0.00/0.00 c SCIP version 2.1.1.4 [precision: 8 byte] [memory: block] [mode: optimized] [LP solver: SoPlex 1.6.0.3] [GitHash: 947bdb7-dirty]
0.00/0.00 c Copyright (c) 2002-2012 Konrad-Zuse-Zentrum fuer Informationstechnik Berlin (ZIB)
0.00/0.00 c
0.00/0.00 c user parameter file <scip.set> not found - using default parameters
0.00/0.00 c reading problem <HOME/instance-3691964-1338031519.opb>
0.01/0.05 c original problem has 4316 variables (4316 bin, 0 int, 0 impl, 0 cont) and 11912 constraints
0.01/0.05 c problem read in 0.05
0.01/0.08 o 4316
0.01/0.08 c feasible solution found by trivial heuristic, objective value 4.316000e+03
0.01/0.08 c presolving:
0.08/0.12 c (round 1) 199 del vars, 3218 del conss, 0 add conss, 199 chg bounds, 6 chg sides, 6 chg coeffs, 0 upgd conss, 3358 impls, 0 clqs
0.08/0.13 c (round 2) 199 del vars, 4540 del conss, 0 add conss, 199 chg bounds, 6 chg sides, 6 chg coeffs, 0 upgd conss, 3358 impls, 0 clqs
0.89/0.93 c (round 3) 199 del vars, 6877 del conss, 0 add conss, 199 chg bounds, 62 chg sides, 6 chg coeffs, 8807 upgd conss, 3358 impls, 0 clqs
0.89/0.94 c (round 4) 839 del vars, 6976 del conss, 0 add conss, 199 chg bounds, 62 chg sides, 6 chg coeffs, 8807 upgd conss, 3358 impls, 0 clqs
0.89/0.94 c (round 5) 843 del vars, 8904 del conss, 0 add conss, 199 chg bounds, 62 chg sides, 6 chg coeffs, 8807 upgd conss, 3384 impls, 0 clqs
0.89/0.95 c (round 6) 946 del vars, 8942 del conss, 0 add conss, 199 chg bounds, 62 chg sides, 6 chg coeffs, 8871 upgd conss, 3384 impls, 0 clqs
0.89/0.95 c (round 7) 995 del vars, 8942 del conss, 0 add conss, 199 chg bounds, 62 chg sides, 6 chg coeffs, 8913 upgd conss, 3392 impls, 0 clqs
0.89/0.96 c (round 8) 995 del vars, 8942 del conss, 0 add conss, 199 chg bounds, 62 chg sides, 6 chg coeffs, 8948 upgd conss, 3394 impls, 0 clqs
0.89/0.97 c (round 9) 1026 del vars, 8975 del conss, 0 add conss, 199 chg bounds, 62 chg sides, 6 chg coeffs, 8948 upgd conss, 3394 impls, 0 clqs
0.89/0.98 c (round 10) 1044 del vars, 8984 del conss, 0 add conss, 199 chg bounds, 62 chg sides, 6 chg coeffs, 8949 upgd conss, 3396 impls, 0 clqs
1.00/1.01 c (1.0s) probing: 51/3272 (1.6%) - 0 fixings, 0 aggregations, 0 implications, 0 bound changes
1.00/1.01 c (1.0s) probing aborted: 50/50 successive totally useless probings
1.00/1.05 c (round 11) 1168 del vars, 9055 del conss, 0 add conss, 199 chg bounds, 62 chg sides, 6 chg coeffs, 8949 upgd conss, 3396 impls, 0 clqs
1.00/1.09 c (round 12) 1168 del vars, 9062 del conss, 0 add conss, 199 chg bounds, 62 chg sides, 6 chg coeffs, 8949 upgd conss, 3396 impls, 0 clqs
1.00/1.10 c (round 13) 1171 del vars, 9062 del conss, 0 add conss, 199 chg bounds, 62 chg sides, 6 chg coeffs, 8949 upgd conss, 3396 impls, 0 clqs
1.09/1.13 c (round 14) 1171 del vars, 9064 del conss, 0 add conss, 199 chg bounds, 62 chg sides, 6 chg coeffs, 8949 upgd conss, 3396 impls, 0 clqs
1.09/1.13 c (round 15) 1173 del vars, 9064 del conss, 0 add conss, 199 chg bounds, 62 chg sides, 6 chg coeffs, 8949 upgd conss, 3396 impls, 0 clqs
1.09/1.14 c (round 16) 1173 del vars, 9064 del conss, 0 add conss, 199 chg bounds, 62 chg sides, 6 chg coeffs, 8950 upgd conss, 3398 impls, 0 clqs
1.09/1.15 c (round 17) 1173 del vars, 9065 del conss, 0 add conss, 199 chg bounds, 62 chg sides, 6 chg coeffs, 8950 upgd conss, 3398 impls, 0 clqs
1.09/1.15 c (round 18) 1175 del vars, 9066 del conss, 0 add conss, 199 chg bounds, 62 chg sides, 6 chg coeffs, 8950 upgd conss, 3398 impls, 0 clqs
1.09/1.15 c (1.2s) probing: 57/3272 (1.7%) - 0 fixings, 0 aggregations, 0 implications, 0 bound changes
1.09/1.15 c (1.2s) probing aborted: 50/50 successive totally useless probings
1.09/1.15 c presolving (19 rounds):
1.09/1.15 c 1175 deleted vars, 9066 deleted constraints, 0 added constraints, 199 tightened bounds, 0 added holes, 62 changed sides, 6 changed coefficients
1.09/1.15 c 3398 implications, 0 cliques
1.09/1.15 c presolved problem has 3141 variables (3141 bin, 0 int, 0 impl, 0 cont) and 2846 constraints
1.09/1.15 c 307 constraints of type <setppc>
1.09/1.15 c 2539 constraints of type <logicor>
1.09/1.15 c transformed objective value is always integral (scale: 1)
1.09/1.15 c Presolving Time: 1.08
1.09/1.15 c - non default parameters ----------------------------------------------------------------------
1.09/1.15 c # SCIP version 2.1.1.4
1.09/1.15 c
1.09/1.15 c # maximal time in seconds to run
1.09/1.15 c # [type: real, range: [0,1.79769313486232e+308], default: 1e+20]
1.09/1.15 c limits/time = 1797
1.09/1.15 c
1.09/1.15 c # maximal memory usage in MB; reported memory usage is lower than real memory usage!
1.09/1.15 c # [type: real, range: [0,1.79769313486232e+308], default: 1e+20]
1.09/1.15 c limits/memory = 13950
1.09/1.15 c
1.09/1.15 c # default clock type (1: CPU user seconds, 2: wall clock time)
1.09/1.15 c # [type: int, range: [1,2], default: 1]
1.09/1.15 c timing/clocktype = 2
1.09/1.15 c
1.09/1.15 c # belongs reading time to solving time?
1.09/1.15 c # [type: bool, range: {TRUE,FALSE}, default: FALSE]
1.09/1.15 c timing/reading = TRUE
1.09/1.15 c
1.09/1.15 c # frequency for calling separator <rapidlearning> (-1: never, 0: only in root node)
1.09/1.15 c # [type: int, range: [-1,2147483647], default: -1]
1.09/1.15 c separating/rapidlearning/freq = 0
1.09/1.15 c
1.09/1.15 c -----------------------------------------------------------------------------------------------
1.09/1.15 c start solving
1.09/1.16 c
1.09/1.16 o 3520
1.09/1.16 c time | node | left |LP iter|LP it/n| mem |mdpt |frac |vars |cons |cols |rows |cuts |confs|strbr| dualbound | primalbound | gap
1.09/1.16 c t 1.2s| 1 | 0 | 0 | - | 18M| 0 | - |3141 |2846 | 0 | 0 | 0 | 0 | 0 | -- | 3.520000e+03 | Inf
1.09/1.17 o 862
1.09/1.17 c b 1.2s| 1 | 0 | 0 | - | 21M| 0 | - |3141 |2846 |3141 |2846 | 0 | 0 | 0 | -- | 8.620000e+02 | Inf
1.19/1.22 c 1.2s| 1 | 0 | 1351 | - | 21M| 0 | 657 |3141 |2846 |3141 |2846 | 0 | 0 | 0 | 7.554677e+02 | 8.620000e+02 | 14.10%
1.19/1.25 o 855
1.19/1.25 c b 1.2s| 1 | 0 | 1351 | - | 22M| 0 | 657 |3141 |2846 |3141 |2846 | 0 | 0 | 0 | 7.554677e+02 | 8.550000e+02 | 13.17%
1.49/1.55 c 1.5s| 1 | 0 | 1573 | - | 22M| 0 | 423 |3141 |2821 |3141 |2856 | 37 | 0 | 0 | 7.678699e+02 | 8.550000e+02 | 11.35%
1.59/1.64 c 1.6s| 1 | 0 | 1709 | - | 22M| 0 | 239 |3141 |2821 |3141 |2882 | 63 | 0 | 0 | 7.709801e+02 | 8.550000e+02 | 10.90%
1.59/1.64 o 823
1.59/1.64 c R 1.6s| 1 | 0 | 1709 | - | 22M| 0 | 239 |3141 |2821 |3141 |2882 | 63 | 0 | 0 | 7.709801e+02 | 8.230000e+02 | 6.75%
1.59/1.65 o 792
1.59/1.65 c b 1.6s| 1 | 0 | 1709 | - | 22M| 0 | 239 |3141 |2821 |3141 |2882 | 63 | 0 | 0 | 7.709801e+02 | 7.920000e+02 | 2.73%
1.69/1.74 c 1.7s| 1 | 0 | 1815 | - | 23M| 0 | 145 |3141 |2821 |3141 |2905 | 86 | 0 | 0 | 7.734082e+02 | 7.920000e+02 | 2.40%
1.69/1.74 o 786
1.69/1.74 c b 1.7s| 1 | 0 | 1815 | - | 23M| 0 | 145 |3141 |2821 |3141 |2905 | 86 | 0 | 0 | 7.734082e+02 | 7.860000e+02 | 1.63%
1.79/1.84 c 1.8s| 1 | 0 | 1874 | - | 23M| 0 | 140 |3141 |2821 |3141 |2919 | 100 | 0 | 0 | 7.746019e+02 | 7.860000e+02 | 1.47%
1.89/1.94 c 1.9s| 1 | 0 | 1919 | - | 23M| 0 | 75 |3141 |2821 |3141 |2929 | 110 | 0 | 0 | 7.752727e+02 | 7.860000e+02 | 1.38%
1.98/2.04 c 2.0s| 1 | 0 | 1985 | - | 23M| 0 | 103 |3141 |2821 |3141 |2937 | 118 | 0 | 0 | 7.755000e+02 | 7.860000e+02 | 1.35%
2.10/2.14 c 2.1s| 1 | 0 | 2006 | - | 24M| 0 | 131 |3141 |2821 |3141 |2943 | 124 | 0 | 0 | 7.756000e+02 | 7.860000e+02 | 1.34%
2.20/2.26 c 2.3s| 1 | 0 | 2035 | - | 24M| 0 | 62 |3141 |2821 |3141 |2949 | 130 | 0 | 0 | 7.756000e+02 | 7.860000e+02 | 1.34%
2.29/2.35 c time | node | left |LP iter|LP it/n| mem |mdpt |frac |vars |cons |cols |rows |cuts |confs|strbr| dualbound | primalbound | gap
2.29/2.35 c 2.3s| 1 | 0 | 2045 | - | 24M| 0 | 40 |3141 |2821 |3141 |2952 | 133 | 0 | 0 | 7.760000e+02 | 7.860000e+02 | 1.29%
2.29/2.35 o 786
2.29/2.35 c s 2.3s| 1 | 0 | 2045 | - | 24M| 0 | 40 |3141 |2821 |3141 |2952 | 133 | 0 | 0 | 7.760000e+02 | 7.860000e+02 | 1.29%
2.39/2.43 c 2.4s| 1 | 0 | 2056 | - | 24M| 0 | 50 |3141 |2821 |3141 |2954 | 135 | 0 | 0 | 7.760000e+02 | 7.860000e+02 | 1.29%
2.39/2.43 o 780
2.39/2.43 c b 2.4s| 1 | 0 | 2056 | - | 24M| 0 | 50 |3141 |2821 |3141 |2954 | 135 | 0 | 0 | 7.760000e+02 | 7.800000e+02 | 0.52%
2.39/2.45 c 2.4s| 1 | 0 | 2063 | - | 24M| 0 | 49 |3141 |2821 |3141 |2956 | 137 | 0 | 0 | 7.760000e+02 | 7.800000e+02 | 0.52%
2.39/2.47 c 2.5s| 1 | 0 | 2070 | - | 24M| 0 | 48 |3141 |2821 |3141 |2957 | 138 | 0 | 0 | 7.760000e+02 | 7.800000e+02 | 0.52%
2.39/2.49 c 2.5s| 1 | 0 | 2093 | - | 24M| 0 | 45 |3141 |2821 |3141 |2958 | 139 | 0 | 0 | 7.760000e+02 | 7.800000e+02 | 0.52%
2.49/2.51 c 2.5s| 1 | 0 | 2103 | - | 24M| 0 | 52 |3141 |2821 |3141 |2959 | 140 | 0 | 0 | 7.760000e+02 | 7.800000e+02 | 0.52%
2.49/2.56 o 777
2.49/2.56 c E 2.6s| 1 | 0 | 2103 | - | 24M| 0 | 52 |3141 |2821 |3141 |2959 | 140 | 0 | 0 | 7.760000e+02 | 7.770000e+02 | 0.13%
2.49/2.57 c 2.6s| 1 | 0 | 2103 | - | 24M| 0 | 52 |3141 |2821 |3141 |2959 | 140 | 0 | 0 | 7.760000e+02 | 7.770000e+02 | 0.13%
2.49/2.58 c 2.6s| 1 | 0 | 2103 | - | 24M| 0 | 52 |3141 |2821 |3141 |2928 | 140 | 0 | 0 | 7.760000e+02 | 7.770000e+02 | 0.13%
2.49/2.59 c 2.6s| 1 | 0 | 2103 | - | 24M| 0 | 52 |3141 |2486 |3141 |2618 | 140 | 0 | 0 | 7.760000e+02 | 7.770000e+02 | 0.13%
2.59/2.68 c 2.7s| 1 | 0 | 2121 | - | 24M| 0 | 30 |3141 |2486 |3141 |2618 | 140 | 0 | 13 | 7.760000e+02 | 7.770000e+02 | 0.13%
2.69/2.70 c 2.7s| 1 | 0 | 2126 | - | 24M| 0 | 30 |3141 |2486 |3141 |2578 | 141 | 0 | 13 | 7.760000e+02 | 7.770000e+02 | 0.13%
2.79/2.83 c 2.8s| 1 | 0 | 2137 | - | 24M| 0 | 19 |3141 |2486 |3141 |2578 | 141 | 0 | 35 | 7.760000e+02 | 7.770000e+02 | 0.13%
2.79/2.87 c time | node | left |LP iter|LP it/n| mem |mdpt |frac |vars |cons |cols |rows |cuts |confs|strbr| dualbound | primalbound | gap
2.79/2.87 c 2.9s| 1 | 0 | 2144 | - | 24M| 0 | 17 |3141 |2486 |3141 |2578 | 141 | 0 | 38 | 7.760000e+02 | 7.770000e+02 | 0.13%
2.79/2.89 c 2.9s| 1 | 0 | 2145 | - | 24M| 0 | 16 |3141 |2486 |3141 |2578 | 141 | 0 | 39 | 7.760000e+02 | 7.770000e+02 | 0.13%
2.89/2.90 c 2.9s| 1 | 2 | 2145 | - | 24M| 0 | 16 |3141 |2486 |3141 |2578 | 141 | 0 | 39 | 7.760000e+02 | 7.770000e+02 | 0.13%
2.89/2.90 c (run 1, node 1) restarting after 489 global fixings of integer variables
2.89/2.90 c
2.89/2.90 c (restart) converted 84 cuts from the global cut pool into linear constraints
2.89/2.90 c
2.89/2.92 c presolving:
2.89/2.92 c (round 1) 513 del vars, 154 del conss, 0 add conss, 0 chg bounds, 0 chg sides, 13 chg coeffs, 0 upgd conss, 3434 impls, 0 clqs
2.89/2.92 c (round 2) 521 del vars, 159 del conss, 0 add conss, 0 chg bounds, 0 chg sides, 13 chg coeffs, 85 upgd conss, 3434 impls, 0 clqs
2.89/2.97 c (round 3) 521 del vars, 172 del conss, 0 add conss, 0 chg bounds, 0 chg sides, 16 chg coeffs, 157 upgd conss, 3434 impls, 0 clqs
2.89/2.97 c (round 4) 705 del vars, 207 del conss, 0 add conss, 0 chg bounds, 0 chg sides, 19 chg coeffs, 157 upgd conss, 3434 impls, 0 clqs
2.99/3.08 c (round 5) 705 del vars, 436 del conss, 0 add conss, 0 chg bounds, 0 chg sides, 22 chg coeffs, 158 upgd conss, 3436 impls, 0 clqs
2.99/3.08 c (round 6) 838 del vars, 459 del conss, 0 add conss, 0 chg bounds, 0 chg sides, 22 chg coeffs, 158 upgd conss, 3436 impls, 0 clqs
3.09/3.10 c (round 7) 838 del vars, 460 del conss, 0 add conss, 0 chg bounds, 26 chg sides, 49 chg coeffs, 160 upgd conss, 3440 impls, 0 clqs
3.09/3.12 c (round 8) 849 del vars, 466 del conss, 0 add conss, 0 chg bounds, 26 chg sides, 50 chg coeffs, 160 upgd conss, 3440 impls, 0 clqs
3.09/3.12 c presolving (9 rounds):
3.09/3.12 c 849 deleted vars, 466 deleted constraints, 0 added constraints, 0 tightened bounds, 0 added holes, 26 changed sides, 51 changed coefficients
3.09/3.12 c 3440 implications, 0 cliques
3.09/3.12 c presolved problem has 2292 variables (2292 bin, 0 int, 0 impl, 0 cont) and 2104 constraints
3.09/3.12 c 54 constraints of type <knapsack>
3.09/3.12 c 239 constraints of type <setppc>
3.09/3.12 c 1811 constraints of type <logicor>
3.09/3.12 c transformed objective value is always integral (scale: 1)
3.09/3.12 c Presolving Time: 1.29
3.09/3.12 c
3.09/3.16 c time | node | left |LP iter|LP it/n| mem |mdpt |frac |vars |cons |cols |rows |cuts |confs|strbr| dualbound | primalbound | gap
3.09/3.16 c 3.2s| 1 | 0 | 3054 | - | 22M| 0 | 235 |2292 |2104 |2292 |2102 | 0 | 0 | 39 | 7.760000e+02 | 7.770000e+02 | 0.13%
3.09/3.17 c 3.2s| 1 | 0 | 3054 | - | 22M| 0 | 235 |2292 |2104 |2292 |2064 | 0 | 0 | 39 | 7.760000e+02 | 7.770000e+02 | 0.13%
3.19/3.25 c 3.2s| 1 | 0 | 3105 | - | 22M| 0 | 186 |2292 |1928 |2292 |1922 | 17 | 0 | 39 | 7.760000e+02 | 7.770000e+02 | 0.13%
3.29/3.33 c 3.3s| 1 | 0 | 3111 | - | 22M| 0 | 184 |2292 |1928 |2292 |1922 | 17 | 0 | 60 | 7.760000e+02 | 7.770000e+02 | 0.13%
3.29/3.38 c 3.4s| 1 | 0 | 3118 | - | 22M| 0 | 180 |2292 |1928 |2292 |1922 | 17 | 0 | 71 | 7.760000e+02 | 7.770000e+02 | 0.13%
3.39/3.49 c 3.5s| 1 | 0 | 3136 | - | 22M| 0 | 111 |2292 |1928 |2292 |1922 | 17 | 0 | 100 | 7.760000e+02 | 7.770000e+02 | 0.13%
3.49/3.53 c 3.5s| 1 | 0 | 3138 | - | 22M| 0 | 73 |2292 |1928 |2292 |1922 | 17 | 0 | 113 | 7.760000e+02 | 7.770000e+02 | 0.13%
3.49/3.58 c 3.6s| 1 | 0 | 3145 | - | 22M| 0 | 67 |2292 |1918 |2292 |1922 | 17 | 0 | 128 | 7.760000e+02 | 7.770000e+02 | 0.13%
3.58/3.64 c 3.6s| 1 | 0 | 3151 | - | 22M| 0 | 65 |2292 |1918 |2292 |1922 | 17 | 0 | 145 | 7.760000e+02 | 7.770000e+02 | 0.13%
3.68/3.70 c 3.7s| 1 | 0 | 3155 | - | 22M| 0 | 64 |2292 |1905 |2292 |1922 | 17 | 0 | 160 | 7.760000e+02 | 7.770000e+02 | 0.13%
3.68/3.72 c 3.7s| 1 | 0 | 3158 | - | 22M| 0 | 58 |2292 |1873 |2292 |1922 | 17 | 0 | 167 | 7.760000e+02 | 7.770000e+02 | 0.13%
3.68/3.72 c 3.7s| 1 | 2 | 3158 | - | 22M| 0 | 58 |2292 |1873 |2292 |1922 | 17 | 0 | 167 | 7.760000e+02 | 7.770000e+02 | 0.13%
3.68/3.72 c (run 2, node 1) restarting after 291 global fixings of integer variables
3.68/3.72 c
3.68/3.72 c (restart) converted 13 cuts from the global cut pool into linear constraints
3.68/3.72 c
3.68/3.73 c presolving:
3.68/3.74 c (round 1) 300 del vars, 109 del conss, 0 add conss, 0 chg bounds, 0 chg sides, 0 chg coeffs, 13 upgd conss, 3482 impls, 0 clqs
3.68/3.74 c (round 2) 303 del vars, 114 del conss, 0 add conss, 0 chg bounds, 0 chg sides, 0 chg coeffs, 13 upgd conss, 3486 impls, 0 clqs
3.68/3.74 c (round 3) 308 del vars, 116 del conss, 0 add conss, 0 chg bounds, 0 chg sides, 0 chg coeffs, 13 upgd conss, 3486 impls, 0 clqs
3.79/3.80 c (round 4) 308 del vars, 293 del conss, 0 add conss, 0 chg bounds, 0 chg sides, 0 chg coeffs, 34 upgd conss, 3486 impls, 0 clqs
3.79/3.80 c (round 5) 488 del vars, 322 del conss, 0 add conss, 0 chg bounds, 0 chg sides, 0 chg coeffs, 34 upgd conss, 3486 impls, 0 clqs
3.79/3.82 c (round 6) 488 del vars, 325 del conss, 0 add conss, 0 chg bounds, 38 chg sides, 104 chg coeffs, 37 upgd conss, 3496 impls, 0 clqs
3.79/3.84 c (round 7) 501 del vars, 337 del conss, 0 add conss, 0 chg bounds, 38 chg sides, 104 chg coeffs, 37 upgd conss, 3496 impls, 0 clqs
3.79/3.85 c presolving (8 rounds):
3.79/3.85 c 501 deleted vars, 337 deleted constraints, 0 added constraints, 0 tightened bounds, 0 added holes, 38 changed sides, 104 changed coefficients
3.79/3.85 c 3496 implications, 0 cliques
3.79/3.85 c presolved problem has 1791 variables (1791 bin, 0 int, 0 impl, 0 cont) and 1549 constraints
3.79/3.85 c 56 constraints of type <knapsack>
3.79/3.85 c 229 constraints of type <setppc>
3.79/3.85 c 1264 constraints of type <logicor>
3.79/3.85 c transformed objective value is always integral (scale: 1)
3.79/3.85 c Presolving Time: 1.41
3.79/3.85 c
3.79/3.87 c time | node | left |LP iter|LP it/n| mem |mdpt |frac |vars |cons |cols |rows |cuts |confs|strbr| dualbound | primalbound | gap
3.79/3.87 c 3.9s| 1 | 0 | 3775 | - | 21M| 0 | 103 |1791 |1549 |1791 |1549 | 0 | 0 | 167 | 7.760000e+02 | 7.770000e+02 | 0.13%
3.79/3.87 c 3.9s| 1 | 0 | 3775 | - | 21M| 0 | 103 |1791 |1549 |1791 |1546 | 0 | 0 | 167 | 7.760000e+02 | 7.770000e+02 | 0.13%
3.89/3.92 c 3.9s| 1 | 0 | 3807 | - | 21M| 0 | 81 |1791 |1419 |1791 |1441 | 11 | 0 | 167 | 7.760000e+02 | 7.770000e+02 | 0.13%
3.89/3.96 c 4.0s| 1 | 2 | 3807 | - | 21M| 0 | 81 |1791 |1419 |1791 |1441 | 11 | 0 | 184 | 7.760000e+02 | 7.770000e+02 | 0.13%
3.89/3.96 c (run 3, node 1) restarting after 182 global fixings of integer variables
3.89/3.96 c
3.89/3.96 c (restart) converted 10 cuts from the global cut pool into linear constraints
3.89/3.96 c
3.89/3.96 c presolving:
3.89/3.97 c (round 1) 202 del vars, 59 del conss, 0 add conss, 0 chg bounds, 5 chg sides, 51 chg coeffs, 10 upgd conss, 3512 impls, 0 clqs
3.89/3.97 c (round 2) 204 del vars, 63 del conss, 0 add conss, 0 chg bounds, 5 chg sides, 51 chg coeffs, 10 upgd conss, 3512 impls, 0 clqs
3.99/4.00 c (round 3) 204 del vars, 154 del conss, 0 add conss, 0 chg bounds, 5 chg sides, 51 chg coeffs, 17 upgd conss, 3512 impls, 0 clqs
3.99/4.00 c (round 4) 326 del vars, 185 del conss, 0 add conss, 0 chg bounds, 5 chg sides, 51 chg coeffs, 17 upgd conss, 3512 impls, 0 clqs
3.99/4.01 c (round 5) 326 del vars, 194 del conss, 0 add conss, 0 chg bounds, 38 chg sides, 86 chg coeffs, 18 upgd conss, 3514 impls, 0 clqs
3.99/4.02 c (round 6) 326 del vars, 194 del conss, 0 add conss, 0 chg bounds, 39 chg sides, 97 chg coeffs, 18 upgd conss, 3514 impls, 0 clqs
4.09/4.13 c presolving (7 rounds):
4.09/4.13 c 326 deleted vars, 194 deleted constraints, 0 added constraints, 0 tightened bounds, 0 added holes, 39 changed sides, 97 changed coefficients
4.09/4.13 c 3514 implications, 0 cliques
4.09/4.13 c presolved problem has 1465 variables (1465 bin, 0 int, 0 impl, 0 cont) and 1235 constraints
4.09/4.13 c 48 constraints of type <knapsack>
4.09/4.13 c 219 constraints of type <setppc>
4.09/4.13 c 968 constraints of type <logicor>
4.09/4.13 c transformed objective value is always integral (scale: 1)
4.09/4.13 c Presolving Time: 1.47
4.09/4.13 c
4.09/4.13 c time | node | left |LP iter|LP it/n| mem |mdpt |frac |vars |cons |cols |rows |cuts |confs|strbr| dualbound | primalbound | gap
4.09/4.13 c 4.0s| 1 | 0 | 4237 | - | 21M| 0 | 117 |1465 |1235 |1465 |1235 | 0 | 0 | 184 | 7.760000e+02 | 7.770000e+02 | 0.13%
4.09/4.13 c 4.0s| 1 | 0 | 4237 | - | 21M| 0 | 117 |1465 |1235 |1465 |1216 | 0 | 0 | 184 | 7.760000e+02 | 7.770000e+02 | 0.13%
4.09/4.13 c 4.1s| 1 | 0 | 4259 | - | 21M| 0 | 91 |1465 |1019 |1465 |1040 | 11 | 0 | 184 | 7.760000e+02 | 7.770000e+02 | 0.13%
4.09/4.13 c 4.1s| 1 | 2 | 4259 | - | 21M| 0 | 91 |1465 |1019 |1465 |1040 | 11 | 0 | 203 | 7.760000e+02 | 7.770000e+02 | 0.13%
4.09/4.13 c (run 4, node 1) restarting after 101 global fixings of integer variables
4.09/4.13 c
4.09/4.13 c (restart) converted 10 cuts from the global cut pool into linear constraints
4.09/4.13 c
4.09/4.13 c presolving:
4.09/4.13 c (round 1) 199 del vars, 51 del conss, 0 add conss, 0 chg bounds, 42 chg sides, 55 chg coeffs, 10 upgd conss, 3518 impls, 0 clqs
4.09/4.13 c (round 2) 201 del vars, 54 del conss, 0 add conss, 0 chg bounds, 67 chg sides, 80 chg coeffs, 10 upgd conss, 3520 impls, 0 clqs
4.09/4.14 c (round 3) 201 del vars, 79 del conss, 0 add conss, 0 chg bounds, 67 chg sides, 80 chg coeffs, 13 upgd conss, 3520 impls, 0 clqs
4.09/4.14 c (round 4) 247 del vars, 86 del conss, 0 add conss, 0 chg bounds, 67 chg sides, 80 chg coeffs, 13 upgd conss, 3520 impls, 0 clqs
4.09/4.15 c (round 5) 247 del vars, 88 del conss, 0 add conss, 0 chg bounds, 67 chg sides, 80 chg coeffs, 13 upgd conss, 3520 impls, 0 clqs
4.09/4.17 c (round 6) 343 del vars, 145 del conss, 0 add conss, 0 chg bounds, 67 chg sides, 80 chg coeffs, 13 upgd conss, 3520 impls, 0 clqs
4.09/4.17 c (round 7) 343 del vars, 149 del conss, 0 add conss, 0 chg bounds, 88 chg sides, 114 chg coeffs, 13 upgd conss, 3520 impls, 0 clqs
4.09/4.17 c (round 8) 343 del vars, 149 del conss, 0 add conss, 0 chg bounds, 90 chg sides, 129 chg coeffs, 13 upgd conss, 3520 impls, 0 clqs
4.09/4.17 c presolving (9 rounds):
4.09/4.17 c 343 deleted vars, 149 deleted constraints, 0 added constraints, 0 tightened bounds, 0 added holes, 90 changed sides, 129 changed coefficients
4.09/4.17 c 3520 implications, 0 cliques
4.09/4.17 c presolved problem has 1122 variables (1122 bin, 0 int, 0 impl, 0 cont) and 880 constraints
4.09/4.17 c 40 constraints of type <knapsack>
4.09/4.17 c 36 constraints of type <setppc>
4.09/4.17 c 804 constraints of type <logicor>
4.09/4.17 c transformed objective value is always integral (scale: 1)
4.09/4.17 c Presolving Time: 1.54
4.09/4.18 c
4.09/4.19 c time | node | left |LP iter|LP it/n| mem |mdpt |frac |vars |cons |cols |rows |cuts |confs|strbr| dualbound | primalbound | gap
4.09/4.19 c 4.2s| 1 | 0 | 4572 | - | 20M| 0 | 116 |1122 | 880 |1122 | 880 | 0 | 0 | 203 | 7.760000e+02 | 7.770000e+02 | 0.13%
4.09/4.19 c 4.2s| 1 | 0 | 4572 | - | 20M| 0 | 116 |1122 | 880 |1122 | 873 | 0 | 0 | 203 | 7.760000e+02 | 7.770000e+02 | 0.13%
4.19/4.22 c 4.2s| 1 | 0 | 4586 | - | 20M| 0 | 68 |1122 | 855 |1122 | 862 | 7 | 0 | 203 | 7.760000e+02 | 7.770000e+02 | 0.13%
4.19/4.24 c 4.2s| 1 | 2 | 4586 | - | 20M| 0 | 68 |1122 | 855 |1122 | 862 | 7 | 0 | 220 | 7.760000e+02 | 7.770000e+02 | 0.13%
4.29/4.32 o 776
4.29/4.32 c * 4.3s| 4 | 0 | 4614 | 4.0 | 20M| 2 | - |1122 | 855 |1122 | 835 | 7 | 0 | 272 | 7.760000e+02 | 7.760000e+02 | 0.00%
4.29/4.32 c
4.29/4.32 c SCIP Status : problem is solved [optimal solution found]
4.29/4.32 c Solving Time (sec) : 4.32
4.29/4.32 c Solving Nodes : 4 (total of 8 nodes in 5 runs)
4.29/4.32 c Primal Bound : +7.76000000000000e+02 (12 solutions)
4.29/4.32 c Dual Bound : +7.76000000000000e+02
4.29/4.32 c Gap : 0.00 %
4.29/4.32 s OPTIMUM FOUND
4.29/4.32 v -x4316 x4315 x4314 -x4313 x4312 -x4311 -x4310 -x4309 -x4308 -x4307 -x4306 -x4305 -x4304 -x4303 -x4302 -x4301 -x4300 -x4299 -x4298
4.29/4.32 v x4297 -x4296 x4295 x4294 -x4293 -x4292 x4291 -x4290 x4289 -x4288 x4287 -x4286 x4285 x4284 -x4283 -x4282 -x4281 -x4280 x4279
4.29/4.32 v -x4278 -x4277 -x4276 x4275 -x4274 x4273 x4272 x4271 -x4270 x4269 x4268 -x4267 -x4266 x4265 -x4264 -x4263 -x4262 -x4261 -x4260
4.29/4.32 v -x4259 x4258 -x4257 -x4256 -x4255 -x4254 -x4253 -x4252 -x4251 x4250 -x4249 -x4248 x4247 -x4246 -x4245 -x4244 -x4243 -x4242
4.29/4.32 v -x4241 -x4240 x4239 -x4238 -x4237 -x4236 -x4235 x4234 -x4233 -x4232 -x4231 -x4230 -x4229 -x4228 -x4227 x4226 -x4225 -x4224 -x4223
4.29/4.32 v -x4222 -x4221 -x4220 -x4219 x4218 x4217 -x4216 -x4215 -x4214 -x4213 -x4212 -x4211 x4210 -x4209 -x4208 -x4207 -x4206 -x4205
4.29/4.32 v -x4204 x4203 -x4202 -x4201 x4200 -x4199 -x4198 -x4197 -x4196 -x4195 -x4194 x4193 -x4192 -x4191 -x4190 -x4189 -x4188 -x4187
4.29/4.32 v -x4186 -x4185 -x4184 -x4183 -x4182 -x4181 x4180 -x4179 x4178 x4177 -x4176 -x4175 -x4174 x4173 x4172 -x4171 x4170 -x4169 -x4168
4.29/4.32 v -x4167 -x4166 -x4165 -x4164 -x4163 -x4162 x4161 -x4160 x4159 -x4158 -x4157 -x4156 x4155 x4154 x4153 -x4152 x4151 x4150 -x4149
4.29/4.32 v -x4148 -x4147 x4146 -x4145 -x4144 -x4143 x4142 -x4141 -x4140 x4139 -x4138 x4137 -x4136 -x4135 -x4134 x4133 -x4132 x4131
4.29/4.32 v -x4130 -x4129 -x4128 -x4127 -x4126 -x4125 -x4124 -x4123 x4122 -x4121 -x4120 -x4119 x4118 -x4117 -x4116 -x4115 -x4114 -x4113 -x4112
4.29/4.32 v -x4111 -x4110 -x4109 x4108 -x4107 -x4106 x4105 -x4104 -x4103 -x4102 -x4101 -x4100 -x4099 -x4098 x4097 -x4096 x4095 -x4094
4.29/4.32 v -x4093 -x4092 -x4091 -x4090 -x4089 x4088 -x4087 -x4086 x4085 x4084 x4083 -x4082 x4081 x4080 -x4079 x4078 -x4077 -x4076 -x4075
4.29/4.32 v -x4074 -x4073 x4072 x4071 -x4070 -x4069 x4068 -x4067 -x4066 -x4065 -x4064 -x4063 -x4062 -x4061 -x4060 x4059 -x4058 -x4057
4.29/4.32 v -x4056 -x4055 x4054 -x4053 x4052 x4051 x4050 -x4049 x4048 x4047 -x4046 -x4045 x4044 -x4043 -x4042 -x4041 -x4040 -x4039 x4038
4.29/4.32 v -x4037 -x4036 -x4035 -x4034 -x4033 -x4032 -x4031 -x4030 -x4029 -x4028 -x4027 x4026 x4025 x4024 -x4023 x4022 x4021 -x4020 -x4019
4.29/4.32 v -x4018 -x4017 x4016 -x4015 -x4014 x4013 -x4012 -x4011 -x4010 -x4009 -x4008 -x4007 -x4006 -x4005 -x4004 -x4003 -x4002 -x4001
4.29/4.32 v -x4000 -x3999 -x3998 -x3997 -x3996 -x3995 -x3994 x3993 -x3992 x3991 -x3990 -x3989 x3988 -x3987 x3986 x3985 x3984 -x3983 x3982
4.29/4.32 v -x3981 x3980 x3979 -x3978 -x3977 x3976 x3975 x3974 x3973 x3972 -x3971 -x3970 x3969 -x3968 -x3967 -x3966 -x3965 x3964 -x3963
4.29/4.32 v -x3962 -x3961 -x3960 -x3959 -x3958 -x3957 x3956 -x3955 -x3954 x3953 x3952 x3951 -x3950 -x3949 -x3948 x3947 -x3946 x3945 x3944
4.29/4.32 v -x3943 -x3942 -x3941 -x3940 -x3939 -x3938 -x3937 x3936 -x3935 x3934 -x3933 -x3932 -x3931 -x3930 -x3929 -x3928 -x3927 -x3926
4.29/4.32 v -x3925 -x3924 -x3923 -x3922 -x3921 -x3920 -x3919 -x3918 -x3917 x3916 x3915 x3914 -x3913 -x3912 x3911 -x3910 x3909 -x3908 x3907
4.29/4.32 v -x3906 -x3905 x3904 -x3903 x3902 x3901 -x3900 x3899 x3898 x3897 -x3896 -x3895 x3894 -x3893 -x3892 -x3891 -x3890 x3889 -x3888
4.29/4.32 v -x3887 -x3886 -x3885 -x3884 -x3883 -x3882 -x3881 x3880 -x3879 x3878 -x3877 x3876 -x3875 -x3874 -x3873 x3872 -x3871 -x3870
4.29/4.32 v x3869 -x3868 -x3867 -x3866 -x3865 -x3864 -x3863 -x3862 -x3861 -x3860 -x3859 -x3858 -x3857 -x3856 -x3855 -x3854 -x3853 -x3852
4.29/4.32 v -x3851 x3850 x3849 -x3848 -x3847 -x3846 -x3845 x3844 -x3843 -x3842 -x3841 -x3840 x3839 -x3838 -x3837 -x3836 -x3835 x3834 x3833
4.29/4.32 v x3832 -x3831 -x3830 -x3829 -x3828 -x3827 x3826 -x3825 x3824 -x3823 -x3822 -x3821 -x3820 -x3819 x3818 -x3817 x3816 -x3815
4.29/4.32 v -x3814 -x3813 -x3812 -x3811 -x3810 x3809 -x3808 -x3807 -x3806 -x3805 -x3804 -x3803 -x3802 -x3801 -x3800 x3799 x3798 -x3797 x3796
4.29/4.32 v x3795 -x3794 -x3793 -x3792 -x3791 -x3790 x3789 -x3788 x3787 x3786 x3785 -x3784 x3783 x3782 -x3781 x3780 -x3779 -x3778 -x3777
4.29/4.32 v -x3776 -x3775 -x3774 x3773 -x3772 x3771 -x3770 -x3769 -x3768 -x3767 x3766 -x3765 x3764 -x3763 -x3762 -x3761 -x3760 -x3759
4.29/4.32 v x3758 -x3757 -x3756 -x3755 -x3754 -x3753 -x3752 -x3751 -x3750 x3749 -x3748 x3747 x3746 -x3745 x3744 -x3743 -x3742 x3741 -x3740
4.29/4.32 v -x3739 -x3738 -x3737 -x3736 -x3735 -x3734 -x3733 x3732 -x3731 -x3730 -x3729 -x3728 -x3727 x3726 -x3725 -x3724 x3723 -x3722
4.29/4.32 v -x3721 -x3720 -x3719 x3718 -x3717 -x3716 -x3715 -x3714 x3713 -x3712 -x3711 -x3710 -x3709 -x3708 -x3707 -x3706 -x3705 -x3704
4.29/4.32 v -x3703 -x3702 -x3701 x3700 -x3699 -x3698 -x3697 -x3696 -x3695 -x3694 -x3693 -x3692 -x3691 -x3690 -x3689 x3688 -x3687 -x3686 -x3685
4.29/4.32 v x3684 -x3683 x3682 x3681 -x3680 x3679 -x3678 x3677 -x3676 -x3675 -x3674 x3673 x3672 x3671 x3670 -x3669 x3668 x3667 x3666
4.29/4.32 v x3665 x3664 -x3663 -x3662 -x3661 -x3660 -x3659 -x3658 -x3657 -x3656 -x3655 -x3654 -x3653 -x3652 x3651 x3650 x3649 -x3648 -x3647
4.29/4.32 v -x3646 -x3645 -x3644 x3643 -x3642 -x3641 -x3640 -x3639 -x3638 -x3637 -x3636 -x3635 -x3634 -x3633 x3632 x3631 x3630 -x3629
4.29/4.32 v -x3628 -x3627 -x3626 -x3625 -x3624 -x3623 x3622 -x3621 -x3620 x3619 x3618 -x3617 -x3616 -x3615 -x3614 -x3613 -x3612 -x3611
4.29/4.32 v x3610 -x3609 -x3608 -x3607 -x3606 -x3605 -x3604 -x3603 x3602 x3601 -x3600 -x3599 -x3598 -x3597 -x3596 x3595 -x3594 x3593 x3592
4.29/4.32 v x3591 -x3590 -x3589 -x3588 -x3587 -x3586 -x3585 -x3584 x3583 x3582 -x3581 -x3580 -x3579 -x3578 -x3577 -x3576 -x3575 -x3574
4.29/4.32 v -x3573 -x3572 x3571 x3570 -x3569 -x3568 -x3567 -x3566 -x3565 -x3564 -x3563 x3562 -x3561 -x3560 -x3559 x3558 -x3557 -x3556 -x3555
4.29/4.32 v x3554 x3553 x3552 x3551 -x3550 x3549 -x3548 -x3547 -x3546 -x3545 -x3544 -x3543 -x3542 x3541 x3540 x3539 x3538 -x3537 -x3536
4.29/4.32 v -x3535 -x3534 -x3533 -x3532 -x3531 -x3530 -x3529 -x3528 -x3527 -x3526 x3525 -x3524 -x3523 -x3522 x3521 -x3520 -x3519 -x3518
4.29/4.32 v -x3517 -x3516 x3515 -x3514 -x3513 x3512 -x3511 -x3510 x3509 -x3508 x3507 x3506 -x3505 -x3504 -x3503 -x3502 -x3501 -x3500 -x3499
4.29/4.32 v -x3498 -x3497 x3496 -x3495 -x3494 -x3493 -x3492 -x3491 -x3490 -x3489 x3488 -x3487 x3486 -x3485 x3484 -x3483 -x3482 -x3481
4.29/4.32 v -x3480 -x3479 -x3478 -x3477 x3476 -x3475 -x3474 -x3473 -x3472 -x3471 x3470 -x3469 x3468 x3467 -x3466 -x3465 -x3464 x3463 -x3462
4.29/4.32 v -x3461 x3460 x3459 -x3458 -x3457 -x3456 -x3455 -x3454 -x3453 x3452 -x3451 -x3450 -x3449 -x3448 -x3447 -x3446 -x3445 -x3444
4.29/4.32 v x3443 -x3442 -x3441 -x3440 -x3439 -x3438 x3437 x3436 -x3435 -x3434 -x3433 -x3432 -x3431 -x3430 -x3429 x3428 -x3427 -x3426
4.29/4.33 v -x3425 -x3424 -x3423 -x3422 -x3421 -x3420 x3419 x3418 x3417 -x3416 x3415 -x3414 -x3413 -x3412 -x3411 -x3410 -x3409 -x3408 -x3407
4.29/4.33 v -x3406 x3405 -x3404 -x3403 x3402 -x3401 -x3400 -x3399 -x3398 -x3397 -x3396 -x3395 -x3394 -x3393 -x3392 -x3391 -x3390 x3389
4.29/4.33 v -x3388 x3387 -x3386 -x3385 -x3384 -x3383 x3382 x3381 x3380 -x3379 -x3378 -x3377 -x3376 -x3375 -x3374 -x3373 -x3372 -x3371 -x3370
4.29/4.33 v -x3369 -x3368 -x3367 -x3366 -x3365 -x3364 -x3363 -x3362 x3361 -x3360 -x3359 -x3358 -x3357 -x3356 -x3355 -x3354 -x3353 -x3352
4.29/4.33 v -x3351 -x3350 -x3349 -x3348 -x3347 x3346 -x3345 -x3344 -x3343 -x3342 -x3341 -x3340 -x3339 x3338 -x3337 -x3336 -x3335 -x3334
4.29/4.33 v -x3333 -x3332 x3331 x3330 -x3329 -x3328 -x3327 x3326 -x3325 -x3324 -x3323 x3322 -x3321 -x3320 -x3319 x3318 -x3317 -x3316
4.29/4.33 v -x3315 x3314 -x3313 -x3312 -x3311 -x3310 -x3309 x3308 -x3307 -x3306 -x3305 x3304 -x3303 -x3302 -x3301 -x3300 -x3299 -x3298 -x3297
4.29/4.33 v -x3296 -x3295 -x3294 -x3293 -x3292 -x3291 -x3290 -x3289 -x3288 -x3287 -x3286 x3285 x3284 -x3283 -x3282 -x3281 -x3280 -x3279
4.29/4.33 v -x3278 x3277 -x3276 -x3275 -x3274 -x3273 -x3272 x3271 -x3270 x3269 -x3268 -x3267 -x3266 x3265 -x3264 x3263 -x3262 -x3261
4.29/4.33 v -x3260 -x3259 -x3258 -x3257 -x3256 -x3255 -x3254 -x3253 -x3252 -x3251 -x3250 x3249 x3248 x3247 x3246 x3245 x3244 -x3243 -x3242
4.29/4.33 v -x3241 -x3240 -x3239 -x3238 -x3237 -x3236 -x3235 -x3234 x3233 -x3232 -x3231 -x3230 -x3229 -x3228 -x3227 -x3226 -x3225 -x3224
4.29/4.33 v -x3223 x3222 x3221 -x3220 -x3219 -x3218 -x3217 -x3216 -x3215 -x3214 -x3213 -x3212 -x3211 -x3210 -x3209 -x3208 -x3207 -x3206
4.29/4.33 v x3205 -x3204 -x3203 -x3202 -x3201 -x3200 -x3199 -x3198 -x3197 x3196 -x3195 -x3194 -x3193 -x3192 -x3191 -x3190 -x3189 x3188
4.29/4.33 v -x3187 -x3186 -x3185 -x3184 -x3183 -x3182 -x3181 -x3180 -x3179 -x3178 -x3177 -x3176 -x3175 -x3174 -x3173 -x3172 -x3171 -x3170
4.29/4.33 v -x3169 -x3168 -x3167 -x3166 -x3165 -x3164 -x3163 x3162 x3161 x3160 -x3159 x3158 -x3157 -x3156 -x3155 -x3154 -x3153 -x3152 -x3151
4.29/4.33 v -x3150 -x3149 -x3148 -x3147 -x3146 -x3145 -x3144 -x3143 x3142 -x3141 -x3140 -x3139 x3138 -x3137 -x3136 -x3135 -x3134 -x3133
4.29/4.33 v -x3132 -x3131 -x3130 -x3129 -x3128 -x3127 -x3126 -x3125 -x3124 -x3123 -x3122 -x3121 -x3120 -x3119 -x3118 -x3117 -x3116 -x3115
4.29/4.33 v -x3114 -x3113 -x3112 -x3111 -x3110 -x3109 -x3108 -x3107 -x3106 -x3105 -x3104 -x3103 -x3102 -x3101 -x3100 x3099 x3098 -x3097
4.29/4.33 v -x3096 -x3095 x3094 -x3093 -x3092 -x3091 -x3090 -x3089 -x3088 -x3087 -x3086 -x3085 -x3084 -x3083 -x3082 -x3081 -x3080 -x3079
4.29/4.33 v -x3078 -x3077 -x3076 -x3075 -x3074 -x3073 -x3072 -x3071 -x3070 x3069 -x3068 -x3067 -x3066 -x3065 -x3064 -x3063 -x3062 x3061
4.29/4.33 v -x3060 -x3059 -x3058 -x3057 -x3056 -x3055 -x3054 -x3053 -x3052 -x3051 -x3050 -x3049 -x3048 -x3047 -x3046 -x3045 -x3044 -x3043
4.29/4.33 v -x3042 -x3041 -x3040 -x3039 -x3038 -x3037 -x3036 -x3035 -x3034 -x3033 -x3032 -x3031 -x3030 -x3029 -x3028 -x3027 -x3026 -x3025
4.29/4.33 v -x3024 -x3023 -x3022 -x3021 -x3020 x3019 -x3018 -x3017 -x3016 -x3015 -x3014 -x3013 -x3012 -x3011 -x3010 x3009 -x3008 -x3007
4.29/4.33 v -x3006 x3005 x3004 -x3003 -x3002 -x3001 -x3000 x2999 -x2998 x2997 -x2996 x2995 -x2994 -x2993 -x2992 -x2991 x2990 -x2989 -x2988
4.29/4.33 v -x2987 -x2986 -x2985 -x2984 -x2983 -x2982 -x2981 -x2980 x2979 -x2978 -x2977 x2976 -x2975 x2974 x2973 -x2972 -x2971 x2970
4.29/4.33 v -x2969 -x2968 -x2967 x2966 x2965 -x2964 -x2963 -x2962 -x2961 x2960 -x2959 -x2958 -x2957 -x2956 -x2955 -x2954 x2953 -x2952 -x2951
4.29/4.33 v -x2950 -x2949 -x2948 -x2947 -x2946 -x2945 -x2944 -x2943 -x2942 -x2941 -x2940 -x2939 -x2938 -x2937 -x2936 x2935 x2934 -x2933
4.29/4.33 v -x2932 x2931 -x2930 -x2929 -x2928 x2927 -x2926 -x2925 -x2924 -x2923 -x2922 -x2921 -x2920 -x2919 -x2918 -x2917 -x2916 -x2915
4.29/4.33 v -x2914 -x2913 -x2912 -x2911 -x2910 x2909 x2908 x2907 x2906 -x2905 -x2904 x2903 -x2902 -x2901 -x2900 -x2899 -x2898 x2897 -x2896
4.29/4.33 v -x2895 -x2894 -x2893 -x2892 -x2891 -x2890 -x2889 -x2888 -x2887 -x2886 -x2885 -x2884 -x2883 -x2882 -x2881 -x2880 -x2879
4.29/4.33 v -x2878 -x2877 -x2876 -x2875 -x2874 -x2873 -x2872 -x2871 -x2870 x2869 -x2868 -x2867 -x2866 -x2865 -x2864 -x2863 -x2862 -x2861
4.29/4.33 v x2860 -x2859 -x2858 -x2857 -x2856 x2855 -x2854 x2853 -x2852 x2851 -x2850 x2849 -x2848 -x2847 -x2846 -x2845 -x2844 x2843 -x2842
4.29/4.33 v -x2841 -x2840 x2839 -x2838 -x2837 -x2836 -x2835 -x2834 -x2833 x2832 -x2831 -x2830 -x2829 -x2828 x2827 x2826 -x2825 -x2824 -x2823
4.29/4.33 v -x2822 -x2821 -x2820 -x2819 -x2818 -x2817 -x2816 -x2815 x2814 -x2813 -x2812 x2811 -x2810 -x2809 -x2808 x2807 -x2806 -x2805
4.29/4.33 v -x2804 x2803 -x2802 -x2801 -x2800 -x2799 x2798 -x2797 -x2796 x2795 -x2794 -x2793 -x2792 -x2791 -x2790 -x2789 -x2788 -x2787
4.29/4.33 v x2786 -x2785 -x2784 -x2783 -x2782 -x2781 -x2780 -x2779 -x2778 -x2777 -x2776 -x2775 -x2774 -x2773 -x2772 x2771 -x2770 -x2769
4.29/4.33 v -x2768 -x2767 -x2766 x2765 -x2764 -x2763 -x2762 x2761 -x2760 -x2759 -x2758 -x2757 -x2756 -x2755 -x2754 -x2753 -x2752 -x2751
4.29/4.33 v -x2750 -x2749 -x2748 -x2747 -x2746 -x2745 -x2744 -x2743 -x2742 -x2741 -x2740 -x2739 -x2738 -x2737 -x2736 x2735 -x2734 -x2733
4.29/4.33 v x2732 -x2731 x2730 -x2729 -x2728 -x2727 -x2726 -x2725 -x2724 -x2723 -x2722 -x2721 -x2720 -x2719 -x2718 -x2717 -x2716 -x2715 -x2714
4.29/4.33 v -x2713 -x2712 -x2711 -x2710 -x2709 -x2708 -x2707 -x2706 -x2705 -x2704 -x2703 -x2702 -x2701 x2700 -x2699 -x2698 -x2697 -x2696
4.29/4.33 v -x2695 -x2694 x2693 x2692 -x2691 x2690 -x2689 -x2688 -x2687 -x2686 -x2685 -x2684 -x2683 -x2682 -x2681 -x2680 -x2679 x2678
4.29/4.33 v -x2677 x2676 -x2675 -x2674 -x2673 -x2672 -x2671 -x2670 -x2669 -x2668 -x2667 -x2666 x2665 x2664 -x2663 -x2662 -x2661 -x2660
4.29/4.33 v x2659 -x2658 x2657 -x2656 -x2655 -x2654 x2653 -x2652 -x2651 -x2650 -x2649 -x2648 -x2647 -x2646 -x2645 -x2644 -x2643 -x2642 -x2641
4.29/4.33 v x2640 -x2639 -x2638 -x2637 -x2636 x2635 -x2634 -x2633 -x2632 -x2631 -x2630 -x2629 -x2628 -x2627 -x2626 -x2625 -x2624 x2623
4.29/4.33 v -x2622 -x2621 -x2620 -x2619 -x2618 x2617 x2616 -x2615 -x2614 x2613 -x2612 -x2611 -x2610 x2609 -x2608 -x2607 x2606 x2605 x2604
4.29/4.33 v -x2603 -x2602 -x2601 -x2600 -x2599 x2598 x2597 -x2596 -x2595 -x2594 -x2593 -x2592 x2591 x2590 -x2589 -x2588 -x2587 -x2586
4.29/4.33 v -x2585 -x2584 -x2583 -x2582 -x2581 -x2580 -x2579 -x2578 -x2577 -x2576 -x2575 -x2574 -x2573 -x2572 x2571 -x2570 -x2569 -x2568
4.29/4.33 v -x2567 -x2566 -x2565 -x2564 x2563 -x2562 -x2561 -x2560 -x2559 -x2558 -x2557 -x2556 x2555 x2554 -x2553 -x2552 -x2551 -x2550
4.29/4.33 v -x2549 -x2548 -x2547 x2546 -x2545 -x2544 -x2543 -x2542 -x2541 -x2540 -x2539 -x2538 -x2537 -x2536 -x2535 -x2534 -x2533 -x2532
4.29/4.33 v -x2531 -x2530 -x2529 x2528 -x2527 -x2526 -x2525 -x2524 -x2523 -x2522 -x2521 -x2520 -x2519 -x2518 -x2517 -x2516 -x2515 -x2514
4.29/4.33 v -x2513 -x2512 x2511 -x2510 -x2509 -x2508 x2507 -x2506 -x2505 -x2504 -x2503 -x2502 -x2501 -x2500 -x2499 -x2498 -x2497 -x2496 -x2495
4.29/4.33 v -x2494 -x2493 -x2492 -x2491 -x2490 -x2489 -x2488 -x2487 -x2486 -x2485 -x2484 x2483 -x2482 -x2481 -x2480 -x2479 x2478 -x2477
4.29/4.33 v x2476 -x2475 -x2474 -x2473 -x2472 -x2471 -x2470 -x2469 x2468 -x2467 -x2466 -x2465 -x2464 -x2463 -x2462 -x2461 -x2460 -x2459
4.29/4.33 v -x2458 x2457 -x2456 -x2455 -x2454 -x2453 -x2452 -x2451 -x2450 -x2449 -x2448 -x2447 -x2446 -x2445 -x2444 -x2443 -x2442 -x2441
4.29/4.33 v -x2440 -x2439 x2438 -x2437 x2436 -x2435 -x2434 -x2433 -x2432 -x2431 -x2430 -x2429 -x2428 -x2427 -x2426 -x2425 -x2424 -x2423
4.29/4.33 v -x2422 -x2421 -x2420 -x2419 -x2418 -x2417 -x2416 -x2415 -x2414 -x2413 -x2412 -x2411 -x2410 -x2409 -x2408 -x2407 -x2406 -x2405
4.29/4.33 v -x2404 -x2403 -x2402 -x2401 -x2400 -x2399 -x2398 -x2397 x2396 -x2395 -x2394 -x2393 -x2392 -x2391 -x2390 -x2389 -x2388 -x2387
4.29/4.33 v -x2386 x2385 -x2384 -x2383 -x2382 -x2381 -x2380 -x2379 -x2378 -x2377 -x2376 -x2375 -x2374 -x2373 -x2372 -x2371 x2370 x2369
4.29/4.33 v -x2368 x2367 -x2366 -x2365 -x2364 -x2363 -x2362 -x2361 -x2360 -x2359 -x2358 -x2357 x2356 -x2355 -x2354 -x2353 -x2352 -x2351
4.29/4.33 v -x2350 -x2349 -x2348 -x2347 -x2346 -x2345 -x2344 x2343 -x2342 -x2341 -x2340 -x2339 -x2338 x2337 -x2336 -x2335 x2334 -x2333 -x2332
4.29/4.33 v -x2331 -x2330 x2329 x2328 -x2327 -x2326 -x2325 -x2324 -x2323 -x2322 x2321 -x2320 -x2319 -x2318 -x2317 -x2316 -x2315 -x2314
4.29/4.33 v -x2313 -x2312 -x2311 x2310 -x2309 x2308 -x2307 -x2306 -x2305 -x2304 x2303 -x2302 -x2301 -x2300 -x2299 -x2298 x2297 x2296
4.29/4.33 v -x2295 x2294 x2293 -x2292 -x2291 -x2290 -x2289 -x2288 -x2287 -x2286 -x2285 -x2284 -x2283 -x2282 -x2281 -x2280 -x2279 -x2278 -x2277
4.29/4.33 v -x2276 -x2275 x2274 -x2273 -x2272 x2271 -x2270 -x2269 x2268 x2267 x2266 -x2265 x2264 -x2263 -x2262 -x2261 -x2260 -x2259
4.29/4.33 v -x2258 -x2257 -x2256 -x2255 -x2254 -x2253 -x2252 -x2251 -x2250 -x2249 -x2248 -x2247 -x2246 -x2245 -x2244 -x2243 -x2242 -x2241
4.29/4.33 v -x2240 -x2239 -x2238 -x2237 -x2236 -x2235 -x2234 -x2233 -x2232 -x2231 -x2230 -x2229 -x2228 -x2227 -x2226 x2225 -x2224 -x2223
4.29/4.33 v -x2222 -x2221 -x2220 -x2219 -x2218 -x2217 -x2216 -x2215 -x2214 -x2213 x2212 -x2211 -x2210 -x2209 -x2208 -x2207 -x2206 -x2205
4.29/4.33 v x2204 -x2203 -x2202 -x2201 x2200 -x2199 -x2198 -x2197 x2196 -x2195 -x2194 x2193 -x2192 -x2191 -x2190 -x2189 -x2188 x2187 -x2186
4.29/4.33 v -x2185 -x2184 -x2183 -x2182 -x2181 x2180 x2179 x2178 -x2177 -x2176 -x2175 -x2174 x2173 -x2172 -x2171 x2170 x2169 -x2168
4.29/4.33 v -x2167 x2166 -x2165 -x2164 -x2163 -x2162 -x2161 -x2160 -x2159 -x2158 -x2157 -x2156 -x2155 -x2154 -x2153 -x2152 x2151 -x2150 -x2149
4.29/4.33 v -x2148 -x2147 -x2146 -x2145 -x2144 -x2143 -x2142 -x2141 -x2140 -x2139 -x2138 -x2137 -x2136 -x2135 -x2134 -x2133 -x2132
4.29/4.33 v -x2131 -x2130 -x2129 -x2128 -x2127 -x2126 -x2125 -x2124 -x2123 -x2122 -x2121 -x2120 x2119 -x2118 x2117 -x2116 -x2115 -x2114 -x2113
4.29/4.33 v -x2112 x2111 -x2110 -x2109 x2108 -x2107 x2106 x2105 x2104 x2103 -x2102 x2101 -x2100 -x2099 x2098 x2097 x2096 -x2095 -x2094
4.29/4.33 v -x2093 x2092 -x2091 -x2090 -x2089 -x2088 -x2087 x2086 -x2085 -x2084 -x2083 -x2082 -x2081 -x2080 -x2079 -x2078 -x2077 -x2076
4.29/4.33 v -x2075 x2074 -x2073 -x2072 -x2071 -x2070 -x2069 -x2068 -x2067 -x2066 -x2065 -x2064 -x2063 -x2062 -x2061 -x2060 x2059 -x2058
4.29/4.33 v -x2057 x2056 -x2055 -x2054 -x2053 -x2052 -x2051 -x2050 -x2049 -x2048 -x2047 -x2046 -x2045 -x2044 -x2043 x2042 -x2041 -x2040
4.29/4.33 v -x2039 -x2038 -x2037 -x2036 -x2035 -x2034 -x2033 -x2032 -x2031 -x2030 -x2029 -x2028 -x2027 -x2026 -x2025 -x2024 -x2023 -x2022
4.29/4.33 v -x2021 -x2020 -x2019 x2018 -x2017 -x2016 -x2015 -x2014 -x2013 -x2012 -x2011 -x2010 -x2009 -x2008 -x2007 -x2006 -x2005 -x2004
4.29/4.33 v -x2003 -x2002 -x2001 -x2000 -x1999 -x1998 -x1997 -x1996 -x1995 -x1994 -x1993 -x1992 -x1991 -x1990 -x1989 -x1988 -x1987 -x1986
4.29/4.33 v -x1985 -x1984 -x1983 -x1982 -x1981 -x1980 -x1979 -x1978 -x1977 -x1976 -x1975 x1974 -x1973 -x1972 -x1971 -x1970 x1969 -x1968
4.29/4.33 v x1967 -x1966 -x1965 -x1964 -x1963 -x1962 -x1961 x1960 -x1959 x1958 -x1957 -x1956 -x1955 -x1954 x1953 x1952 -x1951 -x1950 -x1949
4.29/4.33 v -x1948 -x1947 -x1946 -x1945 -x1944 -x1943 x1942 x1941 -x1940 -x1939 -x1938 -x1937 -x1936 -x1935 -x1934 -x1933 x1932 -x1931
4.29/4.33 v -x1930 -x1929 -x1928 x1927 -x1926 -x1925 x1924 -x1923 -x1922 x1921 -x1920 -x1919 -x1918 -x1917 -x1916 -x1915 -x1914 -x1913
4.29/4.33 v -x1912 -x1911 -x1910 -x1909 -x1908 -x1907 x1906 -x1905 -x1904 -x1903 -x1902 -x1901 -x1900 -x1899 x1898 -x1897 -x1896 -x1895
4.29/4.33 v -x1894 -x1893 -x1892 -x1891 -x1890 -x1889 -x1888 -x1887 -x1886 -x1885 x1884 -x1883 -x1882 -x1881 -x1880 -x1879 -x1878 -x1877
4.29/4.33 v -x1876 -x1875 -x1874 -x1873 -x1872 -x1871 -x1870 -x1869 x1868 -x1867 -x1866 -x1865 -x1864 -x1863 -x1862 -x1861 -x1860 -x1859
4.29/4.33 v -x1858 -x1857 x1856 -x1855 -x1854 -x1853 -x1852 -x1851 -x1850 x1849 x1848 -x1847 -x1846 -x1845 -x1844 -x1843 -x1842 -x1841 -x1840
4.29/4.33 v -x1839 -x1838 -x1837 -x1836 -x1835 x1834 -x1833 -x1832 -x1831 -x1830 x1829 -x1828 -x1827 -x1826 -x1825 -x1824 -x1823 -x1822
4.29/4.33 v -x1821 -x1820 -x1819 -x1818 -x1817 -x1816 -x1815 -x1814 -x1813 -x1812 -x1811 -x1810 -x1809 -x1808 -x1807 x1806 -x1805 -x1804
4.29/4.33 v -x1803 -x1802 -x1801 -x1800 -x1799 -x1798 -x1797 -x1796 -x1795 -x1794 -x1793 -x1792 -x1791 x1790 -x1789 -x1788 -x1787 -x1786
4.29/4.33 v -x1785 x1784 -x1783 -x1782 -x1781 -x1780 x1779 -x1778 -x1777 -x1776 -x1775 -x1774 -x1773 -x1772 -x1771 -x1770 -x1769 x1768
4.29/4.33 v -x1767 -x1766 -x1765 -x1764 -x1763 -x1762 -x1761 -x1760 -x1759 -x1758 -x1757 -x1756 -x1755 -x1754 -x1753 -x1752 -x1751 -x1750
4.29/4.33 v -x1749 -x1748 -x1747 -x1746 -x1745 -x1744 -x1743 -x1742 -x1741 -x1740 -x1739 x1738 -x1737 -x1736 -x1735 -x1734 x1733 -x1732
4.29/4.33 v -x1731 -x1730 -x1729 x1728 -x1727 -x1726 -x1725 -x1724 -x1723 -x1722 -x1721 -x1720 -x1719 -x1718 -x1717 -x1716 -x1715 -x1714
4.29/4.33 v -x1713 -x1712 -x1711 -x1710 -x1709 -x1708 -x1707 -x1706 -x1705 -x1704 -x1703 -x1702 -x1701 -x1700 -x1699 -x1698 x1697 -x1696
4.29/4.33 v -x1695 -x1694 -x1693 -x1692 -x1691 -x1690 -x1689 -x1688 -x1687 -x1686 -x1685 -x1684 -x1683 -x1682 -x1681 -x1680 -x1679 -x1678
4.29/4.33 v -x1677 -x1676 x1675 -x1674 -x1673 x1672 -x1671 -x1670 -x1669 -x1668 -x1667 -x1666 -x1665 -x1664 -x1663 -x1662 -x1661 -x1660
4.29/4.33 v -x1659 -x1658 -x1657 -x1656 -x1655 -x1654 -x1653 -x1652 -x1651 -x1650 -x1649 x1648 -x1647 -x1646 -x1645 -x1644 x1643 -x1642
4.29/4.33 v -x1641 x1640 -x1639 -x1638 -x1637 -x1636 x1635 -x1634 x1633 -x1632 -x1631 -x1630 -x1629 -x1628 -x1627 -x1626 x1625 -x1624 -x1623
4.29/4.33 v -x1622 -x1621 -x1620 -x1619 -x1618 -x1617 x1616 -x1615 -x1614 -x1613 -x1612 -x1611 -x1610 -x1609 -x1608 -x1607 -x1606 -x1605
4.29/4.33 v -x1604 -x1603 -x1602 -x1601 x1600 x1599 x1598 -x1597 -x1596 -x1595 -x1594 x1593 -x1592 -x1591 -x1590 -x1589 -x1588 -x1587
4.29/4.33 v x1586 -x1585 x1584 -x1583 x1582 -x1581 -x1580 -x1579 -x1578 -x1577 -x1576 -x1575 -x1574 -x1573 -x1572 -x1571 -x1570 -x1569
4.29/4.33 v -x1568 -x1567 -x1566 -x1565 -x1564 -x1563 -x1562 -x1561 -x1560 -x1559 -x1558 -x1557 -x1556 -x1555 -x1554 -x1553 -x1552 -x1551
4.29/4.33 v -x1550 -x1549 -x1548 -x1547 -x1546 -x1545 -x1544 x1543 -x1542 -x1541 -x1540 x1539 -x1538 -x1537 -x1536 x1535 -x1534 -x1533 -x1532
4.29/4.33 v -x1531 x1530 -x1529 -x1528 -x1527 -x1526 -x1525 -x1524 -x1523 x1522 -x1521 -x1520 -x1519 -x1518 -x1517 -x1516 -x1515 -x1514
4.29/4.33 v -x1513 x1512 -x1511 -x1510 -x1509 -x1508 -x1507 -x1506 -x1505 -x1504 -x1503 -x1502 x1501 -x1500 -x1499 -x1498 -x1497 -x1496
4.29/4.33 v -x1495 -x1494 -x1493 -x1492 -x1491 -x1490 x1489 -x1488 -x1487 -x1486 -x1485 x1484 -x1483 -x1482 -x1481 -x1480 -x1479 x1478
4.29/4.33 v -x1477 -x1476 -x1475 -x1474 x1473 -x1472 x1471 -x1470 -x1469 -x1468 -x1467 -x1466 -x1465 -x1464 x1463 -x1462 -x1461 x1460 -x1459
4.29/4.33 v x1458 -x1457 -x1456 -x1455 -x1454 -x1453 -x1452 -x1451 -x1450 -x1449 -x1448 -x1447 -x1446 -x1445 -x1444 -x1443 -x1442 -x1441
4.29/4.33 v x1440 -x1439 -x1438 -x1437 x1436 -x1435 -x1434 -x1433 -x1432 -x1431 x1430 -x1429 -x1428 x1427 -x1426 -x1425 x1424 -x1423
4.29/4.33 v x1422 -x1421 -x1420 -x1419 -x1418 x1417 -x1416 -x1415 -x1414 -x1413 x1412 -x1411 -x1410 -x1409 -x1408 -x1407 -x1406 -x1405
4.29/4.33 v -x1404 -x1403 -x1402 x1401 x1400 -x1399 -x1398 x1397 -x1396 -x1395 -x1394 -x1393 -x1392 -x1391 -x1390 -x1389 -x1388 -x1387 -x1386
4.29/4.33 v x1385 -x1384 -x1383 x1382 -x1381 -x1380 -x1379 -x1378 -x1377 -x1376 -x1375 -x1374 -x1373 -x1372 -x1371 -x1370 -x1369 -x1368
4.29/4.33 v -x1367 x1366 -x1365 -x1364 -x1363 -x1362 -x1361 -x1360 -x1359 -x1358 -x1357 -x1356 -x1355 -x1354 x1353 -x1352 x1351 -x1350
4.29/4.33 v -x1349 -x1348 -x1347 -x1346 -x1345 x1344 -x1343 -x1342 -x1341 -x1340 -x1339 x1338 -x1337 -x1336 -x1335 -x1334 -x1333 -x1332
4.29/4.33 v -x1331 -x1330 -x1329 -x1328 -x1327 -x1326 -x1325 -x1324 -x1323 x1322 -x1321 -x1320 -x1319 -x1318 x1317 x1316 -x1315 -x1314 -x1313
4.29/4.33 v -x1312 -x1311 -x1310 -x1309 -x1308 -x1307 -x1306 -x1305 x1304 -x1303 -x1302 -x1301 -x1300 -x1299 -x1298 -x1297 -x1296 -x1295
4.29/4.33 v -x1294 -x1293 -x1292 -x1291 -x1290 -x1289 -x1288 -x1287 -x1286 x1285 -x1284 -x1283 -x1282 -x1281 -x1280 -x1279 -x1278 -x1277
4.29/4.33 v -x1276 x1275 -x1274 x1273 -x1272 -x1271 -x1270 -x1269 -x1268 x1267 -x1266 x1265 x1264 -x1263 -x1262 -x1261 -x1260 -x1259
4.29/4.33 v -x1258 -x1257 -x1256 -x1255 -x1254 -x1253 -x1252 -x1251 -x1250 -x1249 -x1248 -x1247 -x1246 -x1245 x1244 -x1243 -x1242 -x1241
4.29/4.33 v x1240 x1239 -x1238 x1237 x1236 x1235 x1234 -x1233 -x1232 -x1231 -x1230 -x1229 -x1228 -x1227 -x1226 -x1225 x1224 -x1223 -x1222
4.29/4.33 v -x1221 -x1220 -x1219 -x1218 -x1217 -x1216 -x1215 -x1214 -x1213 -x1212 -x1211 -x1210 -x1209 -x1208 -x1207 -x1206 -x1205 -x1204
4.29/4.33 v -x1203 -x1202 -x1201 x1200 -x1199 -x1198 -x1197 -x1196 -x1195 -x1194 -x1193 -x1192 -x1191 -x1190 -x1189 -x1188 -x1187 -x1186
4.29/4.33 v -x1185 -x1184 x1183 -x1182 -x1181 -x1180 -x1179 -x1178 -x1177 x1176 -x1175 -x1174 -x1173 -x1172 -x1171 -x1170 -x1169 -x1168
4.29/4.33 v -x1167 -x1166 -x1165 -x1164 -x1163 -x1162 -x1161 -x1160 -x1159 -x1158 -x1157 -x1156 x1155 -x1154 x1153 -x1152 x1151 -x1150
4.29/4.33 v x1149 -x1148 -x1147 -x1146 -x1145 -x1144 x1143 -x1142 -x1141 -x1140 -x1139 -x1138 -x1137 -x1136 -x1135 -x1134 -x1133 -x1132
4.29/4.33 v x1131 -x1130 -x1129 -x1128 -x1127 -x1126 -x1125 -x1124 -x1123 -x1122 -x1121 -x1120 -x1119 -x1118 -x1117 -x1116 -x1115 x1114 -x1113
4.29/4.33 v x1112 x1111 x1110 -x1109 x1108 -x1107 x1106 -x1105 x1104 -x1103 x1102 -x1101 -x1100 -x1099 -x1098 -x1097 -x1096 -x1095
4.29/4.33 v x1094 -x1093 -x1092 x1091 -x1090 -x1089 -x1088 x1087 -x1086 -x1085 -x1084 -x1083 -x1082 -x1081 -x1080 -x1079 x1078 -x1077 -x1076
4.29/4.33 v -x1075 -x1074 -x1073 -x1072 -x1071 -x1070 -x1069 -x1068 -x1067 -x1066 -x1065 -x1064 x1063 -x1062 x1061 -x1060 -x1059 -x1058
4.29/4.33 v -x1057 -x1056 x1055 -x1054 -x1053 -x1052 -x1051 -x1050 -x1049 -x1048 -x1047 -x1046 -x1045 -x1044 -x1043 -x1042 -x1041 -x1040
4.29/4.33 v x1039 -x1038 x1037 -x1036 -x1035 x1034 -x1033 -x1032 -x1031 -x1030 -x1029 x1028 -x1027 x1026 -x1025 x1024 -x1023 -x1022 -x1021
4.29/4.33 v -x1020 x1019 -x1018 -x1017 -x1016 x1015 -x1014 -x1013 -x1012 -x1011 -x1010 -x1009 x1008 -x1007 -x1006 -x1005 -x1004 -x1003
4.29/4.33 v -x1002 -x1001 x1000 -x999 -x998 -x997 x996 x995 -x994 -x993 x992 -x991 -x990 -x989 -x988 x987 -x986 -x985 x984 -x983 -x982
4.29/4.33 v x981 x980 -x979 -x978 x977 -x976 -x975 -x974 -x973 -x972 -x971 -x970 x969 x968 -x967 -x966 x965 -x964 -x963 -x962 -x961 -x960
4.29/4.33 v x959 x958 -x957 x956 -x955 x954 x953 -x952 -x951 -x950 -x949 x948 -x947 x946 -x945 x944 -x943 -x942 x941 x940 x939 -x938 -x937
4.29/4.33 v -x936 -x935 -x934 -x933 -x932 -x931 -x930 -x929 -x928 x927 -x926 -x925 -x924 -x923 -x922 x921 -x920 x919 -x918 -x917 -x916
4.29/4.33 v -x915 -x914 x913 -x912 -x911 -x910 -x909 x908 -x907 -x906 -x905 -x904 x903 x902 x901 -x900 -x899 -x898 -x897 x896 -x895 x894
4.29/4.33 v -x893 -x892 x891 -x890 -x889 -x888 x887 x886 -x885 x884 -x883 -x882 -x881 x880 -x879 -x878 -x877 -x876 -x875 -x874 -x873 -x872
4.29/4.33 v x871 -x870 -x869 -x868 x867 x866 x865 -x864 -x863 -x862 -x861 -x860 x859 -x858 -x857 -x856 -x855 -x854 -x853 -x852 -x851
4.29/4.33 v -x850 -x849 -x848 -x847 -x846 -x845 x844 -x843 -x842 x841 -x840 -x839 -x838 -x837 -x836 -x835 -x834 -x833 -x832 x831 x830 -x829
4.29/4.33 v -x828 -x827 -x826 -x825 -x824 -x823 x822 -x821 -x820 -x819 -x818 -x817 -x816 -x815 x814 -x813 -x812 -x811 x810 -x809 -x808
4.29/4.33 v -x807 -x806 -x805 -x804 -x803 -x802 -x801 -x800 -x799 -x798 x797 -x796 -x795 -x794 x793 -x792 -x791 -x790 -x789 -x788 -x787
4.29/4.33 v -x786 -x785 -x784 x783 -x782 -x781 -x780 -x779 x778 -x777 -x776 -x775 -x774 -x773 -x772 -x771 -x770 -x769 x768 -x767 -x766 -x765
4.29/4.33 v -x764 -x763 -x762 -x761 -x760 -x759 -x758 x757 -x756 -x755 -x754 -x753 -x752 -x751 -x750 -x749 x748 -x747 x746 x745 -x744
4.29/4.33 v -x743 -x742 -x741 -x740 -x739 -x738 -x737 -x736 x735 -x734 -x733 x732 -x731 -x730 -x729 -x728 x727 -x726 -x725 -x724 -x723 -x722
4.29/4.33 v -x721 x720 -x719 x718 -x717 -x716 -x715 -x714 -x713 -x712 -x711 x710 -x709 -x708 -x707 -x706 -x705 -x704 -x703 -x702 -x701
4.29/4.33 v -x700 -x699 x698 -x697 -x696 -x695 -x694 -x693 -x692 -x691 -x690 -x689 -x688 -x687 x686 -x685 -x684 -x683 -x682 -x681 x680
4.29/4.33 v -x679 -x678 -x677 -x676 -x675 -x674 -x673 -x672 -x671 x670 -x669 -x668 -x667 -x666 -x665 -x664 x663 -x662 x661 -x660 -x659 -x658
4.29/4.33 v -x657 -x656 -x655 -x654 x653 -x652 -x651 x650 -x649 -x648 x647 x646 -x645 -x644 -x643 -x642 -x641 x640 x639 -x638 -x637
4.29/4.33 v -x636 -x635 -x634 -x633 -x632 -x631 -x630 x629 x628 -x627 -x626 -x625 -x624 -x623 -x622 -x621 -x620 -x619 -x618 -x617 x616 -x615
4.29/4.33 v -x614 -x613 -x612 -x611 -x610 -x609 -x608 -x607 -x606 -x605 -x604 -x603 -x602 -x601 x600 -x599 x598 -x597 -x596 -x595 -x594
4.29/4.33 v -x593 x592 -x591 x590 -x589 -x588 -x587 -x586 -x585 -x584 -x583 x582 -x581 -x580 -x579 -x578 -x577 -x576 -x575 x574 -x573
4.29/4.33 v -x572 x571 -x570 -x569 -x568 x567 x566 -x565 -x564 -x563 -x562 -x561 -x560 -x559 -x558 -x557 -x556 x555 -x554 -x553 -x552 -x551
4.29/4.33 v -x550 -x549 -x548 -x547 -x546 x545 -x544 x543 -x542 -x541 -x540 x539 -x538 -x537 -x536 -x535 -x534 x533 -x532 -x531 x530 -x529
4.29/4.33 v -x528 -x527 -x526 -x525 x524 -x523 -x522 -x521 -x520 -x519 -x518 x517 x516 -x515 -x514 -x513 -x512 -x511 x510 -x509 -x508
4.29/4.33 v -x507 -x506 -x505 -x504 x503 -x502 -x501 -x500 x499 -x498 -x497 -x496 -x495 x494 -x493 x492 -x491 -x490 x489 x488 -x487 -x486
4.29/4.33 v -x485 x484 x483 x482 x481 x480 -x479 -x478 x477 -x476 -x475 -x474 -x473 -x472 x471 -x470 -x469 -x468 -x467 -x466 -x465 x464
4.29/4.33 v -x463 -x462 -x461 -x460 -x459 -x458 -x457 -x456 -x455 -x454 -x453 -x452 -x451 x450 -x449 x448 -x447 -x446 x445 -x444 -x443
4.29/4.33 v -x442 -x441 -x440 -x439 -x438 -x437 -x436 -x435 -x434 -x433 -x432 x431 -x430 -x429 -x428 -x427 -x426 -x425 -x424 x423 -x422 -x421
4.29/4.33 v -x420 -x419 -x418 x417 -x416 -x415 -x414 -x413 -x412 -x411 -x410 -x409 -x408 -x407 x406 -x405 -x404 -x403 -x402 -x401 x400
4.29/4.33 v -x399 -x398 -x397 -x396 -x395 -x394 -x393 x392 -x391 -x390 -x389 -x388 -x387 -x386 -x385 -x384 x383 -x382 -x381 -x380 x379
4.29/4.33 v -x378 -x377 -x376 -x375 -x374 -x373 -x372 x371 -x370 -x369 -x368 -x367 -x366 -x365 -x364 x363 -x362 -x361 -x360 -x359 -x358
4.29/4.33 v -x357 x356 -x355 -x354 -x353 -x352 -x351 x350 -x349 x348 -x347 -x346 -x345 -x344 -x343 -x342 x341 -x340 -x339 -x338 x337 x336
4.29/4.33 v x335 -x334 -x333 -x332 -x331 -x330 -x329 -x328 -x327 x326 x325 -x324 -x323 -x322 -x321 -x320 -x319 -x318 x317 -x316 -x315 -x314
4.29/4.33 v x313 -x312 -x311 x310 x309 x308 x307 -x306 -x305 x304 -x303 x302 x301 -x300 x299 -x298 x297 -x296 -x295 -x294 x293 -x292
4.29/4.33 v -x291 x290 -x289 -x288 x287 x286 -x285 -x284 x283 -x282 -x281 x280 -x279 -x278 x277 -x276 -x275 -x274 -x273 x272 -x271 x270 -x269
4.29/4.33 v x268 -x267 x266 -x265 -x264 -x263 -x262 -x261 -x260 -x259 -x258 -x257 -x256 -x255 -x254 -x253 -x252 -x251 -x250 -x249 -x248
4.29/4.33 v -x247 -x246 x245 -x244 x243 x242 -x241 -x240 -x239 -x238 -x237 -x236 -x235 -x234 -x233 -x232 x231 -x230 x229 -x228 -x227
4.29/4.33 v -x226 x225 -x224 -x223 -x222 -x221 -x220 -x219 -x218 -x217 -x216 -x215 -x214 -x213 -x212 -x211 -x210 -x209 -x208 -x207 -x206
4.29/4.33 v x205 -x204 -x203 -x202 -x201 -x200 -x199 -x198 -x197 -x196 -x195 -x194 -x193 -x192 -x191 -x190 -x189 -x188 -x187 x186 x185 -x184
4.29/4.33 v -x183 -x182 -x181 -x180 -x179 -x178 -x177 x176 x175 -x174 x173 -x172 -x171 -x170 -x169 -x168 -x167 -x166 -x165 -x164 x163
4.29/4.33 v -x162 -x161 -x160 -x159 x158 -x157 -x156 -x155 x154 x153 -x152 x151 x150 -x149 -x148 -x147 -x146 -x145 -x144 -x143 -x142 -x141
4.29/4.33 v x140 -x139 x138 -x137 -x136 -x135 -x134 x133 -x132 -x131 -x130 -x129 -x128 -x127 -x126 -x125 -x124 x123 -x122 -x121 x120 -x119
4.29/4.33 v x118 x117 -x116 -x115 -x114 x113 -x112 x111 -x110 -x109 -x108 -x107 -x106 -x105 -x104 -x103 -x102 -x101 -x100 -x99 -x98
4.29/4.33 v -x97 -x96 -x95 x94 x93 -x92 -x91 -x90 -x89 -x88 -x87 x86 -x85 -x84 x83 -x82 -x81 -x80 x79 -x78 -x77 x76 x75 -x74 -x73 -x72 -x71
4.29/4.33 v -x70 x69 -x68 -x67 -x66 -x65 -x64 x63 x62 -x61 -x60 -x59 -x58 -x57 -x56 x55 -x54 -x53 -x52 -x51 -x50 -x49 -x48 -x47 x46 -x45
4.29/4.33 v -x44 -x43 -x42 x41 -x40 -x39 -x38 -x37 -x36 x35 -x34 -x33 x32 -x31 -x30 x29 -x28 -x27 -x26 x25 -x24 x23 -x22 -x21 -x20 -x19
4.29/4.33 v -x18 -x17 -x16 -x15 -x14 x13 -x12 x11 x10 -x9 -x8 x7 -x6 -x5 x4 -x3 -x2 x1
4.29/4.33 c SCIP Status : problem is solved [optimal solution found]
4.29/4.33 c Total Time : 4.32
4.29/4.33 c solving : 4.32
4.29/4.33 c presolving : 1.54 (included in solving)
4.29/4.33 c reading : 0.05 (included in solving)
4.29/4.33 c copying : 0.03 (2 #copies) (minimal 0.01, maximal 0.01, average 0.01)
4.29/4.33 c Original Problem :
4.29/4.33 c Problem name : HOME/instance-3691964-1338031519.opb
4.29/4.33 c Variables : 4316 (4316 binary, 0 integer, 0 implicit integer, 0 continuous)
4.29/4.33 c Constraints : 11912 initial, 11912 maximal
4.29/4.33 c Objective sense : minimize
4.29/4.33 c Presolved Problem :
4.29/4.33 c Problem name : t_HOME/instance-3691964-1338031519.opb
4.29/4.33 c Variables : 1122 (1122 binary, 0 integer, 0 implicit integer, 0 continuous)
4.29/4.33 c Constraints : 880 initial, 880 maximal
4.29/4.33 c Presolvers : ExecTime SetupTime FixedVars AggrVars ChgTypes ChgBounds AddHoles DelCons AddCons ChgSides ChgCoefs
4.29/4.33 c domcol : 0.00 0.00 0 0 0 0 0 0 0 0 0
4.29/4.33 c trivial : 0.01 0.00 1063 0 0 0 0 0 0 0 0
4.29/4.33 c dualfix : 0.00 0.00 22 0 0 0 0 0 0 0 0
4.29/4.33 c boundshift : 0.00 0.00 0 0 0 0 0 0 0 0 0
4.29/4.33 c inttobinary : 0.00 0.00 0 0 0 0 0 0 0 0 0
4.29/4.33 c convertinttobin : 0.00 0.00 0 0 0 0 0 0 0 0 0
4.29/4.33 c gateextraction : 0.00 0.00 0 0 0 0 0 0 0 0 0
4.29/4.33 c implics : 0.00 0.00 0 0 0 0 0 0 0 0 0
4.29/4.33 c components : 0.07 0.00 244 0 0 0 0 146 0 0 0
4.29/4.33 c pseudoobj : 0.00 0.01 0 0 0 0 0 0 0 0 0
4.29/4.33 c probing : 0.01 0.00 0 0 0 0 0 0 0 0 0
4.29/4.33 c knapsack : 0.03 0.00 0 0 0 0 0 24 0 193 368
4.29/4.33 c setppc : 0.01 0.00 154 0 0 0 0 2082 0 0 0
4.29/4.33 c linear : 0.14 0.01 199 8 0 199 0 4926 0 62 19
4.29/4.33 c logicor : 1.20 0.01 1504 0 0 0 0 3034 0 0 0
4.29/4.33 c root node : - - 1101 - - 1101 - - - - -
4.29/4.33 c Constraints : Number MaxNumber #Separate #Propagate #EnfoLP #EnfoPS #Check #ResProp Cutoffs DomReds Cuts Conss Children
4.29/4.33 c integral : 0 0 0 0 21 0 20 0 0 49 0 0 14
4.29/4.33 c knapsack : 40 40 4 28 0 0 0 0 0 0 1 0 0
4.29/4.33 c setppc : 36 36 24 133 1 0 12 0 0 57 0 0 0
4.29/4.33 c logicor : 804 804 24 65 1 0 10 0 0 616 1 0 0
4.29/4.33 c countsols : 0 0 0 0 1 0 13 0 0 0 0 0 0
4.29/4.33 c Constraint Timings : TotalTime SetupTime Separate Propagate EnfoLP EnfoPS Check ResProp
4.29/4.33 c integral : 0.85 0.00 0.00 0.00 0.85 0.00 0.00 0.00
4.29/4.33 c knapsack : 0.01 0.00 0.01 0.00 0.00 0.00 0.00 0.00
4.29/4.33 c setppc : 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
4.29/4.33 c logicor : 0.02 0.01 0.00 0.00 0.00 0.00 0.00 0.00
4.29/4.33 c countsols : 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
4.29/4.33 c Propagators : #Propagate #ResProp Cutoffs DomReds
4.29/4.33 c rootredcost : 0 0 0 0
4.29/4.33 c pseudoobj : 59 0 0 0
4.29/4.33 c vbounds : 0 0 0 0
4.29/4.33 c redcost : 47 0 0 326
4.29/4.33 c probing : 0 0 0 0
4.29/4.33 c Propagator Timings : TotalTime SetupTime Presolve Propagate ResProp
4.29/4.33 c rootredcost : 0.00 0.00 0.00 0.00 0.00
4.29/4.33 c pseudoobj : 0.01 0.01 0.00 0.00 0.00
4.29/4.33 c vbounds : 0.00 0.00 0.00 0.00 0.00
4.29/4.33 c redcost : 0.00 0.00 0.00 0.00 0.00
4.29/4.33 c probing : 0.01 0.00 0.01 0.00 0.00
4.29/4.33 c Conflict Analysis : Time Calls Success Conflicts Literals Reconvs ReconvLits LP Iters
4.29/4.33 c propagation : 0.00 0 0 0 0.0 0 0.0 -
4.29/4.33 c infeasible LP : 0.00 0 0 0 0.0 0 0.0 0
4.29/4.33 c bound exceed. LP : 0.00 0 0 0 0.0 0 0.0 0
4.29/4.33 c strong branching : 0.00 0 0 0 0.0 0 0.0 0
4.29/4.33 c pseudo solution : 0.00 0 0 0 0.0 0 0.0 -
4.29/4.33 c applied globally : - - - 0 0.0 - - -
4.29/4.33 c applied locally : - - - 0 0.0 - - -
4.29/4.33 c Separators : ExecTime SetupTime Calls Cutoffs DomReds Cuts Conss
4.29/4.33 c cut pool : 0.00 0 - - 0 - (maximal pool size: 22)
4.29/4.33 c closecuts : 0.00 0.00 0 0 0 0 0
4.29/4.33 c impliedbounds : 0.00 0.00 23 0 0 0 0
4.29/4.33 c intobj : 0.00 0.00 0 0 0 0 0
4.29/4.33 c gomory : 0.06 0.00 14 0 0 700 0
4.29/4.33 c cgmip : 0.00 0.00 0 0 0 0 0
4.29/4.33 c strongcg : 0.37 0.00 23 0 0 4883 0
4.29/4.33 c cmir : 0.24 0.00 14 0 0 15 0
4.29/4.33 c flowcover : 0.38 0.00 14 0 0 32 0
4.29/4.33 c clique : 0.01 0.00 5 0 0 0 0
4.29/4.33 c zerohalf : 0.00 0.00 0 0 0 0 0
4.29/4.33 c mcf : 0.01 0.00 5 0 0 0 0
4.29/4.33 c oddcycle : 0.00 0.00 0 0 0 0 0
4.29/4.33 c rapidlearning : 0.22 0.00 1 0 58 0 3
4.29/4.33 c Pricers : ExecTime SetupTime Calls Vars
4.29/4.33 c problem variables: 0.00 - 0 0
4.29/4.33 c Branching Rules : ExecTime SetupTime Calls Cutoffs DomReds Cuts Conss Children
4.29/4.33 c relpscost : 0.85 0.00 20 0 49 0 0 14
4.29/4.33 c pscost : 0.00 0.00 0 0 0 0 0 0
4.29/4.33 c inference : 0.00 0.00 0 0 0 0 0 0
4.29/4.33 c mostinf : 0.00 0.00 0 0 0 0 0 0
4.29/4.33 c leastinf : 0.00 0.00 0 0 0 0 0 0
4.29/4.33 c fullstrong : 0.00 0.00 0 0 0 0 0 0
4.29/4.33 c allfullstrong : 0.00 0.00 0 0 0 0 0 0
4.29/4.33 c random : 0.00 0.00 0 0 0 0 0 0
4.29/4.33 c Primal Heuristics : ExecTime SetupTime Calls Found
4.29/4.33 c LP solutions : 0.00 - - 1
4.29/4.33 c pseudo solutions : 0.00 - - 0
4.29/4.33 c crossover : 0.00 0.00 0 0
4.29/4.33 c coefdiving : 0.00 0.00 0 0
4.29/4.33 c pscostdiving : 0.00 0.00 0 0
4.29/4.33 c oneopt : 0.02 0.00 9 5
4.29/4.33 c smallcard : 0.00 0.00 0 0
4.29/4.33 c trivial : 0.01 0.00 2 2
4.29/4.33 c shiftandpropagate: 0.00 0.00 0 0
4.29/4.33 c simplerounding : 0.00 0.00 39 0
4.29/4.33 c zirounding : 0.00 0.00 4 0
4.29/4.33 c rounding : 0.03 0.00 39 1
4.29/4.33 c shifting : 0.03 0.00 36 1
4.29/4.33 c intshifting : 0.00 0.00 0 0
4.29/4.33 c twoopt : 0.00 0.00 0 0
4.29/4.33 c indoneopt : 0.00 0.00 0 0
4.29/4.33 c indtwoopt : 0.00 0.00 0 0
4.29/4.33 c fixandinfer : 0.00 0.00 0 0
4.29/4.33 c feaspump : 0.00 0.00 0 0
4.29/4.33 c clique : 0.00 0.00 0 0
4.29/4.33 c indrounding : 0.00 0.00 0 0
4.29/4.33 c indcoefdiving : 0.00 0.00 0 0
4.29/4.33 c nlpdiving : 0.00 0.00 0 0
4.29/4.33 c fracdiving : 0.00 0.00 0 0
4.29/4.33 c veclendiving : 0.00 0.00 0 0
4.29/4.33 c intdiving : 0.00 0.00 0 0
4.29/4.33 c actconsdiving : 0.00 0.00 0 0
4.29/4.33 c objpscostdiving : 0.00 0.00 0 0
4.29/4.33 c rootsoldiving : 0.00 0.00 0 0
4.29/4.33 c linesearchdiving : 0.00 0.00 0 0
4.29/4.33 c guideddiving : 0.00 0.00 0 0
4.29/4.33 c octane : 0.00 0.00 0 0
4.29/4.33 c rens : 0.06 0.00 1 1
4.29/4.33 c rins : 0.00 0.00 0 0
4.29/4.33 c localbranching : 0.00 0.00 0 0
4.29/4.33 c mutation : 0.00 0.00 0 0
4.29/4.33 c dins : 0.00 0.00 0 0
4.29/4.33 c vbounds : 0.00 0.00 0 0
4.29/4.33 c undercover : 0.00 0.00 0 0
4.29/4.33 c subnlp : 0.00 0.00 0 0
4.29/4.33 c trysol : 0.00 0.00 0 0
4.29/4.33 c LP : Time Calls Iterations Iter/call Iter/sec Time-0-It Calls-0-It
4.29/4.33 c primal LP : 0.01 6 0 0.00 - 0.01 6
4.29/4.33 c dual LP : 0.27 52 4614 112.54 17099.34 0.01 11
4.29/4.33 c lex dual LP : 0.00 0 0 0.00 -
4.29/4.33 c barrier LP : 0.00 0 0 0.00 - 0.00 0
4.29/4.33 c diving/probing LP: 0.00 0 0 0.00 -
4.29/4.33 c strong branching : 0.85 272 3754 13.80 4415.82
4.29/4.33 c (at root node) : - 220 3177 14.44 -
4.29/4.33 c conflict analysis: 0.00 0 0 0.00 -
4.29/4.33 c B&B Tree :
4.29/4.33 c number of runs : 5
4.29/4.33 c nodes : 4
4.29/4.33 c nodes (total) : 8
4.29/4.33 c nodes left : 0
4.29/4.33 c max depth : 2
4.29/4.33 c max depth (total): 2
4.29/4.33 c backtracks : 0 (0.0%)
4.29/4.33 c delayed cutoffs : 0
4.29/4.33 c repropagations : 0 (0 domain reductions, 0 cutoffs)
4.29/4.33 c avg switch length: 2.00
4.29/4.33 c switching time : 0.00
4.29/4.33 c Solution :
4.29/4.33 c Solutions found : 12 (11 improvements)
4.29/4.33 c First Solution : +4.31600000000000e+03 (in run 1, after 0 nodes, 0.08 seconds, depth 0, found by <trivial>)
4.29/4.33 c Primal Bound : +7.76000000000000e+02 (in run 5, after 4 nodes, 4.32 seconds, depth 2, found by <relaxation>)
4.29/4.33 c Dual Bound : +7.76000000000000e+02
4.29/4.33 c Gap : 0.00 %
4.29/4.33 c Root Dual Bound : +7.76000000000000e+02
4.29/4.33 c Root Iterations : 4586
4.29/4.35 c Time complete: 4.35.