0.00/0.00 c SCIP version 2.1.1.4 [precision: 8 byte] [memory: block] [mode: optimized] [LP solver: SoPlex 1.6.0.3] [GitHash: 947bdb7-dirty]
0.00/0.00 c Copyright (c) 2002-2012 Konrad-Zuse-Zentrum fuer Informationstechnik Berlin (ZIB)
0.00/0.00 c
0.00/0.00 c user parameter file <scip.set> not found - using default parameters
0.00/0.00 c reading problem <HOME/instance-3691714-1338039107.opb>
0.03/0.04 c original problem has 4340 variables (4340 bin, 0 int, 0 impl, 0 cont) and 13977 constraints
0.03/0.04 c problem read in 0.04
0.03/0.04 c No objective function, only one solution is needed.
0.03/0.04 c presolving settings loaded
0.03/0.07 c presolving:
0.29/0.35 c (round 1) 1250 del vars, 3210 del conss, 0 add conss, 841 chg bounds, 0 chg sides, 0 chg coeffs, 0 upgd conss, 703262 impls, 0 clqs
0.39/0.48 c (round 2) 3032 del vars, 9186 del conss, 0 add conss, 2513 chg bounds, 2 chg sides, 2 chg coeffs, 0 upgd conss, 713471 impls, 0 clqs
0.49/0.50 c (round 3) 3563 del vars, 11751 del conss, 0 add conss, 2728 chg bounds, 126 chg sides, 113 chg coeffs, 0 upgd conss, 717312 impls, 0 clqs
0.49/0.51 c (round 4) 3738 del vars, 12268 del conss, 0 add conss, 2853 chg bounds, 257 chg sides, 254 chg coeffs, 0 upgd conss, 719645 impls, 0 clqs
0.49/0.52 c (round 5) 3830 del vars, 12616 del conss, 0 add conss, 2902 chg bounds, 286 chg sides, 283 chg coeffs, 0 upgd conss, 720907 impls, 0 clqs
0.49/0.52 c (round 6) 3871 del vars, 12787 del conss, 0 add conss, 2934 chg bounds, 322 chg sides, 318 chg coeffs, 0 upgd conss, 721053 impls, 0 clqs
0.49/0.52 c (round 7) 3877 del vars, 12821 del conss, 0 add conss, 2939 chg bounds, 333 chg sides, 331 chg coeffs, 0 upgd conss, 721053 impls, 0 clqs
0.49/0.52 c (round 8) 3878 del vars, 12823 del conss, 0 add conss, 2939 chg bounds, 333 chg sides, 331 chg coeffs, 0 upgd conss, 721053 impls, 0 clqs
0.49/0.54 c (round 9) 3878 del vars, 12827 del conss, 0 add conss, 2939 chg bounds, 334 chg sides, 331 chg coeffs, 1156 upgd conss, 721053 impls, 0 clqs
0.49/0.55 c (round 10) 3879 del vars, 12831 del conss, 0 add conss, 2939 chg bounds, 375 chg sides, 459 chg coeffs, 1156 upgd conss, 721093 impls, 4 clqs
0.49/0.55 c (round 11) 3880 del vars, 12834 del conss, 0 add conss, 2939 chg bounds, 375 chg sides, 494 chg coeffs, 1156 upgd conss, 721093 impls, 4 clqs
0.49/0.55 c (round 12) 3880 del vars, 12835 del conss, 0 add conss, 2939 chg bounds, 381 chg sides, 528 chg coeffs, 1156 upgd conss, 721093 impls, 10 clqs
0.49/0.56 c (round 13) 3880 del vars, 13398 del conss, 162 add conss, 2939 chg bounds, 381 chg sides, 528 chg coeffs, 1156 upgd conss, 721093 impls, 10 clqs
0.49/0.56 c (round 14) 3880 del vars, 13483 del conss, 247 add conss, 2939 chg bounds, 381 chg sides, 528 chg coeffs, 1156 upgd conss, 721093 impls, 86 clqs
0.49/0.57 c presolving (15 rounds):
0.49/0.57 c 3880 deleted vars, 13483 deleted constraints, 247 added constraints, 2939 tightened bounds, 0 added holes, 381 changed sides, 528 changed coefficients
0.49/0.57 c 721093 implications, 171 cliques
0.49/0.57 c presolved problem has 460 variables (460 bin, 0 int, 0 impl, 0 cont) and 741 constraints
0.49/0.57 c 88 constraints of type <knapsack>
0.49/0.57 c 613 constraints of type <setppc>
0.49/0.57 c 40 constraints of type <logicor>
0.49/0.57 c transformed objective value is always integral (scale: 1)
0.49/0.57 c Presolving Time: 0.50
0.49/0.57 c - non default parameters ----------------------------------------------------------------------
0.49/0.57 c # SCIP version 2.1.1.4
0.49/0.57 c
0.49/0.57 c # maximal time in seconds to run
0.49/0.57 c # [type: real, range: [0,1.79769313486232e+308], default: 1e+20]
0.49/0.57 c limits/time = 1797
0.49/0.57 c
0.49/0.57 c # maximal memory usage in MB; reported memory usage is lower than real memory usage!
0.49/0.57 c # [type: real, range: [0,1.79769313486232e+308], default: 1e+20]
0.49/0.57 c limits/memory = 13950
0.49/0.57 c
0.49/0.57 c # solving stops, if the given number of solutions were found (-1: no limit)
0.49/0.57 c # [type: int, range: [-1,2147483647], default: -1]
0.49/0.57 c limits/solutions = 1
0.49/0.57 c
0.49/0.57 c # maximal number of separation rounds per node (-1: unlimited)
0.49/0.57 c # [type: int, range: [-1,2147483647], default: 5]
0.49/0.57 c separating/maxrounds = 1
0.49/0.57 c
0.49/0.57 c # maximal number of separation rounds in the root node (-1: unlimited)
0.49/0.57 c # [type: int, range: [-1,2147483647], default: -1]
0.49/0.57 c separating/maxroundsroot = 5
0.49/0.57 c
0.49/0.57 c # default clock type (1: CPU user seconds, 2: wall clock time)
0.49/0.57 c # [type: int, range: [1,2], default: 1]
0.49/0.57 c timing/clocktype = 2
0.49/0.57 c
0.49/0.57 c # belongs reading time to solving time?
0.49/0.57 c # [type: bool, range: {TRUE,FALSE}, default: FALSE]
0.49/0.57 c timing/reading = TRUE
0.49/0.57 c
0.49/0.57 c # should disaggregation of knapsack constraints be allowed in preprocessing?
0.49/0.57 c # [type: bool, range: {TRUE,FALSE}, default: TRUE]
0.49/0.57 c constraints/knapsack/disaggregation = FALSE
0.49/0.57 c
0.49/0.57 c # frequency for calling primal heuristic <coefdiving> (-1: never, 0: only at depth freqofs)
0.49/0.57 c # [type: int, range: [-1,2147483647], default: 10]
0.49/0.57 c heuristics/coefdiving/freq = -1
0.49/0.57 c
0.49/0.57 c # maximal fraction of diving LP iterations compared to node LP iterations
0.49/0.57 c # [type: real, range: [0,1.79769313486232e+308], default: 0.05]
0.49/0.57 c heuristics/coefdiving/maxlpiterquot = 0.075
0.49/0.57 c
0.49/0.57 c # additional number of allowed LP iterations
0.49/0.57 c # [type: int, range: [0,2147483647], default: 1000]
0.49/0.57 c heuristics/coefdiving/maxlpiterofs = 1500
0.49/0.57 c
0.49/0.57 c # frequency for calling primal heuristic <crossover> (-1: never, 0: only at depth freqofs)
0.49/0.57 c # [type: int, range: [-1,2147483647], default: 30]
0.49/0.57 c heuristics/crossover/freq = -1
0.49/0.57 c
0.49/0.57 c # number of nodes added to the contingent of the total nodes
0.49/0.57 c # [type: longint, range: [0,9223372036854775807], default: 500]
0.49/0.57 c heuristics/crossover/nodesofs = 750
0.49/0.57 c
0.49/0.57 c # number of nodes without incumbent change that heuristic should wait
0.49/0.57 c # [type: longint, range: [0,9223372036854775807], default: 200]
0.49/0.57 c heuristics/crossover/nwaitingnodes = 100
0.49/0.57 c
0.49/0.57 c # contingent of sub problem nodes in relation to the number of nodes of the original problem
0.49/0.57 c # [type: real, range: [0,1], default: 0.1]
0.49/0.57 c heuristics/crossover/nodesquot = 0.15
0.49/0.57 c
0.49/0.57 c # minimum percentage of integer variables that have to be fixed
0.49/0.57 c # [type: real, range: [0,1], default: 0.666]
0.49/0.57 c heuristics/crossover/minfixingrate = 0.5
0.49/0.57 c
0.49/0.57 c # frequency for calling primal heuristic <feaspump> (-1: never, 0: only at depth freqofs)
0.49/0.57 c # [type: int, range: [-1,2147483647], default: 20]
0.49/0.57 c heuristics/feaspump/freq = -1
0.49/0.57 c
0.49/0.57 c # additional number of allowed LP iterations
0.49/0.57 c # [type: int, range: [0,2147483647], default: 1000]
0.49/0.57 c heuristics/feaspump/maxlpiterofs = 2000
0.49/0.57 c
0.49/0.57 c # frequency for calling primal heuristic <fracdiving> (-1: never, 0: only at depth freqofs)
0.49/0.57 c # [type: int, range: [-1,2147483647], default: 10]
0.49/0.57 c heuristics/fracdiving/freq = -1
0.49/0.57 c
0.49/0.57 c # maximal fraction of diving LP iterations compared to node LP iterations
0.49/0.57 c # [type: real, range: [0,1.79769313486232e+308], default: 0.05]
0.49/0.57 c heuristics/fracdiving/maxlpiterquot = 0.075
0.49/0.57 c
0.49/0.57 c # additional number of allowed LP iterations
0.49/0.57 c # [type: int, range: [0,2147483647], default: 1000]
0.49/0.57 c heuristics/fracdiving/maxlpiterofs = 1500
0.49/0.57 c
0.49/0.57 c # frequency for calling primal heuristic <guideddiving> (-1: never, 0: only at depth freqofs)
0.49/0.57 c # [type: int, range: [-1,2147483647], default: 10]
0.49/0.57 c heuristics/guideddiving/freq = -1
0.49/0.57 c
0.49/0.57 c # maximal fraction of diving LP iterations compared to node LP iterations
0.49/0.57 c # [type: real, range: [0,1.79769313486232e+308], default: 0.05]
0.49/0.57 c heuristics/guideddiving/maxlpiterquot = 0.075
0.49/0.57 c
0.49/0.57 c # additional number of allowed LP iterations
0.49/0.57 c # [type: int, range: [0,2147483647], default: 1000]
0.49/0.57 c heuristics/guideddiving/maxlpiterofs = 1500
0.49/0.57 c
0.49/0.57 c # maximal fraction of diving LP iterations compared to node LP iterations
0.49/0.57 c # [type: real, range: [0,1.79769313486232e+308], default: 0.05]
0.49/0.57 c heuristics/intdiving/maxlpiterquot = 0.075
0.49/0.57 c
0.49/0.57 c # frequency for calling primal heuristic <intshifting> (-1: never, 0: only at depth freqofs)
0.49/0.57 c # [type: int, range: [-1,2147483647], default: 10]
0.49/0.57 c heuristics/intshifting/freq = -1
0.49/0.57 c
0.49/0.57 c # frequency for calling primal heuristic <linesearchdiving> (-1: never, 0: only at depth freqofs)
0.49/0.57 c # [type: int, range: [-1,2147483647], default: 10]
0.49/0.57 c heuristics/linesearchdiving/freq = -1
0.49/0.57 c
0.49/0.57 c # maximal fraction of diving LP iterations compared to node LP iterations
0.49/0.57 c # [type: real, range: [0,1.79769313486232e+308], default: 0.05]
0.49/0.57 c heuristics/linesearchdiving/maxlpiterquot = 0.075
0.49/0.57 c
0.49/0.57 c # additional number of allowed LP iterations
0.49/0.57 c # [type: int, range: [0,2147483647], default: 1000]
0.49/0.57 c heuristics/linesearchdiving/maxlpiterofs = 1500
0.49/0.57 c
0.49/0.57 c # frequency for calling primal heuristic <objpscostdiving> (-1: never, 0: only at depth freqofs)
0.49/0.57 c # [type: int, range: [-1,2147483647], default: 20]
0.49/0.57 c heuristics/objpscostdiving/freq = -1
0.49/0.57 c
0.49/0.57 c # maximal fraction of diving LP iterations compared to total iteration number
0.49/0.57 c # [type: real, range: [0,1], default: 0.01]
0.49/0.57 c heuristics/objpscostdiving/maxlpiterquot = 0.015
0.49/0.57 c
0.49/0.57 c # additional number of allowed LP iterations
0.49/0.57 c # [type: int, range: [0,2147483647], default: 1000]
0.49/0.57 c heuristics/objpscostdiving/maxlpiterofs = 1500
0.49/0.57 c
0.49/0.57 c # frequency for calling primal heuristic <oneopt> (-1: never, 0: only at depth freqofs)
0.49/0.57 c # [type: int, range: [-1,2147483647], default: 1]
0.49/0.57 c heuristics/oneopt/freq = -1
0.49/0.57 c
0.49/0.57 c # frequency for calling primal heuristic <pscostdiving> (-1: never, 0: only at depth freqofs)
0.49/0.57 c # [type: int, range: [-1,2147483647], default: 10]
0.49/0.57 c heuristics/pscostdiving/freq = -1
0.49/0.57 c
0.49/0.57 c # maximal fraction of diving LP iterations compared to node LP iterations
0.49/0.57 c # [type: real, range: [0,1.79769313486232e+308], default: 0.05]
0.49/0.57 c heuristics/pscostdiving/maxlpiterquot = 0.075
0.49/0.57 c
0.49/0.57 c # additional number of allowed LP iterations
0.49/0.57 c # [type: int, range: [0,2147483647], default: 1000]
0.49/0.57 c heuristics/pscostdiving/maxlpiterofs = 1500
0.49/0.57 c
0.49/0.57 c # frequency for calling primal heuristic <rens> (-1: never, 0: only at depth freqofs)
0.49/0.57 c # [type: int, range: [-1,2147483647], default: 0]
0.49/0.57 c heuristics/rens/freq = -1
0.49/0.57 c
0.49/0.57 c # minimum percentage of integer variables that have to be fixable
0.49/0.57 c # [type: real, range: [0,1], default: 0.5]
0.49/0.57 c heuristics/rens/minfixingrate = 0.3
0.49/0.57 c
0.49/0.57 c # number of nodes added to the contingent of the total nodes
0.49/0.57 c # [type: longint, range: [0,9223372036854775807], default: 500]
0.49/0.57 c heuristics/rens/nodesofs = 2000
0.49/0.57 c
0.49/0.57 c # frequency for calling primal heuristic <rootsoldiving> (-1: never, 0: only at depth freqofs)
0.49/0.57 c # [type: int, range: [-1,2147483647], default: 20]
0.49/0.57 c heuristics/rootsoldiving/freq = -1
0.49/0.57 c
0.49/0.57 c # maximal fraction of diving LP iterations compared to node LP iterations
0.49/0.57 c # [type: real, range: [0,1.79769313486232e+308], default: 0.01]
0.49/0.57 c heuristics/rootsoldiving/maxlpiterquot = 0.015
0.49/0.57 c
0.49/0.57 c # additional number of allowed LP iterations
0.49/0.57 c # [type: int, range: [0,2147483647], default: 1000]
0.49/0.57 c heuristics/rootsoldiving/maxlpiterofs = 1500
0.49/0.57 c
0.49/0.57 c # frequency for calling primal heuristic <rounding> (-1: never, 0: only at depth freqofs)
0.49/0.57 c # [type: int, range: [-1,2147483647], default: 1]
0.49/0.57 c heuristics/rounding/freq = -1
0.49/0.57 c
0.49/0.57 c # frequency for calling primal heuristic <shiftandpropagate> (-1: never, 0: only at depth freqofs)
0.49/0.57 c # [type: int, range: [-1,2147483647], default: 0]
0.49/0.57 c heuristics/shiftandpropagate/freq = -1
0.49/0.57 c
0.49/0.57 c # frequency for calling primal heuristic <shifting> (-1: never, 0: only at depth freqofs)
0.49/0.57 c # [type: int, range: [-1,2147483647], default: 10]
0.49/0.57 c heuristics/shifting/freq = -1
0.49/0.57 c
0.49/0.57 c # frequency for calling primal heuristic <simplerounding> (-1: never, 0: only at depth freqofs)
0.49/0.57 c # [type: int, range: [-1,2147483647], default: 1]
0.49/0.57 c heuristics/simplerounding/freq = -1
0.49/0.57 c
0.49/0.57 c # frequency for calling primal heuristic <subnlp> (-1: never, 0: only at depth freqofs)
0.49/0.57 c # [type: int, range: [-1,2147483647], default: 1]
0.49/0.57 c heuristics/subnlp/freq = -1
0.49/0.57 c
0.49/0.57 c # frequency for calling primal heuristic <trivial> (-1: never, 0: only at depth freqofs)
0.49/0.57 c # [type: int, range: [-1,2147483647], default: 0]
0.49/0.57 c heuristics/trivial/freq = -1
0.49/0.57 c
0.49/0.57 c # frequency for calling primal heuristic <trysol> (-1: never, 0: only at depth freqofs)
0.49/0.57 c # [type: int, range: [-1,2147483647], default: 1]
0.49/0.57 c heuristics/trysol/freq = -1
0.49/0.57 c
0.49/0.57 c # frequency for calling primal heuristic <undercover> (-1: never, 0: only at depth freqofs)
0.49/0.57 c # [type: int, range: [-1,2147483647], default: 0]
0.49/0.57 c heuristics/undercover/freq = -1
0.49/0.57 c
0.49/0.57 c # frequency for calling primal heuristic <veclendiving> (-1: never, 0: only at depth freqofs)
0.49/0.57 c # [type: int, range: [-1,2147483647], default: 10]
0.49/0.57 c heuristics/veclendiving/freq = -1
0.49/0.57 c
0.49/0.57 c # maximal fraction of diving LP iterations compared to node LP iterations
0.49/0.57 c # [type: real, range: [0,1.79769313486232e+308], default: 0.05]
0.49/0.57 c heuristics/veclendiving/maxlpiterquot = 0.075
0.49/0.57 c
0.49/0.57 c # additional number of allowed LP iterations
0.49/0.57 c # [type: int, range: [0,2147483647], default: 1000]
0.49/0.57 c heuristics/veclendiving/maxlpiterofs = 1500
0.49/0.57 c
0.49/0.57 c # frequency for calling primal heuristic <zirounding> (-1: never, 0: only at depth freqofs)
0.49/0.57 c # [type: int, range: [-1,2147483647], default: 1]
0.49/0.57 c heuristics/zirounding/freq = -1
0.49/0.57 c
0.49/0.57 c # maximal number of presolving rounds the propagator participates in (-1: no limit)
0.49/0.57 c # [type: int, range: [-1,2147483647], default: -1]
0.49/0.57 c propagating/probing/maxprerounds = 0
0.49/0.57 c
0.49/0.57 c # frequency for calling separator <cmir> (-1: never, 0: only in root node)
0.49/0.57 c # [type: int, range: [-1,2147483647], default: 0]
0.49/0.57 c separating/cmir/freq = -1
0.49/0.57 c
0.49/0.57 c # frequency for calling separator <flowcover> (-1: never, 0: only in root node)
0.49/0.57 c # [type: int, range: [-1,2147483647], default: 0]
0.49/0.57 c separating/flowcover/freq = -1
0.49/0.57 c
0.49/0.57 c # frequency for calling separator <rapidlearning> (-1: never, 0: only in root node)
0.49/0.57 c # [type: int, range: [-1,2147483647], default: -1]
0.49/0.57 c separating/rapidlearning/freq = 0
0.49/0.57 c
0.49/0.57 c # frequency for calling primal heuristic <indoneopt> (-1: never, 0: only at depth freqofs)
0.49/0.57 c # [type: int, range: [-1,2147483647], default: 1]
0.49/0.57 c heuristics/indoneopt/freq = -1
0.49/0.57 c
0.49/0.57 c -----------------------------------------------------------------------------------------------
0.49/0.57 c start solving
0.49/0.57 c
0.49/0.58 c time | node | left |LP iter|LP it/n| mem |mdpt |frac |vars |cons |cols |rows |cuts |confs|strbr| dualbound | primalbound | gap
0.49/0.58 c 0.6s| 1 | 0 | 162 | - | 16M| 0 | 42 | 460 | 741 | 460 | 741 | 0 | 0 | 0 | 0.000000e+00 | -- | Inf
0.59/0.62 c y 0.6s| 1 | 0 | 162 | - | 17M| 0 | - | 460 | 741 | 460 | 741 | 0 | 0 | 0 | 0.000000e+00 | 0.000000e+00 | 0.00%
0.59/0.63 c 0.6s| 1 | 0 | 162 | - | 16M| 0 | - | 460 | 741 | 460 | 741 | 0 | 0 | 0 | 0.000000e+00 | 0.000000e+00 | 0.00%
0.59/0.63 c
0.59/0.63 c SCIP Status : problem is solved [optimal solution found]
0.59/0.63 c Solving Time (sec) : 0.63
0.59/0.63 c Solving Nodes : 1
0.59/0.63 c Primal Bound : +0.00000000000000e+00 (1 solutions)
0.59/0.63 c Dual Bound : +0.00000000000000e+00
0.59/0.63 c Gap : 0.00 %
0.59/0.63 s SATISFIABLE
0.59/0.63 v x4340 -x4339 -x4338 -x4337 -x4336 -x4335 -x4334 -x4333 -x4332 -x4331 -x4330 -x4329 -x4328 -x4327 -x4326 -x4325 -x4324 -x4323 -x4322
0.59/0.63 v -x4321 -x4320 -x4319 -x4318 -x4317 -x4316 -x4315 -x4314 -x4313 -x4312 -x4311 -x4310 -x4309 -x4308 -x4307 -x4306 -x4305 -x4304
0.59/0.63 v -x4303 -x4302 -x4301 -x4300 -x4299 -x4298 -x4297 -x4296 -x4295 -x4294 -x4293 -x4292 -x4291 -x4290 -x4289 -x4288 -x4287
0.59/0.63 v -x4286 -x4285 -x4284 -x4283 -x4282 -x4281 -x4280 -x4279 -x4278 -x4277 -x4276 -x4275 -x4274 -x4273 -x4272 -x4271 -x4270 -x4269
0.59/0.63 v -x4268 -x4267 -x4266 -x4265 -x4264 -x4263 -x4262 -x4261 -x4260 -x4259 x4258 x4257 x4256 x4255 x4254 x4253 x4252 x4251 x4250
0.59/0.63 v x4249 -x4248 -x4247 -x4246 -x4245 -x4244 -x4243 -x4242 -x4241 -x4240 -x4239 -x4238 -x4237 -x4236 -x4235 -x4234 -x4233 -x4232
0.59/0.63 v -x4231 -x4230 -x4229 -x4228 -x4227 -x4226 -x4225 -x4224 -x4223 -x4222 -x4221 -x4220 -x4219 -x4218 -x4217 -x4216 -x4215 -x4214
0.59/0.63 v -x4213 -x4212 -x4211 -x4210 -x4209 -x4208 -x4207 -x4206 -x4205 -x4204 -x4203 -x4202 -x4201 -x4200 -x4199 -x4198 -x4197 -x4196
0.59/0.63 v x4195 x4194 -x4193 -x4192 -x4191 -x4190 -x4189 -x4188 -x4187 -x4186 -x4185 -x4184 -x4183 -x4182 -x4181 -x4180 -x4179 -x4178
0.59/0.63 v -x4177 -x4176 -x4175 -x4174 -x4173 -x4172 -x4171 -x4170 -x4169 -x4168 -x4167 -x4166 -x4165 -x4164 -x4163 -x4162 -x4161 -x4160
0.59/0.63 v -x4159 -x4158 -x4157 -x4156 -x4155 -x4154 -x4153 -x4152 -x4151 -x4150 -x4149 -x4148 -x4147 -x4146 -x4145 -x4144 -x4143 -x4142
0.59/0.63 v -x4141 -x4140 -x4139 -x4138 -x4137 -x4136 -x4135 -x4134 -x4133 -x4132 -x4131 -x4130 x4129 x4128 x4127 x4126 x4125 x4124 x4123
0.59/0.63 v x4122 -x4121 -x4120 -x4119 -x4118 -x4117 -x4116 -x4115 -x4114 -x4113 -x4112 -x4111 -x4110 -x4109 -x4108 -x4107 -x4106 -x4105
0.59/0.63 v -x4104 -x4103 -x4102 -x4101 -x4100 -x4099 -x4098 -x4097 -x4096 -x4095 -x4094 -x4093 -x4092 -x4091 -x4090 -x4089 -x4088 -x4087
0.59/0.63 v -x4086 -x4085 -x4084 -x4083 -x4082 -x4081 -x4080 -x4079 -x4078 -x4077 -x4076 -x4075 -x4074 -x4073 -x4072 -x4071 -x4070 -x4069
0.59/0.63 v -x4068 -x4067 -x4066 -x4065 -x4064 -x4063 -x4062 -x4061 -x4060 -x4059 -x4058 -x4057 -x4056 -x4055 -x4054 -x4053 -x4052
0.59/0.63 v x4051 x4050 x4049 x4048 x4047 x4046 x4045 x4044 -x4043 -x4042 -x4041 -x4040 -x4039 -x4038 -x4037 -x4036 -x4035 -x4034 -x4033
0.59/0.63 v -x4032 -x4031 -x4030 -x4029 -x4028 -x4027 -x4026 -x4025 -x4024 -x4023 -x4022 -x4021 -x4020 -x4019 -x4018 -x4017 -x4016 -x4015
0.59/0.63 v -x4014 -x4013 -x4012 -x4011 -x4010 -x4009 -x4008 -x4007 -x4006 -x4005 -x4004 -x4003 -x4002 -x4001 -x4000 -x3999 -x3998 -x3997
0.59/0.63 v -x3996 -x3995 -x3994 -x3993 -x3992 -x3991 -x3990 -x3989 -x3988 -x3987 -x3986 -x3985 -x3984 x3983 x3982 x3981 x3980 x3979 x3978
0.59/0.63 v x3977 x3976 x3975 x3974 -x3973 -x3972 -x3971 -x3970 -x3969 -x3968 -x3967 -x3966 -x3965 -x3964 -x3963 -x3962 -x3961 -x3960
0.59/0.63 v -x3959 -x3958 -x3957 -x3956 -x3955 -x3954 -x3953 -x3952 -x3951 -x3950 -x3949 -x3948 -x3947 -x3946 -x3945 -x3944 -x3943 -x3942
0.59/0.63 v -x3941 -x3940 -x3939 -x3938 -x3937 -x3936 -x3935 -x3934 -x3933 -x3932 -x3931 -x3930 -x3929 -x3928 -x3927 -x3926 -x3925 -x3924
0.59/0.63 v -x3923 -x3922 -x3921 -x3920 -x3919 -x3918 -x3917 -x3916 -x3915 -x3914 -x3913 -x3912 -x3911 -x3910 -x3909 -x3908 -x3907 -x3906
0.59/0.63 v -x3905 -x3904 -x3903 -x3902 -x3901 -x3900 -x3899 -x3898 -x3897 -x3896 -x3895 -x3894 -x3893 -x3892 -x3891 x3890 -x3889 -x3888
0.59/0.63 v -x3887 -x3886 -x3885 -x3884 -x3883 -x3882 -x3881 -x3880 -x3879 -x3878 -x3877 -x3876 -x3875 -x3874 -x3873 -x3872 -x3871 -x3870
0.59/0.63 v -x3869 -x3868 -x3867 -x3866 -x3865 -x3864 -x3863 -x3862 -x3861 -x3860 -x3859 -x3858 -x3857 -x3856 -x3855 -x3854 -x3853 -x3852
0.59/0.63 v -x3851 -x3850 -x3849 -x3848 -x3847 -x3846 -x3845 -x3844 -x3843 -x3842 -x3841 -x3840 -x3839 -x3838 -x3837 -x3836 -x3835
0.59/0.63 v x3834 x3833 x3832 x3831 x3830 x3829 -x3828 -x3827 -x3826 -x3825 -x3824 -x3823 -x3822 -x3821 -x3820 -x3819 -x3818 -x3817 -x3816
0.59/0.63 v -x3815 -x3814 -x3813 -x3812 -x3811 -x3810 -x3809 -x3808 -x3807 -x3806 -x3805 -x3804 -x3803 -x3802 -x3801 -x3800 -x3799 -x3798
0.59/0.63 v -x3797 -x3796 -x3795 -x3794 -x3793 -x3792 -x3791 -x3790 -x3789 -x3788 -x3787 -x3786 -x3785 -x3784 -x3783 -x3782 -x3781 -x3780
0.59/0.63 v -x3779 -x3778 -x3777 -x3776 -x3775 -x3774 -x3773 -x3772 -x3771 -x3770 -x3769 -x3768 -x3767 -x3766 -x3765 -x3764 -x3763 -x3762
0.59/0.64 v -x3761 -x3760 x3759 x3758 x3757 x3756 x3755 x3754 x3753 x3752 x3751 -x3750 -x3749 -x3748 -x3747 -x3746 -x3745 -x3744 -x3743
0.59/0.64 v -x3742 -x3741 -x3740 -x3739 -x3738 -x3737 -x3736 -x3735 -x3734 -x3733 -x3732 -x3731 -x3730 -x3729 -x3728 -x3727 -x3726 -x3725
0.59/0.64 v -x3724 -x3723 -x3722 -x3721 -x3720 -x3719 -x3718 -x3717 -x3716 -x3715 -x3714 -x3713 -x3712 -x3711 -x3710 -x3709 -x3708 -x3707
0.59/0.64 v -x3706 -x3705 -x3704 -x3703 -x3702 -x3701 -x3700 -x3699 -x3698 -x3697 -x3696 -x3695 -x3694 x3693 x3692 x3691 x3690 x3689
0.59/0.64 v -x3688 -x3687 -x3686 -x3685 -x3684 -x3683 -x3682 -x3681 -x3680 -x3679 -x3678 -x3677 -x3676 -x3675 -x3674 -x3673 -x3672 -x3671
0.59/0.64 v -x3670 -x3669 -x3668 -x3667 -x3666 -x3665 -x3664 -x3663 -x3662 -x3661 -x3660 -x3659 -x3658 -x3657 -x3656 -x3655 -x3654 -x3653
0.59/0.64 v -x3652 -x3651 -x3650 -x3649 -x3648 -x3647 -x3646 -x3645 -x3644 -x3643 -x3642 -x3641 -x3640 -x3639 -x3638 -x3637 -x3636 -x3635
0.59/0.64 v -x3634 -x3633 -x3632 x3631 x3630 x3629 x3628 x3627 x3626 -x3625 -x3624 -x3623 -x3622 -x3621 -x3620 -x3619 -x3618 -x3617
0.59/0.64 v -x3616 -x3615 -x3614 -x3613 -x3612 -x3611 -x3610 -x3609 -x3608 -x3607 -x3606 -x3605 -x3604 -x3603 -x3602 -x3601 -x3600 -x3599
0.59/0.64 v -x3598 -x3597 -x3596 -x3595 -x3594 -x3593 -x3592 -x3591 -x3590 -x3589 -x3588 -x3587 -x3586 -x3585 -x3584 -x3583 -x3582 -x3581
0.59/0.64 v -x3580 -x3579 -x3578 -x3577 -x3576 -x3575 -x3574 -x3573 -x3572 -x3571 -x3570 -x3569 -x3568 -x3567 -x3566 -x3565 -x3564 -x3563
0.59/0.64 v -x3562 -x3561 -x3560 -x3559 -x3558 -x3557 -x3556 -x3555 -x3554 -x3553 -x3552 -x3551 -x3550 -x3549 x3548 x3547 x3546 x3545
0.59/0.64 v x3544 -x3543 -x3542 -x3541 -x3540 -x3539 -x3538 -x3537 -x3536 -x3535 -x3534 -x3533 -x3532 -x3531 -x3530 -x3529 -x3528 -x3527
0.59/0.64 v -x3526 -x3525 -x3524 -x3523 -x3522 -x3521 -x3520 -x3519 -x3518 -x3517 -x3516 -x3515 -x3514 -x3513 -x3512 -x3511 -x3510 -x3509
0.59/0.64 v -x3508 -x3507 -x3506 -x3505 -x3504 -x3503 -x3502 -x3501 -x3500 -x3499 -x3498 -x3497 -x3496 -x3495 -x3494 -x3493 -x3492 -x3491
0.59/0.64 v -x3490 -x3489 -x3488 -x3487 -x3486 -x3485 -x3484 -x3483 -x3482 -x3481 -x3480 -x3479 -x3478 -x3477 -x3476 x3475 x3474 x3473
0.59/0.64 v x3472 x3471 x3470 x3469 x3468 -x3467 -x3466 -x3465 -x3464 -x3463 -x3462 -x3461 -x3460 -x3459 -x3458 -x3457 -x3456 -x3455 -x3454
0.59/0.64 v -x3453 -x3452 -x3451 -x3450 -x3449 -x3448 -x3447 -x3446 -x3445 -x3444 -x3443 -x3442 -x3441 -x3440 -x3439 -x3438 -x3437 -x3436
0.59/0.64 v -x3435 -x3434 -x3433 -x3432 -x3431 -x3430 -x3429 -x3428 -x3427 -x3426 -x3425 -x3424 -x3423 -x3422 -x3421 -x3420 -x3419 -x3418
0.59/0.64 v -x3417 -x3416 x3415 x3414 x3413 x3412 x3411 x3410 x3409 x3408 x3407 x3406 -x3405 -x3404 -x3403 -x3402 -x3401 -x3400 -x3399
0.59/0.64 v -x3398 -x3397 -x3396 -x3395 -x3394 -x3393 -x3392 -x3391 -x3390 -x3389 -x3388 -x3387 -x3386 -x3385 -x3384 -x3383 -x3382 -x3381
0.59/0.64 v -x3380 -x3379 -x3378 -x3377 -x3376 -x3375 -x3374 -x3373 -x3372 -x3371 -x3370 -x3369 -x3368 -x3367 -x3366 -x3365 -x3364 -x3363
0.59/0.64 v -x3362 -x3361 -x3360 -x3359 -x3358 -x3357 -x3356 -x3355 -x3354 -x3353 -x3352 -x3351 -x3350 -x3349 -x3348 -x3347 -x3346 -x3345
0.59/0.64 v -x3344 -x3343 -x3342 -x3341 -x3340 -x3339 -x3338 -x3337 -x3336 x3335 x3334 x3333 x3332 x3331 x3330 x3329 x3328 x3327 -x3326
0.59/0.64 v -x3325 -x3324 -x3323 -x3322 -x3321 -x3320 -x3319 -x3318 -x3317 -x3316 -x3315 -x3314 -x3313 -x3312 -x3311 -x3310 -x3309 -x3308
0.59/0.64 v -x3307 -x3306 -x3305 -x3304 -x3303 -x3302 -x3301 -x3300 -x3299 -x3298 -x3297 -x3296 -x3295 -x3294 -x3293 -x3292 -x3291
0.59/0.64 v -x3290 -x3289 -x3288 -x3287 -x3286 -x3285 -x3284 -x3283 -x3282 -x3281 -x3280 -x3279 -x3278 -x3277 -x3276 -x3275 -x3274 -x3273
0.59/0.64 v -x3272 -x3271 -x3270 -x3269 -x3268 -x3267 -x3266 -x3265 x3264 -x3263 -x3262 -x3261 -x3260 -x3259 -x3258 -x3257 -x3256 -x3255
0.59/0.64 v -x3254 -x3253 -x3252 -x3251 -x3250 -x3249 -x3248 -x3247 -x3246 -x3245 -x3244 -x3243 -x3242 -x3241 -x3240 -x3239 -x3238 -x3237
0.59/0.64 v -x3236 -x3235 -x3234 -x3233 -x3232 -x3231 -x3230 -x3229 -x3228 -x3227 -x3226 -x3225 -x3224 -x3223 -x3222 -x3221 -x3220 -x3219
0.59/0.64 v -x3218 -x3217 -x3216 -x3215 -x3214 -x3213 -x3212 -x3211 -x3210 -x3209 -x3208 -x3207 -x3206 -x3205 -x3204 -x3203 -x3202 -x3201
0.59/0.64 v -x3200 -x3199 -x3198 -x3197 -x3196 -x3195 -x3194 -x3193 -x3192 -x3191 x3190 x3189 x3188 x3187 x3186 x3185 x3184 x3183 -x3182
0.59/0.64 v -x3181 -x3180 -x3179 -x3178 -x3177 -x3176 -x3175 -x3174 -x3173 -x3172 -x3171 -x3170 -x3169 -x3168 -x3167 -x3166 -x3165 -x3164
0.59/0.64 v -x3163 -x3162 -x3161 -x3160 -x3159 -x3158 -x3157 -x3156 -x3155 -x3154 -x3153 -x3152 -x3151 -x3150 -x3149 -x3148 -x3147 -x3146
0.59/0.64 v -x3145 -x3144 -x3143 -x3142 -x3141 -x3140 -x3139 -x3138 -x3137 -x3136 -x3135 -x3134 -x3133 -x3132 -x3131 -x3130 -x3129
0.59/0.64 v -x3128 -x3127 -x3126 -x3125 -x3124 -x3123 -x3122 -x3121 -x3120 -x3119 -x3118 -x3117 -x3116 -x3115 -x3114 -x3113 -x3112 -x3111
0.59/0.64 v -x3110 x3109 x3108 x3107 x3106 x3105 x3104 x3103 x3102 -x3101 -x3100 -x3099 -x3098 -x3097 -x3096 -x3095 -x3094 -x3093 -x3092
0.59/0.64 v -x3091 -x3090 -x3089 -x3088 -x3087 -x3086 -x3085 -x3084 -x3083 -x3082 -x3081 -x3080 -x3079 -x3078 -x3077 -x3076 -x3075 -x3074
0.59/0.64 v -x3073 -x3072 -x3071 -x3070 -x3069 -x3068 -x3067 -x3066 -x3065 -x3064 -x3063 -x3062 -x3061 -x3060 -x3059 -x3058 -x3057 -x3056
0.59/0.64 v -x3055 -x3054 -x3053 -x3052 -x3051 -x3050 -x3049 -x3048 -x3047 -x3046 -x3045 -x3044 -x3043 x3042 x3041 x3040 x3039 x3038 x3037
0.59/0.64 v x3036 x3035 x3034 -x3033 -x3032 -x3031 -x3030 -x3029 -x3028 -x3027 -x3026 -x3025 -x3024 -x3023 -x3022 -x3021 -x3020 -x3019
0.59/0.64 v -x3018 -x3017 -x3016 -x3015 -x3014 -x3013 -x3012 -x3011 -x3010 -x3009 -x3008 -x3007 -x3006 -x3005 -x3004 -x3003 -x3002 -x3001
0.59/0.64 v -x3000 -x2999 -x2998 -x2997 -x2996 -x2995 -x2994 -x2993 -x2992 -x2991 -x2990 -x2989 -x2988 -x2987 -x2986 -x2985 -x2984 -x2983
0.59/0.64 v -x2982 -x2981 -x2980 -x2979 -x2978 -x2977 -x2976 -x2975 -x2974 -x2973 x2972 x2971 x2970 x2969 -x2968 -x2967 -x2966 -x2965
0.59/0.64 v -x2964 -x2963 -x2962 -x2961 -x2960 -x2959 -x2958 -x2957 -x2956 -x2955 -x2954 -x2953 -x2952 -x2951 -x2950 -x2949 -x2948 -x2947
0.59/0.64 v -x2946 -x2945 -x2944 -x2943 -x2942 -x2941 -x2940 -x2939 -x2938 -x2937 -x2936 -x2935 -x2934 -x2933 -x2932 -x2931 -x2930 -x2929
0.59/0.64 v -x2928 -x2927 -x2926 -x2925 -x2924 -x2923 -x2922 -x2921 -x2920 -x2919 -x2918 -x2917 -x2916 -x2915 -x2914 -x2913 -x2912 -x2911
0.59/0.64 v -x2910 -x2909 -x2908 -x2907 -x2906 -x2905 -x2904 -x2903 -x2902 -x2901 -x2900 -x2899 -x2898 -x2897 -x2896 -x2895 -x2894 x2893
0.59/0.64 v x2892 x2891 x2890 x2889 x2888 x2887 x2886 -x2885 -x2884 -x2883 -x2882 -x2881 -x2880 -x2879 -x2878 -x2877 -x2876 -x2875 -x2874
0.59/0.64 v -x2873 -x2872 -x2871 -x2870 -x2869 -x2868 -x2867 -x2866 -x2865 -x2864 -x2863 -x2862 -x2861 -x2860 -x2859 -x2858 -x2857
0.59/0.64 v -x2856 -x2855 -x2854 -x2853 -x2852 -x2851 -x2850 -x2849 -x2848 -x2847 -x2846 -x2845 -x2844 x2843 x2842 x2841 x2840 x2839 x2838
0.59/0.64 v x2837 x2836 x2835 x2834 -x2833 -x2832 -x2831 -x2830 -x2829 -x2828 -x2827 -x2826 -x2825 -x2824 -x2823 -x2822 -x2821 -x2820 -x2819
0.59/0.64 v -x2818 -x2817 -x2816 -x2815 -x2814 -x2813 -x2812 -x2811 -x2810 -x2809 -x2808 -x2807 -x2806 -x2805 -x2804 -x2803 -x2802
0.59/0.64 v -x2801 -x2800 -x2799 -x2798 -x2797 -x2796 -x2795 -x2794 -x2793 -x2792 -x2791 -x2790 -x2789 -x2788 -x2787 -x2786 -x2785 -x2784
0.59/0.64 v -x2783 -x2782 -x2781 -x2780 -x2779 -x2778 -x2777 -x2776 -x2775 -x2774 -x2773 -x2772 -x2771 -x2770 -x2769 -x2768 -x2767 -x2766
0.59/0.64 v -x2765 -x2764 -x2763 -x2762 -x2761 -x2760 -x2759 -x2758 -x2757 -x2756 -x2755 -x2754 -x2753 -x2752 -x2751 -x2750 x2749 x2748
0.59/0.64 v x2747 x2746 x2745 x2744 x2743 x2742 x2741 x2740 -x2739 -x2738 -x2737 -x2736 -x2735 -x2734 -x2733 -x2732 -x2731 -x2730 -x2729
0.59/0.64 v -x2728 -x2727 -x2726 -x2725 -x2724 -x2723 -x2722 -x2721 -x2720 -x2719 -x2718 -x2717 -x2716 -x2715 -x2714 -x2713 -x2712 -x2711
0.59/0.64 v -x2710 -x2709 -x2708 -x2707 -x2706 -x2705 -x2704 -x2703 -x2702 -x2701 -x2700 -x2699 -x2698 -x2697 -x2696 -x2695 -x2694 x2693
0.59/0.64 v x2692 x2691 x2690 x2689 -x2688 -x2687 -x2686 -x2685 -x2684 -x2683 -x2682 -x2681 -x2680 -x2679 -x2678 -x2677 -x2676 -x2675 -x2674
0.59/0.64 v -x2673 -x2672 -x2671 -x2670 -x2669 -x2668 -x2667 -x2666 -x2665 -x2664 -x2663 -x2662 -x2661 -x2660 -x2659 -x2658 -x2657
0.59/0.64 v -x2656 -x2655 -x2654 -x2653 -x2652 -x2651 -x2650 -x2649 -x2648 -x2647 -x2646 -x2645 -x2644 -x2643 -x2642 -x2641 -x2640 -x2639
0.59/0.64 v -x2638 -x2637 -x2636 -x2635 -x2634 -x2633 -x2632 -x2631 -x2630 -x2629 -x2628 -x2627 -x2626 -x2625 -x2624 -x2623 -x2622 -x2621
0.59/0.64 v -x2620 -x2619 -x2618 -x2617 -x2616 -x2615 -x2614 -x2613 -x2612 -x2611 -x2610 -x2609 -x2608 -x2607 -x2606 -x2605 -x2604 -x2603
0.59/0.64 v -x2602 -x2601 -x2600 x2599 -x2598 -x2597 -x2596 -x2595 -x2594 -x2593 -x2592 -x2591 -x2590 -x2589 -x2588 -x2587 -x2586 -x2585
0.59/0.64 v -x2584 -x2583 -x2582 -x2581 -x2580 -x2579 -x2578 -x2577 -x2576 -x2575 -x2574 -x2573 -x2572 -x2571 -x2570 -x2569 -x2568 -x2567
0.59/0.64 v -x2566 -x2565 -x2564 -x2563 -x2562 -x2561 -x2560 -x2559 -x2558 -x2557 x2556 x2555 x2554 x2553 x2552 x2551 x2550 -x2549 -x2548
0.59/0.64 v -x2547 -x2546 -x2545 -x2544 -x2543 -x2542 -x2541 -x2540 -x2539 -x2538 -x2537 -x2536 -x2535 -x2534 -x2533 -x2532 -x2531 -x2530
0.59/0.64 v -x2529 -x2528 -x2527 -x2526 -x2525 -x2524 -x2523 -x2522 -x2521 -x2520 -x2519 -x2518 -x2517 -x2516 -x2515 -x2514 -x2513
0.59/0.64 v -x2512 -x2511 -x2510 -x2509 -x2508 -x2507 -x2506 -x2505 -x2504 -x2503 -x2502 -x2501 -x2500 -x2499 -x2498 -x2497 -x2496 -x2495
0.59/0.64 v -x2494 -x2493 -x2492 -x2491 -x2490 -x2489 -x2488 -x2487 -x2486 -x2485 -x2484 -x2483 -x2482 -x2481 -x2480 x2479 x2478 x2477 x2476
0.59/0.64 v x2475 x2474 x2473 x2472 x2471 -x2470 -x2469 -x2468 -x2467 -x2466 -x2465 -x2464 -x2463 -x2462 -x2461 -x2460 -x2459 -x2458
0.59/0.64 v -x2457 -x2456 -x2455 -x2454 -x2453 -x2452 -x2451 -x2450 -x2449 -x2448 -x2447 -x2446 -x2445 -x2444 -x2443 -x2442 -x2441 -x2440
0.59/0.64 v -x2439 -x2438 -x2437 -x2436 -x2435 -x2434 -x2433 -x2432 -x2431 -x2430 -x2429 -x2428 -x2427 -x2426 -x2425 -x2424 -x2423 -x2422
0.59/0.64 v -x2421 -x2420 -x2419 -x2418 -x2417 -x2416 -x2415 -x2414 -x2413 -x2412 -x2411 -x2410 -x2409 -x2408 -x2407 -x2406 -x2405 -x2404
0.59/0.64 v -x2403 -x2402 -x2401 x2400 x2399 x2398 x2397 x2396 x2395 x2394 x2393 x2392 x2391 -x2390 -x2389 -x2388 -x2387 -x2386 -x2385
0.59/0.64 v -x2384 -x2383 -x2382 -x2381 -x2380 -x2379 -x2378 -x2377 -x2376 -x2375 -x2374 -x2373 -x2372 -x2371 -x2370 -x2369 -x2368 -x2367
0.59/0.64 v -x2366 -x2365 -x2364 -x2363 -x2362 -x2361 -x2360 -x2359 -x2358 -x2357 -x2356 -x2355 -x2354 -x2353 -x2352 -x2351 -x2350 -x2349
0.59/0.64 v -x2348 -x2347 -x2346 -x2345 -x2344 -x2343 -x2342 -x2341 -x2340 -x2339 -x2338 -x2337 -x2336 -x2335 -x2334 -x2333 -x2332 -x2331
0.59/0.64 v -x2330 -x2329 -x2328 -x2327 -x2326 -x2325 -x2324 -x2323 -x2322 -x2321 x2320 x2319 x2318 x2317 x2316 x2315 x2314 x2313 x2312
0.59/0.64 v x2311 -x2310 -x2309 -x2308 -x2307 -x2306 -x2305 -x2304 -x2303 -x2302 -x2301 -x2300 -x2299 -x2298 -x2297 -x2296 -x2295 -x2294
0.59/0.64 v -x2293 -x2292 -x2291 -x2290 -x2289 -x2288 -x2287 -x2286 -x2285 -x2284 -x2283 -x2282 -x2281 -x2280 -x2279 -x2278 -x2277 -x2276
0.59/0.64 v -x2275 -x2274 -x2273 -x2272 -x2271 -x2270 -x2269 -x2268 -x2267 -x2266 -x2265 -x2264 -x2263 -x2262 -x2261 -x2260 -x2259 -x2258
0.59/0.64 v -x2257 -x2256 -x2255 -x2254 -x2253 -x2252 -x2251 -x2250 -x2249 x2248 x2247 x2246 x2245 x2244 x2243 x2242 x2241 -x2240 -x2239
0.59/0.64 v -x2238 -x2237 -x2236 -x2235 -x2234 -x2233 -x2232 -x2231 -x2230 -x2229 -x2228 -x2227 -x2226 -x2225 -x2224 -x2223 -x2222
0.59/0.64 v -x2221 -x2220 -x2219 -x2218 -x2217 -x2216 -x2215 -x2214 -x2213 -x2212 -x2211 -x2210 -x2209 -x2208 -x2207 -x2206 -x2205 -x2204
0.59/0.64 v -x2203 -x2202 -x2201 -x2200 -x2199 -x2198 -x2197 -x2196 -x2195 -x2194 -x2193 -x2192 -x2191 -x2190 -x2189 -x2188 -x2187 -x2186
0.59/0.64 v -x2185 -x2184 -x2183 -x2182 -x2181 -x2180 x2179 x2178 x2177 x2176 x2175 -x2174 -x2173 -x2172 -x2171 -x2169 -x2168 -x2167 -x2166
0.59/0.64 v -x2165 -x2164 -x2163 -x2162 -x2161 -x2160 -x2159 -x2158 -x2157 -x2156 -x2155 -x2154 -x2153 -x2152 -x2151 -x2150 -x2149 -x2148
0.59/0.64 v -x2147 -x2146 -x2145 -x2144 -x2143 -x2142 -x2141 -x2140 -x2139 -x2138 -x2137 -x2136 -x2135 -x2134 -x2133 -x2132 -x2131
0.59/0.64 v -x2130 -x2129 -x2128 -x2127 -x2126 -x2125 -x2124 -x2123 -x2122 -x2121 -x2120 -x2119 -x2118 -x2117 -x2116 -x2115 -x2114 -x2113
0.59/0.64 v -x2112 -x2111 -x2110 -x2109 -x2108 -x2107 -x2106 -x2105 -x2104 -x2103 -x2102 -x2101 x2100 x2099 x2098 x2097 x2096 x2095 x2094
0.59/0.64 v x2093 x2092 x2091 x2090 x2089 x2088 x2087 x2086 x2085 x2084 x2083 x2082 x2081 x2080 x2079 -x2078 -x2077 -x2076 -x2075 -x2074
0.59/0.64 v -x2073 -x2072 -x2071 -x2070 -x2069 -x2068 -x2067 -x2066 -x2065 -x2064 -x2063 -x2062 -x2061 -x2060 -x2059 -x2058 -x2057 -x2056
0.59/0.64 v -x2055 -x2054 -x2053 -x2052 -x2051 -x2050 -x2049 -x2048 -x2047 -x2046 -x2045 -x2044 -x2043 -x2042 -x2041 -x2040 -x2039 -x2038
0.59/0.64 v -x2037 -x2036 -x2035 -x2034 -x2033 -x2032 -x2031 x2030 x2029 x2028 x2027 x2026 x2025 x2024 -x2023 -x2022 -x2021 -x2020 -x2019
0.59/0.64 v -x2018 -x2017 -x2016 -x2015 -x2014 -x2013 -x2012 -x2011 -x2010 -x2009 -x2008 -x2007 -x2006 -x2005 -x2004 -x2003 -x2002 -x2001
0.59/0.64 v -x2000 -x1999 -x1998 -x1997 -x1996 -x1995 -x1994 -x1993 -x1992 -x1991 -x1990 -x1989 -x1988 -x1987 -x1986 -x1985 -x1984
0.59/0.64 v -x1983 -x1982 -x1981 -x1980 -x1979 -x1978 -x1977 -x1976 -x1975 -x1974 -x1973 -x1972 -x1971 -x1970 -x1969 -x1968 -x1967 -x1966
0.59/0.64 v -x1965 -x1964 -x1963 -x1962 -x1961 x1960 x1959 x1958 x1957 x1956 x1955 x1954 x1953 x1952 -x1951 -x1950 -x1949 -x1948 -x1947
0.59/0.64 v -x1946 -x1945 -x1944 -x1943 -x1942 -x1941 -x1940 -x1939 -x1938 -x1937 -x1936 -x1935 -x1934 -x1933 -x1932 -x1931 -x1930 -x1929
0.59/0.64 v -x1928 -x1927 -x1926 -x1925 -x1924 -x1923 -x1922 -x1921 -x1920 -x1919 -x1918 -x1917 -x1916 -x1915 -x1914 -x1913 -x1912 -x1911
0.59/0.64 v -x1910 -x1909 -x1908 -x1907 -x1906 -x1905 -x1904 -x1903 -x1902 -x1901 -x1900 -x1899 -x1898 -x1897 -x1896 -x1895 -x1894 -x1893
0.59/0.64 v -x1892 -x1891 x1890 x1889 x1888 x1887 x1886 x1885 x1884 x1883 x1882 x1881 x1880 x1879 x1878 x1877 x1876 x1875 x1874 -x1873
0.59/0.64 v -x1872 -x1871 -x1870 -x1869 -x1868 -x1867 -x1866 -x1865 -x1864 -x1863 -x1862 -x1861 -x1860 -x1859 -x1858 -x1857 -x1856 -x1855
0.59/0.64 v -x1854 -x1853 -x1852 -x1851 -x1850 -x1849 -x1848 -x1847 -x1846 -x1845 -x1844 -x1843 -x1842 -x1841 -x1840 -x1839 -x1838 -x1837
0.59/0.64 v -x1836 -x1835 -x1834 -x1833 -x1832 -x1831 -x1830 -x1829 -x1828 -x1827 -x1826 -x1825 -x1824 -x1823 -x1822 -x1821 x1820 x1819
0.59/0.64 v x1818 x1817 x1816 x1815 x1814 x1813 x1812 x1811 x1810 x1809 x1808 x1807 x1806 x1805 x1804 -x1803 -x1802 -x1801 -x1800 -x1799
0.59/0.64 v -x1798 -x1797 -x1796 -x1795 -x1794 -x1793 -x1792 -x1791 -x1790 -x1789 -x1788 -x1787 -x1786 -x1785 -x1784 -x1783 -x1782 -x1781
0.59/0.64 v -x1780 -x1779 -x1778 -x1777 -x1776 -x1775 -x1774 -x1773 -x1772 -x1771 -x1770 -x1769 -x1768 -x1767 -x1766 -x1765 -x1764 -x1763
0.59/0.64 v -x1762 -x1761 -x1760 -x1759 -x1758 -x1757 -x1756 -x1755 -x1754 -x1753 -x1752 -x1751 x1750 x1749 x1748 x1747 x1746 x1745 x1744
0.59/0.64 v x1743 x1742 x1741 x1740 x1739 x1738 x1737 x1736 x1735 x1734 x1733 x1732 x1731 x1730 x1729 x1728 x1727 x1726 x1725 x1724
0.59/0.64 v x1723 x1722 x1721 x1720 -x1719 -x1718 -x1717 -x1716 -x1715 -x1714 -x1713 -x1712 -x1711 -x1710 -x1709 -x1708 -x1707 -x1706 -x1705
0.59/0.64 v -x1704 -x1703 -x1702 -x1701 -x1700 -x1699 -x1698 -x1697 -x1696 -x1695 -x1694 -x1693 -x1692 -x1691 -x1690 -x1689 -x1688 -x1687
0.59/0.64 v -x1686 -x1685 -x1684 -x1683 -x1682 -x1681 x1680 x1679 x1678 x1677 x1676 x1675 x1674 x1673 x1672 x1671 x1670 x1669 x1668
0.59/0.64 v x1667 x1666 x1665 x1664 x1663 x1662 x1661 x1660 x1659 -x1658 -x1657 -x1656 -x1655 -x1654 -x1653 -x1652 -x1651 -x1650 -x1649 -x1648
0.59/0.64 v -x1647 -x1646 -x1645 -x1644 -x1643 -x1642 -x1641 -x1640 -x1639 -x1638 -x1637 -x1636 -x1635 -x1634 -x1633 -x1632 -x1631
0.59/0.64 v -x1630 -x1629 -x1628 -x1627 -x1626 -x1625 -x1624 -x1623 -x1622 -x1621 -x1620 -x1619 -x1618 -x1617 -x1616 -x1615 -x1614 -x1613
0.59/0.64 v -x1612 -x1611 x1610 x1609 x1608 x1607 x1606 x1605 x1604 x1603 x1602 x1601 x1600 x1599 x1598 x1597 x1596 x1595 x1594 x1593 x1592
0.59/0.64 v x1591 x1590 x1589 x1588 x1587 x1586 x1585 x1584 x1583 x1582 x1581 -x1580 -x1579 -x1578 -x1577 -x1576 -x1575 -x1574 -x1573
0.59/0.64 v -x1572 -x1571 -x1570 -x1569 -x1568 -x1567 -x1566 -x1565 -x1564 -x1563 -x1562 -x1561 -x1560 -x1559 -x1558 -x1557 -x1556 -x1555
0.59/0.64 v -x1554 -x1553 -x1552 -x1551 -x1550 -x1549 -x1548 -x1547 -x1546 -x1545 -x1544 -x1543 -x1542 -x1541 x1540 x1539 x1538 x1537 x1536
0.59/0.64 v x1535 x1534 x1533 x1532 x1531 x1530 x1529 x1528 x1527 x1526 x1525 x1524 x1523 x1522 x1521 x1520 x1519 -x1518 -x1517 -x1516
0.59/0.64 v -x1515 -x1514 -x1513 -x1512 -x1511 -x1510 -x1509 -x1508 -x1507 -x1506 -x1505 -x1504 -x1503 -x1502 -x1501 -x1500 -x1499 -x1498
0.59/0.64 v -x1497 -x1496 -x1495 -x1494 -x1493 -x1492 -x1491 -x1490 -x1489 -x1488 -x1487 -x1486 -x1485 -x1484 -x1483 -x1482 -x1481 -x1480
0.59/0.64 v -x1479 -x1478 -x1477 -x1476 -x1475 -x1474 -x1473 -x1472 -x1471 x1470 x1469 x1468 x1467 x1466 x1465 x1464 x1463 x1462 x1461
0.59/0.64 v x1460 x1459 x1458 x1457 x1456 -x1455 -x1454 -x1453 -x1452 -x1451 -x1450 -x1449 -x1448 -x1447 -x1446 -x1445 -x1444 -x1443 -x1442
0.59/0.64 v -x1441 -x1440 -x1439 -x1438 -x1437 -x1436 -x1435 -x1434 -x1433 -x1432 -x1431 -x1430 -x1429 -x1428 -x1427 -x1426 -x1425
0.59/0.64 v -x1424 -x1423 -x1422 -x1421 -x1420 -x1419 -x1418 -x1417 -x1416 -x1415 -x1414 -x1413 -x1412 -x1411 -x1410 -x1409 -x1408 -x1407
0.59/0.64 v -x1406 -x1405 -x1404 -x1403 -x1402 -x1401 x1400 x1399 x1398 x1397 x1396 x1395 x1394 x1393 x1392 x1391 x1390 x1389 x1388 x1387
0.59/0.64 v x1386 x1385 x1384 x1383 x1382 x1381 x1380 x1379 x1378 x1377 x1376 x1375 x1374 -x1373 -x1372 -x1371 -x1370 -x1369 -x1368 -x1367
0.59/0.64 v -x1366 -x1365 -x1364 -x1363 -x1362 -x1361 -x1360 -x1359 -x1358 -x1357 -x1356 -x1355 -x1354 -x1353 -x1352 -x1351 -x1350 -x1349
0.59/0.64 v -x1348 -x1347 -x1346 -x1345 -x1344 -x1343 -x1342 -x1341 -x1340 -x1339 -x1338 -x1337 -x1336 -x1335 -x1334 -x1333 -x1332 -x1331
0.59/0.64 v x1330 x1329 x1328 x1327 x1326 x1325 x1324 x1323 x1322 x1321 x1320 x1319 x1318 x1317 x1316 x1315 x1314 x1313 x1312 x1311
0.59/0.64 v x1310 x1309 x1308 x1307 x1306 x1305 x1304 x1303 x1302 x1301 x1300 x1299 x1298 -x1297 -x1296 -x1295 -x1294 -x1293 -x1292 -x1291
0.59/0.64 v -x1290 -x1289 -x1288 -x1287 -x1286 -x1285 -x1284 -x1283 -x1282 -x1281 -x1280 -x1279 -x1278 -x1277 -x1276 -x1275 -x1274 -x1273
0.59/0.64 v -x1272 -x1271 -x1270 -x1269 -x1268 -x1267 -x1266 -x1265 -x1264 -x1263 -x1262 -x1261 x1260 x1259 x1258 x1257 x1256 x1255 x1254
0.59/0.64 v x1253 x1252 x1251 x1250 x1249 x1248 x1247 x1246 x1245 x1244 x1243 x1242 x1241 x1240 x1239 x1238 x1237 x1236 -x1235 -x1234
0.59/0.64 v -x1233 -x1232 -x1231 -x1230 -x1229 -x1228 -x1227 -x1226 -x1225 -x1224 -x1223 -x1222 -x1221 -x1220 -x1219 -x1218 -x1217 -x1216
0.59/0.64 v -x1215 -x1214 -x1213 -x1212 -x1211 -x1210 -x1209 -x1208 -x1207 -x1206 -x1205 -x1204 -x1203 -x1202 -x1201 -x1200 -x1199 -x1198
0.59/0.64 v -x1197 -x1196 -x1195 -x1194 -x1193 -x1192 -x1191 x1190 x1189 x1188 x1187 x1186 x1185 x1184 x1183 x1182 x1181 x1180 x1179
0.59/0.64 v x1178 x1177 x1176 x1175 x1174 x1173 x1172 x1171 x1170 x1169 x1168 x1167 x1166 x1165 x1164 x1163 x1162 x1161 x1160 x1159 x1158
0.59/0.64 v x1157 -x1156 -x1155 -x1154 -x1153 -x1152 -x1151 -x1150 -x1149 -x1148 -x1147 -x1146 -x1145 -x1144 -x1143 -x1142 -x1141 -x1140
0.59/0.64 v -x1139 -x1138 -x1137 -x1136 -x1135 -x1134 -x1133 -x1132 -x1131 -x1130 -x1129 -x1128 -x1127 -x1126 -x1125 -x1124 -x1123 -x1122
0.59/0.64 v -x1121 x1120 x1119 x1118 x1117 x1116 x1115 x1114 x1113 x1112 x1111 x1110 x1109 x1108 x1107 x1106 x1105 x1104 x1103 x1102 x1101
0.59/0.64 v x1100 x1099 x1098 x1097 x1096 x1095 x1094 -x1093 -x1092 -x1091 -x1090 -x1089 -x1088 -x1087 -x1086 -x1085 -x1084 -x1083 -x1082
0.59/0.64 v -x1081 -x1080 -x1079 -x1078 -x1077 -x1076 -x1075 -x1074 -x1073 -x1072 -x1071 -x1070 -x1069 -x1068 -x1067 -x1066 -x1065 -x1064
0.59/0.64 v -x1063 -x1062 -x1061 -x1060 -x1059 -x1058 -x1057 -x1056 -x1055 -x1054 -x1053 -x1052 -x1051 x1050 x1049 x1048 x1047 x1046
0.59/0.64 v x1045 x1044 x1043 x1042 x1041 x1040 x1039 x1038 x1037 x1036 x1035 x1034 x1033 x1032 x1031 x1030 x1029 x1028 x1027 x1026 x1025
0.59/0.64 v x1024 x1023 x1022 x1021 x1020 x1019 x1018 x1017 x1016 x1015 x1014 x1013 -x1012 -x1011 -x1010 -x1009 -x1008 -x1007 -x1006 -x1005
0.59/0.64 v -x1004 -x1003 -x1002 -x1001 -x1000 -x999 -x998 -x997 -x996 -x995 -x994 -x993 -x992 -x991 -x990 -x989 -x988 -x987 -x986
0.59/0.64 v -x985 -x984 -x983 -x982 -x981 x980 x979 x978 x977 x976 x975 x974 x973 x972 x971 x970 x969 x968 x967 x966 x965 x964 x963 x962
0.59/0.64 v x961 x960 x959 x958 x957 x956 x955 x954 x953 x952 x951 x950 x949 x948 x947 x946 x945 x944 x943 x942 x941 x940 x939 x938 x937
0.59/0.64 v x936 x935 x934 x933 x932 -x931 -x930 -x929 -x928 -x927 -x926 -x925 -x924 -x923 -x922 -x921 -x920 -x919 -x918 -x917 -x916 -x915
0.59/0.64 v -x914 -x913 -x912 -x911 x910 x909 x908 x907 x906 x905 x904 x903 x902 x901 x900 x899 x898 x897 x896 x895 x894 x893 x892 x891
0.59/0.64 v x890 x889 x888 x887 x886 x885 x884 x883 x882 x881 x880 x879 x878 x877 x876 x875 x874 x873 x872 x871 x870 x869 x868 x867 x866
0.59/0.64 v x865 x864 -x863 -x862 -x861 -x860 -x859 -x858 -x857 -x856 -x855 -x854 -x853 -x852 -x851 -x850 -x849 -x848 -x847 -x846 -x845
0.59/0.64 v -x844 -x843 -x842 -x841 x840 x839 x838 x837 x836 x835 x834 x833 x832 x831 x830 x829 x828 x827 x826 x825 x824 x823 x822 x821 x820
0.59/0.64 v x819 x818 x817 x816 x815 x814 x813 x812 x811 x810 x809 x808 x807 x806 x805 x804 x803 x802 x801 x800 x799 -x798 -x797 -x796
0.59/0.64 v -x795 -x794 -x793 -x792 -x791 -x790 -x789 -x788 -x787 -x786 -x785 -x784 -x783 -x782 -x781 -x780 -x779 -x778 -x777 -x776 -x775
0.59/0.64 v -x774 -x773 -x772 -x771 x770 x769 x768 x767 x766 x765 x764 x763 x762 x761 x760 x759 x758 x757 x756 x755 x754 x753 x752 x751
0.59/0.64 v x750 x749 x748 x747 x746 x745 x744 x743 x742 x741 x740 x739 x738 x737 x736 x735 x734 x733 x732 x731 x730 x729 x728 x727 x726
0.59/0.64 v x725 x724 x723 x722 x721 x720 x719 x718 x717 x716 -x715 -x714 -x713 -x712 -x711 -x710 -x709 -x708 -x707 -x706 -x705 -x704 -x703
0.59/0.64 v -x702 -x701 x700 x699 x698 x697 x696 x695 x694 x693 x692 x691 x690 x689 x688 x687 x686 x685 x684 x683 x682 x681 x680 x679
0.59/0.64 v x678 x677 x676 x675 x674 x673 x672 x671 x670 x669 x668 x667 x666 x665 x664 -x663 -x662 -x661 -x660 -x659 -x658 -x657 -x656
0.59/0.64 v -x655 -x654 -x653 -x652 -x651 -x650 -x649 -x648 -x647 -x646 -x645 -x644 -x643 -x642 -x641 -x640 -x639 -x638 -x637 -x636 -x635
0.59/0.64 v -x634 -x633 -x632 -x631 x630 x629 x628 x627 x626 x625 x624 x623 x622 x621 x620 x619 x618 x617 x616 x615 x614 x613 x612 x611
0.59/0.64 v x610 x609 x608 x607 x606 x605 x604 x603 x602 x601 x600 x599 x598 x597 x596 x595 x594 x593 x592 x591 x590 x589 x588 x587 x586
0.59/0.64 v x585 x584 x583 x582 x581 x580 x579 x578 x577 x576 x575 x574 x573 x572 x571 x570 -x569 -x568 -x567 -x566 -x565 -x564 -x563 -x562
0.59/0.64 v -x561 x560 x559 x558 x557 x556 x555 x554 x553 x552 x551 x550 x549 x548 x547 x546 x545 x544 x543 x542 x541 x540 x539 x538 x537
0.59/0.64 v x536 x535 x534 x533 x532 x531 x530 x529 x528 x527 x526 x525 x524 x523 x522 x521 x520 x519 -x518 -x517 -x516 -x515 -x514 -x513
0.59/0.64 v -x512 -x511 -x510 -x509 -x508 -x507 -x506 -x505 -x504 -x503 -x502 -x501 -x500 -x499 -x498 -x497 -x496 -x495 -x494 -x493
0.59/0.64 v -x492 -x491 x490 x489 x488 x487 x486 x485 x484 x483 x482 x481 x480 x479 x478 x477 x476 x475 x474 x473 x472 x471 x470 x469 x468
0.59/0.64 v x467 x466 x465 x464 x463 x462 x461 x460 x459 x458 x457 x456 x455 x454 x453 x452 x451 x450 x449 x448 x447 x446 x445 x444 x443
0.59/0.64 v x442 x441 x440 x439 x438 x437 x436 x435 x434 x433 x432 x431 x430 x429 -x428 -x427 -x426 -x425 -x424 -x423 -x422 -x421 x420
0.59/0.64 v x419 x418 x417 x416 x415 x414 x413 x412 x411 x410 x409 x408 x407 x406 x405 x404 x403 x402 x401 x400 x399 x398 x397 x396 x395
0.59/0.64 v x394 x393 x392 x391 x390 x389 x388 x387 x386 x385 x384 x383 x382 x381 x380 -x379 -x378 -x377 -x376 -x375 -x374 -x373 -x372 -x371
0.59/0.64 v -x370 -x369 -x368 -x367 -x366 -x365 -x364 -x363 -x362 -x361 -x360 -x359 -x358 -x357 -x356 -x355 -x354 -x353 -x352 -x351 x350
0.59/0.64 v x349 x348 x347 x346 x345 x344 x343 x342 x341 x340 x339 x338 x337 x336 x335 x334 x333 x332 x331 x330 x329 x328 x327 x326 x325
0.59/0.64 v x324 x323 x322 x321 x320 x319 x318 x317 x316 x315 x314 x313 x312 x311 x310 x309 x308 x307 x306 x305 x304 x303 x302 x301 -x300
0.59/0.64 v -x299 -x298 -x297 -x296 -x295 -x294 -x293 -x292 -x291 -x290 -x289 -x288 -x287 -x286 -x285 -x284 -x283 -x282 -x281 x280 x279
0.59/0.64 v x278 x277 x276 x275 x274 x273 x272 x271 x270 x269 x268 x267 x266 x265 x264 x263 x262 x261 x260 x259 x258 x257 x256 x255 x254
0.59/0.64 v x253 x252 x251 x250 x249 x248 x247 x246 x245 x244 x243 x242 x241 x240 x239 x238 x237 x236 x235 x234 x233 x232 x231 x230 x229
0.59/0.64 v x228 x227 x226 x225 x224 x223 x222 x221 -x220 -x219 -x218 -x217 -x216 -x215 -x214 -x213 -x212 -x211 x210 x209 x208 x207 x206
0.59/0.64 v x205 x204 x203 x202 x201 x200 x199 x198 x197 x196 x195 x194 x193 x192 x191 x190 x189 x188 x187 x186 x185 x184 x183 x182 x181
0.59/0.64 v x180 x179 x178 x177 x176 x175 x174 x173 x172 x171 x170 x169 x168 x167 x166 x165 x164 x163 x162 x161 x160 x159 x158 x157 x156
0.59/0.64 v x155 x154 x153 x152 x151 x150 x149 x148 x147 x146 x145 x144 x143 x142 x141 x140 x139 x138 x137 x136 x135 x134 x133 x132 x131
0.59/0.64 v x130 x129 x128 x127 x126 x125 x124 x123 x122 x121 x120 x119 x118 x117 x116 x115 x114 x113 x112 x111 x110 x109 x108 x107 x106
0.59/0.64 v x105 x104 x103 x102 x101 x100 x99 x98 x97 x96 x95 x94 x93 x92 x91 x90 x89 x88 x87 x86 x85 x84 x83 x82 x81 x80 x79 x78 x77
0.59/0.64 v x76 x75 x74 x73 x72 x71 x70 x69 x68 x67 x66 x65 x64 x63 x62 x61 x60 x59 x58 x57 x56 x55 x54 x53 x52 x51 x50 x49 x48 x47 x46
0.59/0.64 v x45 x44 x43 x42 x41 x40 x39 x38 x37 x36 x35 x34 x33 x32 x31 x30 x29 x28 x27 x26 x25 x24 x23 x22 x21 x20 x19 x18 x17 x16 x15 x14
0.59/0.64 v x13 x12 x11 x10 x9 x8 x7 x6 x5 -x4 -x3 -x2 -x1 x2170
0.59/0.64 c SCIP Status : problem is solved [optimal solution found]
0.59/0.64 c Total Time : 0.63
0.59/0.64 c solving : 0.63
0.59/0.64 c presolving : 0.50 (included in solving)
0.59/0.64 c reading : 0.04 (included in solving)
0.59/0.64 c copying : 0.01 (1 #copies) (minimal 0.01, maximal 0.01, average 0.01)
0.59/0.64 c Original Problem :
0.59/0.64 c Problem name : HOME/instance-3691714-1338039107.opb
0.59/0.64 c Variables : 4340 (4340 binary, 0 integer, 0 implicit integer, 0 continuous)
0.59/0.64 c Constraints : 13977 initial, 13977 maximal
0.59/0.64 c Objective sense : minimize
0.59/0.64 c Presolved Problem :
0.59/0.64 c Problem name : t_HOME/instance-3691714-1338039107.opb
0.59/0.64 c Variables : 460 (460 binary, 0 integer, 0 implicit integer, 0 continuous)
0.59/0.64 c Constraints : 741 initial, 741 maximal
0.59/0.64 c Presolvers : ExecTime SetupTime FixedVars AggrVars ChgTypes ChgBounds AddHoles DelCons AddCons ChgSides ChgCoefs
0.59/0.64 c domcol : 0.00 0.00 0 0 0 0 0 0 0 0 0
0.59/0.64 c trivial : 0.00 0.00 212 0 0 0 0 0 0 0 0
0.59/0.64 c dualfix : 0.00 0.00 31 0 0 0 0 0 0 0 0
0.59/0.64 c boundshift : 0.00 0.00 0 0 0 0 0 0 0 0 0
0.59/0.64 c inttobinary : 0.00 0.00 0 0 0 0 0 0 0 0 0
0.59/0.64 c convertinttobin : 0.00 0.00 0 0 0 0 0 0 0 0 0
0.59/0.64 c gateextraction : 0.00 0.00 0 0 0 0 0 563 162 0 0
0.59/0.64 c implics : 0.00 0.00 0 0 0 0 0 0 0 0 0
0.59/0.64 c components : 0.00 0.00 0 0 0 0 0 0 0 0 0
0.59/0.64 c pseudoobj : 0.00 0.00 0 0 0 0 0 0 0 0 0
0.59/0.64 c probing : 0.00 0.00 0 0 0 0 0 0 0 0 0
0.59/0.64 c knapsack : 0.01 0.00 0 0 0 0 0 1 0 47 197
0.59/0.64 c setppc : 0.01 0.00 0 0 0 0 0 7 0 0 0
0.59/0.64 c and : 0.00 0.00 0 0 0 0 0 85 85 0 0
0.59/0.64 c linear : 0.45 0.00 2727 910 0 2939 0 12826 0 334 331
0.59/0.64 c logicor : 0.00 0.00 0 0 0 0 0 1 0 0 0
0.59/0.64 c root node : - - 0 - - 0 - - - - -
0.59/0.64 c Constraints : Number MaxNumber #Separate #Propagate #EnfoLP #EnfoPS #Check #ResProp Cutoffs DomReds Cuts Conss Children
0.59/0.64 c integral : 0 0 0 0 0 0 4 0 0 0 0 0 0
0.59/0.64 c knapsack : 88 88 1 1 0 0 1 0 0 0 18 0 0
0.59/0.64 c setppc : 613 613 1 1 0 0 1 0 0 0 0 0 0
0.59/0.64 c logicor : 40 40 1 1 0 0 1 0 0 0 0 0 0
0.59/0.64 c countsols : 0 0 0 0 0 0 3 0 0 0 0 0 0
0.59/0.64 c Constraint Timings : TotalTime SetupTime Separate Propagate EnfoLP EnfoPS Check ResProp
0.59/0.64 c integral : 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.59/0.64 c knapsack : 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.59/0.64 c setppc : 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.59/0.64 c logicor : 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.59/0.64 c countsols : 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.59/0.64 c Propagators : #Propagate #ResProp Cutoffs DomReds
0.59/0.64 c rootredcost : 0 0 0 0
0.59/0.64 c pseudoobj : 0 0 0 0
0.59/0.64 c vbounds : 0 0 0 0
0.59/0.64 c redcost : 1 0 0 0
0.59/0.64 c probing : 0 0 0 0
0.59/0.64 c Propagator Timings : TotalTime SetupTime Presolve Propagate ResProp
0.59/0.64 c rootredcost : 0.00 0.00 0.00 0.00 0.00
0.59/0.64 c pseudoobj : 0.00 0.00 0.00 0.00 0.00
0.59/0.64 c vbounds : 0.00 0.00 0.00 0.00 0.00
0.59/0.64 c redcost : 0.00 0.00 0.00 0.00 0.00
0.59/0.64 c probing : 0.00 0.00 0.00 0.00 0.00
0.59/0.64 c Conflict Analysis : Time Calls Success Conflicts Literals Reconvs ReconvLits LP Iters
0.59/0.64 c propagation : 0.00 0 0 0 0.0 0 0.0 -
0.59/0.64 c infeasible LP : 0.00 0 0 0 0.0 0 0.0 0
0.59/0.64 c bound exceed. LP : 0.00 0 0 0 0.0 0 0.0 0
0.59/0.64 c strong branching : 0.00 0 0 0 0.0 0 0.0 0
0.59/0.64 c pseudo solution : 0.00 0 0 0 0.0 0 0.0 -
0.59/0.64 c applied globally : - - - 0 0.0 - - -
0.59/0.64 c applied locally : - - - 0 0.0 - - -
0.59/0.64 c Separators : ExecTime SetupTime Calls Cutoffs DomReds Cuts Conss
0.59/0.64 c cut pool : 0.00 0 - - 0 - (maximal pool size: 38)
0.59/0.64 c closecuts : 0.00 0.00 0 0 0 0 0
0.59/0.64 c impliedbounds : 0.00 0.00 1 0 0 0 0
0.59/0.64 c intobj : 0.00 0.00 0 0 0 0 0
0.59/0.64 c gomory : 0.00 0.00 1 0 0 50 0
0.59/0.64 c cgmip : 0.00 0.00 0 0 0 0 0
0.59/0.64 c strongcg : 0.00 0.00 1 0 0 113 0
0.59/0.64 c cmir : 0.00 0.00 0 0 0 0 0
0.59/0.64 c flowcover : 0.00 0.00 0 0 0 0 0
0.59/0.64 c clique : 0.01 0.00 1 0 0 0 0
0.59/0.64 c zerohalf : 0.00 0.00 0 0 0 0 0
0.59/0.64 c mcf : 0.00 0.00 1 0 0 0 0
0.59/0.64 c oddcycle : 0.00 0.00 0 0 0 0 0
0.59/0.64 c rapidlearning : 0.04 0.00 1 0 0 0 0
0.59/0.64 c Pricers : ExecTime SetupTime Calls Vars
0.59/0.64 c problem variables: 0.00 - 0 0
0.59/0.64 c Branching Rules : ExecTime SetupTime Calls Cutoffs DomReds Cuts Conss Children
0.59/0.64 c pscost : 0.00 0.00 0 0 0 0 0 0
0.59/0.64 c inference : 0.00 0.00 0 0 0 0 0 0
0.59/0.64 c mostinf : 0.00 0.00 0 0 0 0 0 0
0.59/0.64 c leastinf : 0.00 0.00 0 0 0 0 0 0
0.59/0.64 c fullstrong : 0.00 0.00 0 0 0 0 0 0
0.59/0.64 c allfullstrong : 0.00 0.00 0 0 0 0 0 0
0.59/0.64 c random : 0.00 0.00 0 0 0 0 0 0
0.59/0.64 c relpscost : 0.00 0.00 0 0 0 0 0 0
0.59/0.64 c Primal Heuristics : ExecTime SetupTime Calls Found
0.59/0.64 c LP solutions : 0.00 - - 0
0.59/0.64 c pseudo solutions : 0.00 - - 0
0.59/0.64 c smallcard : 0.00 0.00 0 0
0.59/0.64 c trivial : 0.00 0.00 1 0
0.59/0.64 c shiftandpropagate: 0.00 0.00 0 0
0.59/0.64 c simplerounding : 0.00 0.00 0 0
0.59/0.64 c zirounding : 0.00 0.00 0 0
0.59/0.64 c rounding : 0.00 0.00 0 0
0.59/0.64 c shifting : 0.00 0.00 0 0
0.59/0.64 c intshifting : 0.00 0.00 0 0
0.59/0.64 c oneopt : 0.00 0.00 0 0
0.59/0.64 c twoopt : 0.00 0.00 0 0
0.59/0.64 c indtwoopt : 0.00 0.00 0 0
0.59/0.64 c indoneopt : 0.00 0.00 0 0
0.59/0.64 c fixandinfer : 0.00 0.00 0 0
0.59/0.64 c feaspump : 0.00 0.00 0 0
0.59/0.64 c clique : 0.00 0.00 0 0
0.59/0.64 c indrounding : 0.00 0.00 0 0
0.59/0.64 c indcoefdiving : 0.00 0.00 0 0
0.59/0.64 c coefdiving : 0.00 0.00 0 0
0.59/0.64 c pscostdiving : 0.00 0.00 0 0
0.59/0.64 c nlpdiving : 0.00 0.00 0 0
0.59/0.64 c fracdiving : 0.00 0.00 0 0
0.59/0.64 c veclendiving : 0.00 0.00 0 0
0.59/0.64 c intdiving : 0.00 0.00 0 0
0.59/0.64 c actconsdiving : 0.00 0.00 0 0
0.59/0.64 c objpscostdiving : 0.00 0.00 0 0
0.59/0.64 c rootsoldiving : 0.00 0.00 0 0
0.59/0.64 c linesearchdiving : 0.00 0.00 0 0
0.59/0.64 c guideddiving : 0.00 0.00 0 0
0.59/0.64 c octane : 0.00 0.00 0 0
0.59/0.64 c rens : 0.00 0.00 0 0
0.59/0.64 c rins : 0.00 0.00 0 0
0.59/0.64 c localbranching : 0.00 0.00 0 0
0.59/0.64 c mutation : 0.00 0.00 0 0
0.59/0.64 c crossover : 0.00 0.00 0 0
0.59/0.64 c dins : 0.00 0.00 0 0
0.59/0.64 c vbounds : 0.00 0.00 0 0
0.59/0.64 c undercover : 0.00 0.00 0 0
0.59/0.64 c subnlp : 0.00 0.00 0 0
0.59/0.64 c trysol : 0.00 0.00 0 0
0.59/0.64 c LP : Time Calls Iterations Iter/call Iter/sec Time-0-It Calls-0-It
0.59/0.64 c primal LP : 0.00 0 0 0.00 - 0.00 0
0.59/0.64 c dual LP : 0.01 1 162 162.00 - 0.00 0
0.59/0.64 c lex dual LP : 0.00 0 0 0.00 -
0.59/0.64 c barrier LP : 0.00 0 0 0.00 - 0.00 0
0.59/0.64 c diving/probing LP: 0.00 0 0 0.00 -
0.59/0.64 c strong branching : 0.00 0 0 0.00 -
0.59/0.64 c (at root node) : - 0 0 0.00 -
0.59/0.64 c conflict analysis: 0.00 0 0 0.00 -
0.59/0.64 c B&B Tree :
0.59/0.64 c number of runs : 1
0.59/0.64 c nodes : 1
0.59/0.64 c nodes (total) : 1
0.59/0.64 c nodes left : 0
0.59/0.64 c max depth : 0
0.59/0.64 c max depth (total): 0
0.59/0.64 c backtracks : 0 (0.0%)
0.59/0.64 c delayed cutoffs : 0
0.59/0.64 c repropagations : 0 (0 domain reductions, 0 cutoffs)
0.59/0.64 c avg switch length: 2.00
0.59/0.64 c switching time : 0.00
0.59/0.64 c Solution :
0.59/0.64 c Solutions found : 1 (1 improvements)
0.59/0.64 c First Solution : +0.00000000000000e+00 (in run 1, after 1 nodes, 0.62 seconds, depth 0, found by <trysol>)
0.59/0.64 c Primal Bound : +0.00000000000000e+00 (in run 1, after 1 nodes, 0.62 seconds, depth 0, found by <trysol>)
0.59/0.64 c Dual Bound : +0.00000000000000e+00
0.59/0.64 c Gap : 0.00 %
0.59/0.64 c Root Dual Bound : +0.00000000000000e+00
0.59/0.64 c Root Iterations : 162
0.59/0.66 c Time complete: 0.65.