 -x1666
6.59/6.63 v -x1665 -x1664 -x1663 -x1662 x1661 -x1660 x1659 x1658 -x1657 -x1656 x1655 -x1654 -x1653 -x1652 x1651 -x1650 x1649 x1648 -x1647
6.59/6.63 v -x1646 -x1645 -x1644 x1643 x1642 -x1641 -x1640 -x1639 -x1638 -x1637 -x1636 -x1635 -x1634 -x1633 -x1632 -x1631 -x1630 -x1629
6.59/6.63 v -x1628 -x1627 -x1626 -x1625 -x1624 -x1623 -x1622 -x1621 -x1620 -x1619 -x1618 -x1617 -x1616 -x1615 x1614 -x1613 -x1612 -x1611
6.59/6.63 v -x1610 x1609 -x1608 -x1607 x1606 -x1605 -x1604 -x1603 -x1602 -x1601 -x1600 -x1599 -x1598 -x1597 -x1596 -x1595 -x1594 -x1593
6.59/6.63 v -x1592 x1591 -x1590 -x1589 -x1588 -x1587 -x1586 -x1585 -x1584 -x1583 -x1582 x1581 -x1580 -x1579 x1578 -x1577 -x1576 x1575 -x1574
6.59/6.63 v -x1573 -x1572 -x1571 x1570 x1569 -x1568 -x1567 x1566 -x1565 -x1564 -x1563 -x1562 -x1561 -x1560 -x1559 -x1558 -x1557 -x1556
6.59/6.63 v -x1555 -x1554 -x1553 -x1552 -x1551 -x1550 -x1549 -x1548 -x1547 -x1546 -x1545 -x1544 x1543 -x1542 x1541 -x1540 x1539 -x1538
6.59/6.63 v -x1537 -x1536 x1535 -x1534 -x1533 -x1532 -x1531 -x1530 -x1529 -x1528 x1527 x1526 -x1525 -x1524 -x1523 x1522 -x1521 x1520 -x1519
6.59/6.63 v -x1518 -x1517 -x1516 x1515 -x1514 -x1513 x1512 -x1511 -x1510 -x1509 -x1508 -x1507 -x1506 -x1505 x1504 -x1503 x1502 x1501 -x1500
6.59/6.63 v -x1499 x1498 -x1497 -x1496 -x1495 -x1494 -x1493 -x1492 x1491 -x1490 x1489 -x1488 -x1487 -x1486 x1485 -x1484 -x1483 -x1482
6.59/6.63 v -x1481 -x1480 -x1479 x1478 x1477 -x1476 -x1475 x1474 -x1473 x1472 -x1471 -x1470 -x1469 -x1468 -x1467 -x1466 -x1465 -x1464
6.59/6.63 v -x1463 -x1462 -x1461 -x1460 -x1459 -x1458 -x1457 x1456 -x1455 -x1454 -x1453 -x1452 -x1451 -x1450 -x1449 -x1448 x1447 -x1446 x1445
6.59/6.63 v -x1444 x1443 -x1442 -x1441 x1440 -x1439 -x1438 -x1437 -x1436 x1435 -x1434 -x1433 -x1432 -x1431 -x1430 -x1429 x1428 -x1427
6.59/6.63 v -x1426 -x1425 -x1424 x1423 -x1422 x1421 x1420 -x1419 -x1418 -x1417 -x1416 -x1415 x1414 -x1413 -x1412 x1411 x1410 -x1409 -x1408
6.59/6.63 v -x1407 -x1406 -x1405 -x1404 -x1403 -x1402 -x1401 -x1400 x1399 -x1398 -x1397 -x1396 -x1395 -x1394 -x1393 -x1392 -x1391 -x1390
6.59/6.63 v -x1389 -x1388 -x1387 x1386 -x1385 -x1384 -x1383 -x1382 -x1381 -x1380 x1379 -x1378 x1377 -x1376 -x1375 x1374 -x1373 x1372
6.59/6.63 v -x1371 -x1370 -x1369 x1368 -x1367 -x1366 x1365 x1364 -x1363 -x1362 -x1361 x1360 -x1359 -x1358 x1357 -x1356 x1355 -x1354 -x1353
6.59/6.63 v -x1352 -x1351 x1350 x1349 -x1348 -x1347 x1346 -x1345 x1344 -x1343 x1342 -x1341 x1340 -x1339 x1338 -x1337 -x1336 x1335 -x1334
6.59/6.63 v x1333 -x1332 -x1331 x1330 -x1329 -x1328 x1327 x1326 x1325 -x1324 x1323 -x1322 -x1321 x1320 -x1319 -x1318 -x1317 -x1316 -x1315
6.59/6.63 v -x1314 x1313 -x1312 x1311 -x1310 x1309 x1308 x1307 x1306 -x1305 -x1304 x1303 -x1302 x1301 -x1300 x1299 -x1298 -x1297 x1296
6.59/6.63 v -x1295 x1294 -x1293 x1292 -x1291 x1290 -x1289 -x1288 x1287 x1286 -x1285 -x1284 x1283 x1282 -x1281 -x1280 x1279 x1278 -x1277
6.59/6.63 v -x1276 -x1275 -x1274 -x1273 -x1272 -x1271 -x1270 -x1269 -x1268 x1267 -x1266 -x1265 -x1264 -x1263 -x1262 -x1261 -x1260 -x1259
6.59/6.63 v -x1258 -x1257 -x1256 -x1255 -x1254 -x1253 x1252 -x1251 -x1250 x1249 x1248 -x1247 -x1246 x1245 -x1244 x1243 x1242 -x1241 -x1240
6.59/6.63 v -x1239 -x1238 -x1237 -x1236 x1235 x1234 x1233 -x1232 -x1231 -x1230 -x1229 -x1228 x1227 x1226 -x1225 -x1224 x1223 -x1222 x1221
6.59/6.63 v -x1220 -x1219 -x1218 -x1217 -x1216 -x1215 -x1214 -x1213 -x1212 -x1211 -x1210 -x1209 -x1208 -x1207 -x1206 -x1205 -x1204 -x1203
6.59/6.63 v -x1202 -x1201 -x1200 -x1199 x1198 -x1197 -x1196 x1195 -x1194 -x1193 -x1192 -x1191 x1190 -x1189 -x1188 -x1187 -x1186 -x1185
6.59/6.63 v -x1184 -x1183 -x1182 -x1181 -x1180 -x1179 -x1178 -x1177 -x1176 -x1175 x1174 -x1173 x1172 -x1171 -x1170 -x1169 -x1168 -x1167
6.59/6.63 v -x1166 -x1165 -x1164 -x1163 -x1162 -x1161 -x1160 -x1159 -x1158 -x1157 -x1156 -x1155 -x1154 -x1153 -x1152 x1151 x1150 x1149 -x1148
6.59/6.63 v -x1147 -x1146 -x1145 -x1144 -x1143 -x1142 -x1141 x1140 -x1139 -x1138 -x1137 -x1136 -x1135 x1134 -x1133 x1132 -x1131 x1130
6.59/6.63 v x1129 -x1128 -x1127 -x1126 -x1125 -x1124 -x1123 -x1122 -x1121 -x1120 -x1119 x1118 x1117 -x1116 x1115 -x1114 -x1113 -x1112
6.59/6.63 v -x1111 -x1110 -x1109 -x1108 -x1107 -x1106 -x1105 -x1104 -x1103 -x1102 -x1101 -x1100 -x1099 -x1098 x1097 -x1096 x1095 x1094 x1093
6.59/6.63 v -x1092 -x1091 -x1090 -x1089 x1088 x1087 -x1086 x1085 -x1084 -x1083 -x1082 -x1081 -x1080 -x1079 x1078 -x1077 -x1076 -x1075
6.59/6.63 v -x1074 -x1073 x1072 -x1071 -x1070 -x1069 -x1068 -x1067 x1066 -x1065 -x1064 -x1063 -x1062 -x1061 -x1060 -x1059 x1058 -x1057 -x1056
6.59/6.63 v -x1055 -x1054 -x1053 -x1052 -x1051 x1050 -x1049 -x1048 -x1047 -x1046 -x1045 -x1044 -x1043 -x1042 -x1041 -x1040 -x1039 -x1038
6.59/6.63 v -x1037 -x1036 -x1035 -x1034 -x1033 -x1032 -x1031 -x1030 -x1029 -x1028 -x1027 -x1026 -x1025 -x1024 -x1023 -x1022 -x1021
6.59/6.63 v -x1020 -x1019 -x1018 -x1017 -x1016 -x1015 -x1014 -x1013 -x1012 -x1011 -x1010 -x1009 -x1008 -x1007 -x1006 -x1005 -x1004 -x1003
6.59/6.63 v -x1002 -x1001 -x1000 -x999 -x998 -x997 x996 -x995 -x994 -x993 -x992 -x991 -x990 x989 -x988 -x987 -x986 -x985 -x984 -x983 x982
6.59/6.63 v -x981 -x980 x979 -x978 x977 -x976 x975 -x974 x973 -x972 -x971 -x970 x969 -x968 x967 -x966 -x965 x964 x963 -x962 x961 -x960
6.59/6.63 v x959 -x958 -x957 x956 -x955 -x954 x953 -x952 x951 -x950 x949 -x948 -x947 -x946 x945 -x944 -x943 x942 x941 -x940 -x939 -x938 x937
6.59/6.63 v -x936 -x935 x934 -x933 -x932 x931 x930 -x929 -x928 x927 -x926 x925 -x924 x923 -x922 x921 -x920 x919 -x918 -x917 -x916 -x915
6.59/6.63 v -x914 -x913 -x912 x911 -x910 x909 -x908 -x907 -x906 -x905 -x904 -x903 x902 -x901 -x900 x899 -x898 x897 -x896 x895 -x894 -x893
6.59/6.63 v -x892 -x891 -x890 -x889 -x888 x887 -x886 -x885 x884 x883 -x882 -x881 -x880 x879 -x878 -x877 -x876 x875 -x874 -x873 -x872
6.59/6.63 v -x871 -x870 -x869 x868 x867 -x866 x865 -x864 x863 x862 -x861 x860 -x859 -x858 -x857 -x856 -x855 x854 -x853 -x852 -x851 -x850
6.59/6.63 v -x849 -x848 -x847 -x846 -x845 x844 -x843 -x842 x841 -x840 -x839 x838 x837 -x836 -x835 -x834 -x833 -x832 x831 -x830 x829 -x828
6.59/6.63 v -x827 x826 -x825 x824 x823 -x822 x821 -x820 -x819 -x818 -x817 -x816 x815 -x814 -x813 -x812 -x811 -x810 -x809 -x808 -x807 x806
6.59/6.63 v x805 -x804 x803 -x802 -x801 -x800 -x799 x798 x797 -x796 x795 -x794 -x793 -x792 -x791 x790 -x789 x788 -x787 -x786 x785 x784
6.59/6.63 v -x783 -x782 -x781 -x780 -x779 -x778 -x777 x776 x775 -x774 x773 -x772 -x771 x770 x769 -x768 -x767 x766 -x765 x764 -x763 x762 -x761
6.59/6.63 v -x760 x759 -x758 -x757 -x756 -x755 -x754 -x753 -x752 x751 -x750 -x749 -x748 -x747 -x746 x745 -x744 x743 -x742 -x741 x740
6.59/6.63 v x739 -x738 -x737 x736 x735 -x734 x733 -x732 -x731 -x730 -x729 x728 x727 -x726 -x725 x724 -x723 -x722 -x721 -x720 x719 x718 -x717
6.59/6.63 v x716 -x715 x714 x713 -x712 x711 -x710 x709 -x708 -x707 -x706 x705 -x704 -x703 -x702 -x701 x700 -x699 x698 x697 x696 -x695
6.59/6.63 v x694 x693 -x692 -x691 -x690 -x689 -x688 -x687 -x686 -x685 -x684 -x683 -x682 -x681 -x680 -x679 -x678 x677 -x676 -x675 -x674
6.59/6.63 v -x673 -x672 -x671 -x670 -x669 x668 -x667 x666 -x665 x664 -x663 -x662 -x661 x660 -x659 -x658 -x657 -x656 -x655 -x654 -x653 -x652
6.59/6.63 v -x651 -x650 -x649 -x648 -x647 x646 x645 -x644 -x643 -x642 -x641 -x640 -x639 -x638 -x637 -x636 -x635 x634 -x633 x632 -x631
6.59/6.63 v x630 -x629 -x628 -x627 -x626 -x625 x624 x623 -x622 x621 -x620 -x619 -x618 -x617 -x616 -x615 -x614 x613 -x612 x611 -x610 -x609
6.59/6.63 v x608 -x607 x606 x605 -x604 x603 -x602 x601 -x600 -x599 -x598 -x597 -x596 x595 -x594 -x593 x592 x591 -x590 x589 -x588 x587 -x586
6.59/6.63 v -x585 -x584 x583 -x582 -x581 -x580 -x579 -x578 -x577 -x576 x575 -x574 -x573 -x572 -x571 x570 -x569 -x568 -x567 x566 -x565
6.59/6.63 v -x564 -x563 -x562 -x561 -x560 -x559 -x558 -x557 x556 -x555 -x554 -x553 x552 x551 -x550 -x549 -x548 -x547 -x546 -x545 -x544 x543
6.59/6.63 v -x542 -x541 -x540 -x539 -x538 -x537 -x536 -x535 -x534 -x533 -x532 -x531 -x530 -x529 -x528 x527 -x526 -x525 x524 x523 -x522
6.59/6.63 v x521 -x520 -x519 x518 x517 -x516 x515 -x514 -x513 x512 -x511 -x510 -x509 x508 x507 -x506 -x505 x504 -x503 -x502 -x501 -x500
6.59/6.63 v -x499 -x498 -x497 -x496 -x495 -x494 -x493 -x492 -x491 -x490 -x489 -x488 -x487 -x486 -x485 x484 -x483 x482 -x481 x480 -x479 -x478
6.59/6.63 v x477 -x476 -x475 -x474 x473 -x472 -x471 -x470 -x469 x468 -x467 -x466 x465 x464 -x463 -x462 -x461 -x460 -x459 -x458 -x457
6.59/6.63 v -x456 -x455 -x454 -x453 -x452 -x451 -x450 -x449 -x448 -x447 -x446 x445 -x444 -x443 -x442 -x441 -x440 x439 -x438 -x437 -x436
6.59/6.63 v x435 x434 -x433 -x432 -x431 -x430 -x429 x428 x427 x426 -x425 x424 -x423 -x422 -x421 -x420 x419 -x418 -x417 -x416 -x415 -x414
6.59/6.63 v x413 -x412 -x411 -x410 -x409 x408 -x407 -x406 -x405 -x404 -x403 -x402 x401 -x400 -x399 x398 -x397 -x396 -x395 -x394 -x393 -x392
6.59/6.63 v -x391 -x390 x389 x388 x387 x386 x385 x384 -x383 -x382 -x381 -x380 x379 -x378 -x377 -x376 -x375 -x374 -x373 -x372 -x371 -x370
6.59/6.63 v x369 -x368 -x367 -x366 -x365 -x364 -x363 -x362 -x361 -x360 -x359 -x358 -x357 -x356 -x355 x354 x353 -x352 -x351 x350 -x349
6.59/6.63 v -x348 -x347 x346 -x345 -x344 -x343 x342 -x341 -x340 -x339 -x338 -x337 -x336 -x335 -x334 -x333 -x332 -x331 -x330 -x329 x328 x327
6.59/6.63 v -x326 x325 -x324 -x323 -x322 -x321 -x320 -x319 -x318 -x317 x316 -x315 -x314 -x313 x312 -x311 x310 -x309 -x308 x307 x306 -x305
6.59/6.63 v -x304 x303 x302 -x301 -x300 -x299 x298 x297 -x296 -x295 x294 -x293 x292 -x291 x290 -x289 -x288 -x287 -x286 -x285 -x284 -x283
6.59/6.63 v -x282 x281 -x280 -x279 -x278 -x277 x276 x275 -x274 -x273 x272 x271 x270 -x269 x268 -x267 -x266 x265 -x264 x263 -x262 -x261
6.59/6.63 v -x260 -x259 -x258 -x257 -x256 -x255 -x254 -x253 -x252 -x251 -x250 x249 -x248 x247 -x246 -x245 -x244 -x243 x242 -x241 -x240
6.59/6.63 v x239 x238 -x237 -x236 -x235 -x234 -x233 -x232 -x231 x230 -x229 -x228 -x227 -x226 -x225 -x224 -x223 -x222 -x221 -x220 -x219 -x218
6.59/6.63 v -x217 -x216 -x215 -x214 -x213 -x212 -x211 -x210 -x209 -x208 -x207 -x206 -x205 -x204 -x203 -x202 -x201 -x200 -x199 -x198 -x197
6.59/6.63 v -x196 -x195 -x194 -x193 -x192 -x191 -x190 -x189 -x188 -x187 -x186 -x185 -x184 -x183 -x182 -x181 -x180 -x179 -x178 -x177
6.59/6.63 v -x176 -x175 -x174 -x173 -x172 -x171 -x170 -x169 -x168 -x167 -x166 -x165 -x164 -x163 x162 x161 -x160 -x159 -x158 x157 -x156 -x155
6.59/6.63 v x154 -x153 x152 -x151 -x150 -x149 -x148 x147 -x146 -x145 -x144 -x143 -x142 x141 -x140 x139 -x138 x137 -x136 -x135 x134 -x133
6.59/6.63 v -x132 -x131 -x130 -x129 -x128 x127 -x126 -x125 -x124 x123 -x122 -x121 -x120 -x119 -x118 -x117 -x116 -x115 -x114 -x113 -x112
6.59/6.63 v -x111 -x110 -x109 x108 -x107 -x106 -x105 x104 -x103 -x102 -x101 -x100 x99 -x98 -x97 -x96 -x95 -x94 x93 -x92 -x91 x90 x89 -x88
6.59/6.63 v -x87 x86 -x85 -x84 -x83 -x82 -x81 -x80 -x79 -x78 x77 -x76 -x75 -x74 -x73 -x72 -x71 -x70 -x69 -x68 -x67 -x66 -x65 -x64 -x63
6.59/6.63 v -x62 -x61 -x60 -x59 -x58 -x57 -x56 -x55 -x54 -x53 x52 -x51 -x50 -x49 -x48 -x47 -x46 -x45 -x44 -x43 -x42 x41 x40 -x39 -x38 -x37
6.59/6.63 v x36 -x35 x34 x33 -x32 x31 -x30 x29 x28 -x27 x26 -x25 x24 -x23 -x22 x21 x20 -x19 -x18 x17 -x16 -x15 x14 -x13 x12 -x11 x10
6.59/6.63 v -x9 -x8 -x7 x6 -x5 x4 -x3 -x2 x1 -x5756 -x5755 -x5754 -x5753 -x5752 -x5751 -x5750 -x5749 -x5748 -x5747 -x5746 x5745 x5744 x5743
6.59/6.63 v -x5742 -x5741 -x5740 -x5739 x5738 -x5737 x5736 x5735 -x5734 -x5733 -x5732 -x5731 -x5730 -x5729 -x5728 -x5727 -x5726 -x5725
6.59/6.63 v -x5724 -x5723 x5722 -x5721 -x5720 x5719 x5718 x5717 x5716 -x5715 x5714 x5713 x5712 x5711 x5710 x5709 -x5708 -x5707 -x5706 -x5705
6.59/6.63 v -x5704 -x5703 -x5702 x5701 -x5700 x5699 -x5698 -x5697 -x5696 -x5695 -x5694 -x5693 -x5692 -x5691 -x5690 -x5689 -x5688 -x5687
6.59/6.63 v -x5686 -x5685 -x5684 -x5683 -x5682 -x5681 -x5680 -x5679 -x5678 -x5677 -x5676 -x5675 -x5674 -x5673 x5672 -x5671 -x5670 -x5669
6.59/6.63 v -x5668 -x5667 -x5666 x5665 -x5664 -x5663 -x5662 -x5661 -x5660 -x5659 -x5658 -x5657 -x5656 -x5655 -x5654 -x5653 -x5652 -x5651
6.59/6.63 v -x5650 x5649 x5648 x5647 -x5646 -x5645 -x5644 -x5643 -x5642 -x5641 -x5640 -x5639 -x5638 -x5637 -x5636 -x5635 -x5634 -x5633
6.59/6.63 v -x5632 -x5631 -x5630 -x5629 x5628 x5627 -x5626 -x5625 -x5624 -x5623 -x5622 -x5621 -x5620 -x5619 -x5618 -x5617 -x5616 -x5615
6.59/6.63 v -x5614 -x5613 -x5612 -x5611 -x5610 -x5609 -x5608 -x5607 x5606 x5605 x5604 -x5603 -x5602 -x5601 -x5600 -x5599 -x5598 -x5597 -x5596
6.59/6.63 v -x5595 -x5594 -x5593 -x5592 x5591 -x5590 -x5589 -x5588 -x5587 -x5586 -x5585 -x5584 -x5583 -x5582 -x5581 -x5580 -x5579 -x5578
6.59/6.63 v -x5577 -x5576 -x5575 -x5574 -x5573 -x5572 -x5571 -x5570 -x5569 -x5568 -x5567 -x5566 -x5565 -x5564 -x5563 -x5562 -x5561
6.59/6.63 v -x5560 -x5559 -x5558 -x5557 -x5556 -x5555 -x5554 -x5553 -x5552 -x5551 -x5550 -x5549 -x5548 -x5547 x5546 -x5545 -x5544 -x5543
6.59/6.63 v -x5542 -x5541 -x5540 -x5539 -x5538 -x5537 -x5536 -x5535 -x5534 -x5533 -x5532 -x5531 -x5530 -x5529 -x5528 -x5527 -x5526 -x5525
6.59/6.63 v -x5524 -x5523 -x5522 -x5521 -x5520 -x5519 -x5518 -x5517 -x5516 -x5515 -x5514 -x5513 -x5512 -x5511 -x5510 -x5509 -x5508 -x5507
6.59/6.63 v -x5506 -x5505 -x5504 -x5503 -x5502 -x5501 -x5500 -x5499 -x5498 -x5497 -x5496 -x5495 -x5494 -x5493 x5492 -x5491 -x5490 -x5489
6.59/6.63 v -x5488 -x5487 x5486 -x5485 -x5484 -x5483 -x5482 -x5481 -x5480 -x5479 -x5478 -x5477 -x5476 -x5475 -x5474 -x5473 -x5472 -x5471
6.59/6.63 v -x5470 -x5469 -x5468 -x5467 -x5466 -x5465 -x5464 -x5463 -x5462 -x5461 -x5460 -x5459 -x5458 x5457 -x5456 -x5455 -x5454 -x5453
6.59/6.63 v -x5452 -x5451 -x5450 -x5449 -x5448 -x5447 -x5446 -x5445 -x5444 -x5443 -x5442 -x5441 -x5440 -x5439 -x5438 -x5437 -x5436 -x5435
6.59/6.63 v -x5434 -x5433 -x5432 -x5431 -x5430 -x5429 -x5428 -x5427 -x5426 -x5425 -x5424 -x5423 x5422 -x5421 x5420 -x5419 -x5418 -x5417
6.59/6.63 v -x5416 -x5415 -x5414 -x5413 -x5412 -x5411 -x5410 -x5409 -x5408 -x5407 x5406 -x5405 -x5404 x5403 -x5402 -x5401 -x5400 -x5399
6.59/6.63 v -x5398 -x5397 -x5396 -x5395 -x5394 -x5393 -x5392 -x5391 -x5390 -x5389 -x5388 -x5387 -x5386 -x5385 -x5384 -x5383 -x5382 -x5381
6.59/6.63 v -x5380 -x5379 -x5378 x5377 x5376 -x5375 x5374 x5373 -x5372 -x5371 -x5370 -x5369 -x5368 -x5367 -x5366 -x5365 x5364 -x5363 x5362
6.59/6.63 v -x5361 x5360 -x5359 -x5358 -x5357 x5356 -x5355 -x5354 x5353 x5352 x5351 -x5350 x5349 x5348 x5347 -x5346 x5345 -x5344 x5343
6.59/6.63 v x5342 x5341 -x5340 x5339 x5338 -x5337 x5336 -x5335 -x5334 -x5333 -x5332 -x5331 -x5330 -x5329 -x5328 x5327 -x5326 x5325 x5324
6.59/6.63 v -x5323 x5322 -x5321 x5320 -x5319 -x5318 x5317 x5316 x5315 -x5314 x5313 x5312 x5311 x5310 x5309 -x5308 -x5307 -x5306 x5305 x5304
6.59/6.63 v x5303 x5302 x5301 x5300 x5299 x5298 -x5297 x5296 -x5295 -x5294 x5293 -x5292 -x5291 -x5290 -x5289 x5288 x5287 -x5286 -x5285
6.59/6.63 v -x5284 -x5283 -x5282 x5281 -x5280 -x5279 -x5278 -x5277 -x5276 -x5275 -x5274 -x5273 -x5272 -x5271 -x5270 -x5269 -x5268 -x5267
6.59/6.63 v -x5266 -x5265 x5264 -x5263 -x5262 -x5261 -x5260 -x5259 -x5258 x5257 x5256 -x5255 -x5254 -x5253 x5252 x5251 -x5250 -x5249 -x5248
6.59/6.63 v -x5247 -x5246 -x5245 x5244 -x5243 -x5242 -x5241 x5240 x5239 -x5238 -x5237 -x5236 -x5235 -x5234 x5233 -x5232 -x5231 -x5230
6.59/6.63 v -x5229 -x5228 -x5227 -x5226 -x5225 -x5224 -x5223 -x5222 x5221 x5220 -x5219 -x5218 x5217 -x5216 -x5215 -x5214 -x5213 -x5212
6.59/6.63 v -x5211 -x5210 -x5209 x5208 -x5207 -x5206 -x5205 -x5204 -x5203 -x5202 -x5201 -x5200 -x5199 -x5198 x5197 -x5196 -x5195 -x5194
6.59/6.63 v -x5193 x5192 -x5191 -x5190 -x5189 -x5188 -x5187 -x5186 -x5185 -x5184 -x5183 -x5182 -x5181 -x5180 -x5179 -x5178 -x5177 -x5176
6.59/6.63 v x5175 -x5174 -x5173 -x5172 -x5171 -x5170 -x5169 -x5168 -x5167 -x5166 x5165 -x5164 -x5163 -x5162 -x5161 -x5160 -x5159 -x5158 -x5157
6.59/6.63 v -x5156 -x5155 -x5154 -x5153 -x5152 -x5151 -x5150 -x5149 -x5148 -x5147 -x5146 -x5145 -x5144 -x5143 -x5142 -x5141 -x5140
6.59/6.63 v -x5139 -x5138 -x5137 -x5136 -x5135 -x5134 -x5133 -x5132 -x5131 -x5130 x5129 x5128 -x5127 -x5126 -x5125 x5124 x5123 -x5122 -x5121
6.59/6.63 v x5120 -x5119 -x5118 -x5117 -x5116 -x5115 -x5114 -x5113 -x5112 -x5111 x5110 x5109 x5108 -x5107 x5106 x5105 -x5104 x5103 x5102
6.59/6.63 v -x5101 -x5100 -x5099 x5098 x5097 x5096 -x5095 -x5094 x5093 -x5092 -x5091 -x5090 -x5089 -x5088 x5087 x5086 x5085 -x5084 -x5083
6.59/6.63 v -x5082 -x5081 -x5080 -x5079 -x5078 x5077 x5076 x5075 -x5074 x5073 -x5072 -x5071 x5070 -x5069 x5068 -x5067 -x5066 -x5065
6.59/6.63 v -x5064 x5063 -x5062 -x5061 -x5060 -x5059 -x5058 -x5057 -x5056 -x5055 -x5054 -x5053 -x5052 -x5051 -x5050 -x5049 -x5048 -x5047
6.59/6.63 v -x5046 -x5045 -x5044 -x5043 -x5042 -x5041 -x5040 -x5039 -x5038 -x5037 -x5036 x5035 x5034 -x5033 -x5032 -x5031 -x5030 -x5029 x5028
6.59/6.63 v x5027 -x5026 -x5025 -x5024 -x5023 x5022 x5021 x5020 x5019 x5018 x5017 x5016 -x5015 -x5014 -x5013 x5012 -x5011 -x5010 -x5009
6.59/6.63 v -x5008 -x5007 -x5006 -x5005 -x5004 -x5003 -x5002 -x5001 -x5000 -x4999 x4998 -x4997 -x4996 -x4995 -x4994 -x4993 -x4992 -x4991
6.59/6.63 v -x4990 x4989 x4988 -x4987 -x4986 -x4985 -x4984 -x4983 -x4982 -x4981 x4980 x4979 -x4978 -x4977 -x4976 -x4975 -x4974 -x4973
6.59/6.63 v -x4972 x4971 x4970 -x4969 -x4968 x4967 x4966 -x4965 -x4964 -x4963 -x4962 -x4961 -x4960 x4959 -x4958 -x4957 -x4956 -x4955 x4954
6.59/6.63 v -x4953 -x4952 -x4951 -x4950 x4949 -x4948 -x4947 -x4946 -x4945 x4944 -x4943 x4942 -x4941 -x4940 x4939 -x4938 -x4937 -x4936
6.59/6.63 v -x4935 -x4934 -x4933 -x4932 -x4931 -x4930 -x4929 -x4928 -x4927 -x4926 -x4925 -x4924 -x4923 -x4922 -x4921 -x4920 x4919 -x4918
6.59/6.63 v -x4917 x4916 -x4915 x4914 -x4913 -x4912 -x4911 -x4910 -x4909 -x4908 x4907 -x4906 x4905 x4904 x4903 x4902 -x4901 -x4900 -x4899
6.59/6.63 v -x4898 x4897 x4896 x4895 -x4894 x4893 x4892 -x4891 -x4890 x4889 -x4888 -x4887 -x4886 -x4885 -x4884 x4883 -x4882 -x4881 -x4880
6.59/6.63 v x4879 -x4878 x4877 x4876 x4875 -x4874 -x4873 -x4872 -x4871 -x4870 x4869 x4868 -x4867 x4866 x4865 -x4864 -x4863 x4862 -x4861
6.59/6.63 v -x4860 -x4859 -x4858 x4857 x4856 -x4855 x4854 x4853 -x4852 x4851 x4850 x4849 x4848 x4847 x4846 x4845 -x4844 x4843 x4842 x4841
6.59/6.63 v -x4840 -x4839 -x4838 -x4837 -x4836 x4835 x4834 -x4833 -x4832 -x4831 x4830 x4829 x4828 -x4827 -x4826 -x4825 x4824 -x4823 -x4822
6.59/6.63 v -x4821 -x4820 x4819 x4818 -x4817 -x4816 -x4815 -x4814 -x4813 -x4812 -x4811 -x4810 x4809 x4808 x4807 -x4806 -x4805 -x4804
6.59/6.63 v -x4803 -x4802 -x4801 -x4800 -x4799 -x4798 -x4797 -x4796 -x4795 x4794 -x4793 -x4792 -x4791 x4790 x4789 -x4788 x4787 -x4786 x4785
6.59/6.63 v -x4784 x4783 -x4782 x4781 x4780 -x4779 -x4778 -x4777 -x4776 -x4775 x4774 -x4773 x4772 x4771 x4770 x4769 -x4768 x4767 -x4766
6.59/6.63 v -x4765 -x4764 -x4763 -x4762 x4761 -x4760 -x4759 -x4758 -x4757 -x4756 -x4755 -x4754 -x4753 -x4752 -x4751 -x4750 -x4749 -x4748
6.59/6.63 v -x4747 -x4746 -x4745 -x4744 -x4743 -x4742 -x4741 -x4740 -x4739 -x4738 -x4737 -x4736 -x4735 -x4734 x4733 x4732 x4731 -x4730
6.59/6.63 v -x4729 -x4728 -x4727 -x4726 -x4725 -x4724 -x4723 -x4722 -x4721 -x4720 -x4719 -x4718 x4717 x4716 -x4715 -x4714 -x4713 -x4712 -x4711
6.59/6.63 v -x4710 -x4709 -x4708 -x4707 -x4706 -x4705 x4704 -x4703 -x4702 -x4701 -x4700 -x4699 -x4698 -x4697 -x4696 -x4695 -x4694 x4693
6.59/6.63 v x4692 -x4691 x4690 -x4689 -x4688 x4687 -x4686 -x4685 -x4684 -x4683 -x4682 x4681 x4680 -x4679 -x4678 -x4677 -x4676 -x4675
6.59/6.63 v x4674 -x4673 -x4672 -x4671 -x4670 -x4669 -x4668 -x4667 -x4666 x4665 -x4664 -x4663 -x4662 -x4661 -x4660 x4659 -x4658 -x4657 x4656
6.59/6.63 v -x4655 -x4654 -x4653 -x4652 x4651 x4650 -x4649 -x4648 -x4647 x4646 -x4645 -x4644 -x4643 -x4642 -x4641 -x4640 -x4639 -x4638
6.59/6.63 v -x4637 -x4636 -x4635 -x4634 -x4633 -x4632 -x4631 -x4630 -x4629 -x4628 -x4627 x4626 x4625 -x4624 -x4623 -x4622 -x4621 x4620
6.59/6.63 v x4619 x4618 x4617 -x4616 -x4615 x4614 -x4613 -x4612 x4611 x4610 x4609 -x4608 x4607 x4606 x4605 x4604 -x4603 -x4602 -x4601 -x4600
6.59/6.63 v -x4599 -x4598 -x4597 -x4596 x4595 -x4594 -x4593 -x4592 -x4591 -x4590 -x4589 -x4588 -x4587 x4586 -x4585 x4584 x4583 x4582
6.59/6.63 v x4581 -x4580 -x4579 -x4578 x4577 -x4576 -x4575 x4574 x4573 x4572 -x4571 -x4570 -x4569 x4568 -x4567 x4566 x4565 -x4564 -x4563
6.59/6.63 v -x4562 -x4561 -x4560 x4559 x4558 -x4557 -x4556 -x4555 -x4554 -x4553 -x4552 -x4551 -x4550 -x4549 -x4548 -x4547 -x4546 -x4545
6.59/6.63 v -x4544 -x4543 -x4542 -x4541 -x4540 -x4539 -x4538 -x4537 -x4536 -x4535 -x4534 -x4533 -x4532 -x4531 -x4530 -x4529 -x4528 -x4527
6.59/6.63 v -x4526 -x4525 -x4524 -x4523 -x4522 -x4521 -x4520 -x4519 -x4518 x4517 x4516 -x4515 -x4514 -x4513 -x4512 -x4511 -x4510 -x4509
6.59/6.63 v -x4508 -x4507 -x4506 -x4505 x4504 x4503 -x4502 -x4501 -x4500 -x4499 -x4498 -x4497 -x4496 -x4495 -x4494 -x4493 -x4492 -x4491 -x4490
6.59/6.63 v -x4489 -x4488 -x4487 -x4486 -x4485 -x4484 -x4483 -x4482 x4481 -x4480 -x4479 -x4478 -x4477 -x4476 -x4475 -x4474 -x4473 -x4472
6.59/6.63 v -x4471 -x4470 -x4469 -x4468 -x4467 -x4466 -x4465 -x4464 -x4463 -x4462 -x4461 -x4460 -x4459 -x4458 -x4457 -x4456 x4455 -x4454
6.59/6.63 v -x4453 -x4452 -x4451 -x4450 -x4449 -x4448 x4447 x4446 -x4445 x4444 x4443 -x4442 -x4441 -x4440 -x4439 -x4438 -x4437 -x4436
6.59/6.63 v -x4435 -x4434 -x4433 x4432 x4431 x4430 -x4429 -x4428 -x4427 -x4426 -x4425 -x4424 -x4423 -x4422 x4421 x4420 -x4419 x4418 x4417
6.59/6.63 v -x4416 -x4415 -x4414 -x4413 -x4412 -x4411 -x4410 x4409 x4408 -x4407 -x4406 -x4405 -x4404 -x4403 -x4402 -x4401 -x4400 -x4399
6.59/6.63 v -x4398 -x4397 -x4396 x4395 -x4394 -x4393 -x4392 -x4391 -x4390 -x4389 -x4388 -x4387 -x4386 -x4385 -x4384 -x4383 -x4382 -x4381
6.59/6.63 v -x4380 -x4379 -x4378 -x4377 -x4376 -x4375 -x4374 -x4373 x4372 -x4371 -x4370 x4369 x4368 -x4367 -x4366 -x4365 -x4364 -x4363
6.59/6.63 v -x4362 -x4361 -x4360 -x4359 -x4358 x4357 -x4356 -x4355 -x4354 -x4353 -x4352 -x4351 -x4350 -x4349 -x4348 -x4347 -x4346 -x4345
6.59/6.63 v -x4344 -x4343 -x4342 -x4341 -x4340 -x4339 -x4338 -x4337 -x4336 -x4335 -x4334 -x4333 -x4332 -x4331 -x4330 -x4329 -x4328 -x4327
6.59/6.63 v -x4326 -x4325 -x4324 -x4323 -x4322 -x4321 -x4320 -x4319 -x4318 -x4317 -x4316 -x4315 -x4314 -x4313 -x4312 -x4311 -x4310 -x4309
6.59/6.63 v -x4308 -x4307 -x4306 -x4305 -x4304 -x4303 -x4302 -x4301 -x4300 -x4299 -x4298 -x4297 -x4296 -x4295 -x4294 -x4293 -x4292 -x4291
6.59/6.63 v -x4290 -x4289 -x4288 -x4287 -x4286 -x4285 -x4284 -x4283 -x4282 -x4281 -x4280 -x4279 -x4278 -x4277 -x4276 -x4275 -x4274 -x4273
6.59/6.63 v -x4272 -x4271 -x4270 -x4269 -x4268 -x4267 -x4266 -x4265 -x4264 -x4263 -x4262 -x4261 -x4260 -x4259 -x4258 -x4257 x4256 x4255
6.59/6.63 v -x4254 -x4253 -x4252 -x4251 -x4250 -x4249 -x4248 -x4247 -x4246 -x4245 -x4244 -x4243 -x4242 -x4241 -x4240 -x4239 -x4238 -x4237
6.59/6.63 v -x4236 -x4235 -x4234 -x4233 -x4232 -x4231 -x4230 -x4229 -x4228 -x4227 -x4226 -x4225 -x4224 -x4223 -x4222 -x4221 -x4220 -x4219
6.59/6.63 v -x4218 -x4217 -x4216 -x4215 -x4214 -x4213 -x4212 -x4211 -x4210 x4209 -x4208 -x4207 -x4206 -x4205 -x4204 -x4203 -x4202 -x4201
6.59/6.63 v -x4200 -x4199 -x4198 -x4197 -x4196 -x4195 -x4194 -x4193 -x4192 -x4191 -x4190 -x4189 -x4188 -x4187 -x4186 -x4185 -x4184
6.59/6.63 v -x4183 -x4182 -x4181 -x4180 -x4179 -x4178 -x4177 -x4176 -x4175 -x4174 -x4173 -x4172 -x4171 -x4170 -x4169 -x4168 -x4167 -x4166
6.59/6.63 v -x4165 -x4164 -x4163 -x4162 -x4161 -x4160 -x4159 -x4158 -x4157 -x4156 -x4155 -x4154 -x4153 -x4152 -x4151 -x4150 -x4149 -x4148
6.59/6.63 v -x4147 -x4146 -x4145 -x4144 -x4143 -x4142 -x4141 -x4140 -x4139 -x4138 -x4137 -x4136 -x4135 -x4134 -x4133 -x4132 -x4131 -x4130
6.59/6.63 v -x4129 -x4128 -x4127 -x4126 -x4125 -x4124 -x4123 -x4122 -x4121 -x4120 -x4119 -x4118 -x4117 -x4116 -x4115 -x4114 -x4113 -x4112
6.59/6.63 v -x4111 -x4110 -x4109 -x4108 -x4107 -x4106 -x4105 -x4104 -x4103 -x4102 -x4101 -x4100 -x4099 -x4098 -x4097 -x4096 -x4095 -x4094
6.59/6.63 v -x4093 -x4092 -x4091 -x4090 -x4089 -x4088 -x4087 -x4086 -x4085 -x4084 -x4083 -x4082 -x4081 -x4080 -x4079 -x4078 -x4077 -x4076
6.59/6.63 v -x4075 -x4074 -x4073 -x4072 -x4071 -x4070 -x4069 -x4068 -x4067 -x4066 -x4065 -x4064 -x4063 -x4062 -x4061 -x4060 -x4059
6.59/6.63 v -x4058 -x4057 -x4056 -x4055 -x4054 -x4053 -x4052 -x4051 -x4050 -x4049 -x4048 -x4047 -x4046 -x4045 -x4044 -x4043 -x4042 -x4041
6.59/6.63 v -x4040 -x4039 -x4038 -x4037 -x4036 -x4035 -x4034 -x4033 -x4032 -x4031 -x4030 -x4029 -x4028 -x4027 -x4026 -x4025 -x4024 -x4023
6.59/6.63 v -x4022 -x4021 -x4020 -x4019 -x4018 -x4017 -x4016 -x4015 -x4014 -x4013 -x4012 -x4011 -x4010 -x4009 -x4008 -x4007 -x4006 -x4005
6.59/6.63 v -x4004 -x4003 -x4002 -x4001 -x4000 -x3999 -x3998 -x3997 x3996 -x3995 -x3994 -x3993 -x3992 -x3991 -x3990 -x3989 -x3988 -x3987
6.59/6.63 v -x3986 -x3985 -x3984 -x3983 -x3982 -x3981 -x3980 -x3979 -x3978 -x3977 -x3976 -x3975 -x3974 -x3973 -x3972 -x3971 -x3970 -x3969
6.59/6.63 v -x3968 -x3967 -x3966 -x3965 -x3964 -x3963 -x3962 -x3961 -x3960 -x3959 -x3958 -x3957 -x3956 -x3955 -x3954 -x3953 -x3952 -x3951
6.59/6.63 v -x3950 -x3949 -x3948 -x3947 -x3946 -x3945 -x3944 -x3943 -x3942 -x3941 -x3940 -x3939 -x3938 -x3937 -x3936 -x3935 -x3934 -x3933
6.59/6.63 v -x3932 -x3931 -x3930 -x3929 -x3928 -x3927 -x3926 -x3925 -x3924 -x3923 -x3922 -x3921 -x3920 -x3919 -x3918 -x3917 -x3916
6.59/6.63 v -x3915 -x3914 -x3913 -x3912 -x3911 -x3910 -x3909 -x3908 -x3907 -x3906 -x3905 -x3904 -x3903 -x3902 -x3901 -x3900 -x3899 -x3898
6.59/6.63 v -x3897 -x3896 -x3895 -x3894 -x3893 -x3892 -x3891 -x3890 -x3889 -x3888 -x3887 -x3886 -x3885 -x3884 -x3883 -x3882 -x3881 -x3880
6.59/6.63 v -x3879 -x3878 -x3877 -x3876 -x3875 -x3874 -x3873 -x3872 -x3871 -x3870 -x3869 -x3868 -x3867 -x3866 -x3865 -x3864 -x3863 -x3862
6.59/6.63 v -x3861 -x3860 -x3859 -x3858 -x3857 -x3856 -x3855 -x3854 -x3853 -x3852 -x3851 -x3850 -x3849 -x3848 -x3847 -x3846 -x3845 -x3844
6.59/6.63 v -x3843 -x3842 -x3841 -x3840 -x3839 -x3838 -x3837 -x3836 -x3835 -x3834 -x3833 -x3832 -x3831 -x3830 -x3829 -x3828 -x3827 -x3826
6.59/6.63 v -x3825 -x3824 -x3823 -x3822 -x3821 -x3820 -x3819 -x3818 -x3817 -x3816 -x3815 -x3814 -x3813 -x3812 -x3811 -x3810 -x3809 -x3808
6.59/6.63 v -x3807 -x3806 -x3805 -x3804 -x3803 -x3802 -x3801 -x3800 -x3799 -x3798 -x3797 -x3796 -x3795 -x3794 -x3793 -x3792 -x3791
6.59/6.63 v -x3790 -x3789 -x3788 -x3787 -x3786 -x3785 -x3784 -x3783 -x3782 -x3781 -x3780 -x3779 -x3778 -x3777 -x3776 -x3775 -x3774 -x3773
6.59/6.63 v -x3772 -x3771 -x3770 -x3769 -x3768 -x3767 -x3766 -x3765 -x3764 -x3763 -x3762 -x3761 -x3760 -x3759 -x3758 -x3757 -x3756 -x3755
6.59/6.63 v -x3754 -x3753 -x3752 -x3751 -x3750 -x3749 -x3748 -x3747 -x3746 -x3745 -x3744 -x3743 -x3742 -x3741 -x3740 -x3739 -x3738 -x3737
6.59/6.63 v -x3736 -x3735 -x3734 -x3733 -x3732 -x3731 -x3730 -x3729 -x3728 -x3727 -x3726 -x3725 -x3724 -x3723 -x3722 -x3721 -x3720 -x3719
6.59/6.63 v -x3718 -x3717 -x3716 -x3715 -x3714 -x3713 -x3712 -x3711 -x3710 -x3709 -x3708 -x3707 -x3706 -x3705 -x3704 -x3703 -x3702 -x3701
6.59/6.63 v -x3700 -x3699 -x3698 -x3697 -x3696 -x3695 -x3694 -x3693 -x3692 -x3691 -x3690 -x3689 -x3688 -x3687 -x3686 -x3685 -x3684 -x3683
6.59/6.63 v -x3682 -x3681 -x3680 -x3679 -x3678 -x3677 -x3676 -x3675 -x3674 -x3673 -x3672 -x3671 -x3670 -x3669 -x3668 -x3667 -x3666
6.59/6.63 v -x3665 -x3664 -x3663 -x3662 -x3661 -x3660 -x3659 -x3658 -x3657 -x3656 -x3655 -x3654 -x3653 -x3652 -x3651 -x3650 -x3649 -x3648
6.59/6.63 v -x3647 -x3646 -x3645 -x3644 -x3643 -x3642 -x3641 -x3640 -x3639 -x3638 -x3637 -x3636 -x3635 -x3634 -x3633 -x3632 -x3631 -x3630
6.59/6.63 v -x3629 -x3628 -x3627 -x3626 -x3625 -x3624 -x3623 -x3622 -x3621 -x3620
6.59/6.63 c SCIP Status : problem is solved [optimal solution found]
6.59/6.63 c Solving Time : 6.44
6.59/6.63 c Original Problem :
6.59/6.63 c Problem name : HOME/instance-3738603-1338727899.opb
6.59/6.63 c Variables : 5756 (5756 binary, 0 integer, 0 implicit integer, 0 continuous)
6.59/6.63 c Constraints : 25625 initial, 25625 maximal
6.59/6.63 c Presolved Problem :
6.59/6.63 c Problem name : t_HOME/instance-3738603-1338727899.opb
6.59/6.63 c Variables : 3222 (3222 binary, 0 integer, 0 implicit integer, 0 continuous)
6.59/6.63 c Constraints : 10258 initial, 10258 maximal
6.59/6.63 c Presolvers : Time FixedVars AggrVars ChgTypes ChgBounds AddHoles DelCons ChgSides ChgCoefs
6.59/6.63 c trivial : 0.01 26 0 0 0 0 0 0 0
6.59/6.63 c dualfix : 0.01 603 0 0 0 0 0 0 0
6.59/6.63 c boundshift : 0.00 0 0 0 0 0 0 0 0
6.59/6.63 c inttobinary : 0.00 0 0 0 0 0 0 0 0
6.59/6.63 c implics : 0.02 0 273 0 0 0 0 0 0
6.59/6.63 c probing : 1.98 202 486 0 0 0 0 0 0
6.59/6.63 c setppc : 0.23 0 1 0 0 0 1610 0 0
6.59/6.63 c linear : 0.13 270 673 0 294 0 11027 34 47
6.59/6.63 c logicor : 2.41 0 0 0 0 0 2734 0 0
6.59/6.63 c root node : - 1268 - - 1268 - - - -
6.59/6.63 c Constraints : Number #Separate #Propagate #EnfoLP #EnfoPS Cutoffs DomReds Cuts Conss Children
6.59/6.63 c integral : 0 0 0 1 0 0 0 0 0 0
6.59/6.63 c setppc : 5958 9 10894 1 0 78 98 0 0 0
6.59/6.63 c linear : 0+ 7 6 0 0 0 0 1 0 0
6.59/6.63 c logicor : 4300 9 9123 1 0 102 44 0 0 0
6.59/6.63 c countsols : 0 0 0 1 0 0 0 0 0 0
6.59/6.63 c Constraint Timings : TotalTime Separate Propagate EnfoLP EnfoPS
6.59/6.63 c integral : 0.00 0.00 0.00 0.00 0.00
6.59/6.63 c setppc : 1.23 0.00 1.23 0.00 0.00
6.59/6.63 c linear : 0.00 0.00 0.00 0.00 0.00
6.59/6.63 c logicor : 0.06 0.00 0.06 0.00 0.00
6.59/6.63 c countsols : 0.00 0.00 0.00 0.00 0.00
6.59/6.63 c Propagators : Time Calls Cutoffs DomReds
6.59/6.63 c vbounds : 0.00 2 0 0
6.59/6.63 c rootredcost : 0.00 0 0 0
6.59/6.63 c pseudoobj : 0.00 16 0 0
6.59/6.63 c Conflict Analysis : Time Calls Success Conflicts Literals Reconvs ReconvLits LP Iters
6.59/6.63 c propagation : 0.00 0 0 0 0.0 0 0.0 -
6.59/6.63 c infeasible LP : 0.00 0 0 0 0.0 0 0.0 0
6.59/6.63 c bound exceed. LP : 0.00 0 0 0 0.0 0 0.0 0
6.59/6.63 c strong branching : 0.00 0 0 0 0.0 0 0.0 0
6.59/6.63 c pseudo solution : 0.00 0 0 0 0.0 0 0.0 -
6.59/6.63 c applied globally : - - - 0 0.0 - - -
6.59/6.63 c applied locally : - - - 0 0.0 - - -
6.59/6.63 c Separators : Time Calls Cutoffs DomReds Cuts Conss
6.59/6.63 c cut pool : 0.00 7 - - 33 - (maximal pool size: 467)
6.59/6.63 c redcost : 0.00 8 0 409 0 0
6.59/6.63 c impliedbounds : 0.00 7 0 0 317 0
6.59/6.63 c intobj : 0.00 0 0 0 0 0
6.59/6.63 c cgmip : 0.00 0 0 0 0 0
6.59/6.63 c gomory : 0.09 7 0 0 1397 0
6.59/6.63 c strongcg : 0.09 7 0 0 1397 0
6.59/6.63 c cmir : 0.25 7 0 0 3 0
6.59/6.63 c flowcover : 0.67 7 0 0 6 0
6.59/6.63 c clique : 0.06 7 0 0 41 0
6.59/6.63 c zerohalf : 0.00 0 0 0 0 0
6.59/6.63 c mcf : 0.01 1 0 0 0 0
6.59/6.63 c rapidlearning : 0.18 1 0 717 0 1
6.59/6.63 c Pricers : Time Calls Vars
6.59/6.63 c problem variables: 0.00 0 0
6.59/6.63 c Branching Rules : Time Calls Cutoffs DomReds Cuts Conss Children
6.59/6.63 c pscost : 0.00 0 0 0 0 0 0
6.59/6.63 c inference : 0.00 0 0 0 0 0 0
6.59/6.63 c mostinf : 0.00 0 0 0 0 0 0
6.59/6.63 c leastinf : 0.00 0 0 0 0 0 0
6.59/6.63 c fullstrong : 0.00 0 0 0 0 0 0
6.59/6.63 c allfullstrong : 0.00 0 0 0 0 0 0
6.59/6.63 c random : 0.00 0 0 0 0 0 0
6.59/6.63 c relpscost : 0.00 0 0 0 0 0 0
6.59/6.63 c Primal Heuristics : Time Calls Found
6.59/6.63 c LP solutions : 0.00 - 0
6.59/6.63 c pseudo solutions : 0.00 - 0
6.59/6.63 c crossover : 0.00 0 0
6.59/6.63 c trivial : 0.01 2 0
6.59/6.63 c simplerounding : 0.00 5 0
6.59/6.63 c zirounding : 0.00 0 0
6.59/6.63 c rounding : 0.00 7 0
6.59/6.63 c shifting : 0.01 7 2
6.59/6.63 c intshifting : 0.00 0 0
6.59/6.63 c oneopt : 0.00 2 0
6.59/6.63 c twoopt : 0.00 0 0
6.59/6.63 c fixandinfer : 0.00 0 0
6.59/6.63 c feaspump : 0.00 0 0
6.59/6.63 c coefdiving : 0.00 0 0
6.59/6.63 c pscostdiving : 0.00 0 0
6.59/6.63 c fracdiving : 0.00 0 0
6.59/6.63 c veclendiving : 0.00 0 0
6.59/6.63 c intdiving : 0.00 0 0
6.59/6.63 c actconsdiving : 0.00 0 0
6.59/6.63 c objpscostdiving : 0.00 0 0
6.59/6.63 c rootsoldiving : 0.00 0 0
6.59/6.63 c linesearchdiving : 0.00 0 0
6.59/6.63 c guideddiving : 0.00 0 0
6.59/6.63 c octane : 0.00 0 0
6.59/6.63 c rens : 0.00 0 0
6.59/6.63 c rins : 0.00 0 0
6.59/6.63 c localbranching : 0.00 0 0
6.59/6.63 c mutation : 0.00 0 0
6.59/6.63 c dins : 0.00 0 0
6.59/6.63 c undercover : 0.00 0 0
6.59/6.63 c nlp : 0.00 0 0
6.59/6.63 c trysol : 0.00 0 0
6.59/6.63 c LP : Time Calls Iterations Iter/call Iter/sec
6.59/6.63 c primal LP : 0.00 0 0 0.00 -
6.59/6.63 c dual LP : 0.11 9 683 75.89 6225.05
6.59/6.63 c lex dual LP : 0.00 0 0 0.00 -
6.59/6.63 c barrier LP : 0.00 0 0 0.00 -
6.59/6.63 c diving/probing LP: 0.00 0 0 0.00 -
6.59/6.63 c strong branching : 0.00 0 0 0.00 -
6.59/6.63 c (at root node) : - 0 0 0.00 -
6.59/6.63 c conflict analysis: 0.00 0 0 0.00 -
6.59/6.63 c B&B Tree :
6.59/6.63 c number of runs : 1
6.59/6.63 c nodes : 1
6.59/6.63 c nodes (total) : 1
6.59/6.63 c nodes left : 0
6.59/6.63 c max depth : 0
6.59/6.63 c max depth (total): 0
6.59/6.63 c backtracks : 0 (0.0%)
6.59/6.63 c delayed cutoffs : 0
6.59/6.63 c repropagations : 0 (0 domain reductions, 0 cutoffs)
6.59/6.63 c avg switch length: 2.00
6.59/6.63 c switching time : 0.00
6.59/6.63 c Solution :
6.59/6.63 c Solutions found : 3 (3 improvements)
6.59/6.63 c First Solution : +1.88800000000001e+03 (in run 1, after 1 nodes, 4.95 seconds, depth 0, found by <shifting>)
6.59/6.63 c Primal Bound : +1.88200000000000e+03 (in run 1, after 1 nodes, 6.44 seconds, depth 0, found by <relaxation>)
6.59/6.63 c Dual Bound : +1.88200000000000e+03
6.59/6.63 c Gap : 0.00 %
6.59/6.63 c Root Dual Bound : +1.88200000000000e+03
6.59/6.63 c Root Iterations : 683
6.59/6.66 c Time complete: 6.65.