0.00/0.00 c SCIP version 2.1.1.4 [precision: 8 byte] [memory: block] [mode: optimized] [LP solver: SoPlex 1.6.0.3] [GitHash: a3bf3a4-dirty]
0.00/0.00 c Copyright (c) 2002-2012 Konrad-Zuse-Zentrum fuer Informationstechnik Berlin (ZIB)
0.00/0.00 c
0.00/0.00 c user parameter file <scip.set> not found - using default parameters
0.00/0.00 c reading problem <HOME/instance-3690555-1338022608.opb>
0.00/0.02 c original problem has 3100 variables (3100 bin, 0 int, 0 impl, 0 cont) and 9569 constraints
0.00/0.02 c problem read in 0.03
0.00/0.02 c No objective function, only one solution is needed.
0.00/0.02 c presolving settings loaded
0.00/0.06 c presolving:
0.19/0.24 c (round 1) 906 del vars, 2261 del conss, 0 add conss, 589 chg bounds, 0 chg sides, 0 chg coeffs, 0 upgd conss, 449546 impls, 0 clqs
0.29/0.33 c (round 2) 1986 del vars, 5844 del conss, 0 add conss, 1611 chg bounds, 0 chg sides, 0 chg coeffs, 0 upgd conss, 455236 impls, 0 clqs
0.29/0.34 c (round 3) 2347 del vars, 7490 del conss, 0 add conss, 1743 chg bounds, 60 chg sides, 56 chg coeffs, 0 upgd conss, 457718 impls, 0 clqs
0.29/0.35 c (round 4) 2421 del vars, 7842 del conss, 0 add conss, 1766 chg bounds, 75 chg sides, 78 chg coeffs, 0 upgd conss, 458297 impls, 0 clqs
0.29/0.35 c (round 5) 2434 del vars, 7900 del conss, 0 add conss, 1775 chg bounds, 81 chg sides, 86 chg coeffs, 0 upgd conss, 458437 impls, 0 clqs
0.29/0.35 c (round 6) 2438 del vars, 7923 del conss, 0 add conss, 1775 chg bounds, 91 chg sides, 96 chg coeffs, 0 upgd conss, 458511 impls, 0 clqs
0.29/0.35 c (round 7) 2438 del vars, 7925 del conss, 0 add conss, 1775 chg bounds, 91 chg sides, 96 chg coeffs, 0 upgd conss, 458511 impls, 0 clqs
0.29/0.37 c (round 8) 2438 del vars, 7925 del conss, 0 add conss, 1775 chg bounds, 91 chg sides, 96 chg coeffs, 1645 upgd conss, 458511 impls, 0 clqs
0.29/0.38 c (round 9) 2450 del vars, 7942 del conss, 0 add conss, 1775 chg bounds, 162 chg sides, 264 chg coeffs, 1652 upgd conss, 459157 impls, 29 clqs
0.29/0.39 c (round 10) 2454 del vars, 7957 del conss, 0 add conss, 1775 chg bounds, 177 chg sides, 358 chg coeffs, 1653 upgd conss, 459447 impls, 32 clqs
0.29/0.39 c (round 11) 2537 del vars, 8098 del conss, 0 add conss, 1797 chg bounds, 178 chg sides, 398 chg coeffs, 1653 upgd conss, 460633 impls, 16 clqs
0.39/0.40 c (round 12) 2635 del vars, 8426 del conss, 0 add conss, 1799 chg bounds, 244 chg sides, 516 chg coeffs, 1653 upgd conss, 460996 impls, 19 clqs
0.39/0.40 c (round 13) 2661 del vars, 8529 del conss, 0 add conss, 1803 chg bounds, 308 chg sides, 633 chg coeffs, 1653 upgd conss, 461420 impls, 31 clqs
0.39/0.41 c (round 14) 2669 del vars, 8573 del conss, 0 add conss, 1803 chg bounds, 331 chg sides, 707 chg coeffs, 1653 upgd conss, 461488 impls, 33 clqs
0.39/0.41 c (round 15) 2670 del vars, 8581 del conss, 0 add conss, 1803 chg bounds, 337 chg sides, 732 chg coeffs, 1653 upgd conss, 461506 impls, 37 clqs
0.39/0.41 c (round 16) 2671 del vars, 8584 del conss, 0 add conss, 1803 chg bounds, 337 chg sides, 741 chg coeffs, 1653 upgd conss, 461508 impls, 43 clqs
0.39/0.41 c (round 17) 2672 del vars, 8586 del conss, 0 add conss, 1803 chg bounds, 337 chg sides, 747 chg coeffs, 1653 upgd conss, 461510 impls, 50 clqs
0.39/0.42 c (round 18) 2672 del vars, 8586 del conss, 0 add conss, 1803 chg bounds, 337 chg sides, 751 chg coeffs, 1653 upgd conss, 461510 impls, 54 clqs
0.39/0.42 c (round 19) 2672 del vars, 8586 del conss, 0 add conss, 1803 chg bounds, 337 chg sides, 752 chg coeffs, 1653 upgd conss, 461510 impls, 55 clqs
0.39/0.43 c (round 20) 2672 del vars, 9138 del conss, 175 add conss, 1803 chg bounds, 337 chg sides, 752 chg coeffs, 1653 upgd conss, 461510 impls, 55 clqs
0.39/0.43 c (round 21) 2672 del vars, 9286 del conss, 323 add conss, 1803 chg bounds, 337 chg sides, 752 chg coeffs, 1653 upgd conss, 461510 impls, 81 clqs
0.39/0.44 c presolving (22 rounds):
0.39/0.44 c 2672 deleted vars, 9286 deleted constraints, 323 added constraints, 1803 tightened bounds, 0 added holes, 337 changed sides, 752 changed coefficients
0.39/0.44 c 461510 implications, 229 cliques
0.39/0.44 c presolved problem has 428 variables (428 bin, 0 int, 0 impl, 0 cont) and 606 constraints
0.39/0.44 c 81 constraints of type <knapsack>
0.39/0.44 c 525 constraints of type <setppc>
0.39/0.44 c transformed objective value is always integral (scale: 1)
0.39/0.44 c Presolving Time: 0.40
0.39/0.44 c - non default parameters ----------------------------------------------------------------------
0.39/0.44 c # SCIP version 2.1.1.4
0.39/0.44 c
0.39/0.44 c # maximal time in seconds to run
0.39/0.44 c # [type: real, range: [0,1.79769313486232e+308], default: 1e+20]
0.39/0.44 c limits/time = 1797
0.39/0.44 c
0.39/0.44 c # maximal memory usage in MB; reported memory usage is lower than real memory usage!
0.39/0.44 c # [type: real, range: [0,1.79769313486232e+308], default: 1e+20]
0.39/0.44 c limits/memory = 13950
0.39/0.44 c
0.39/0.44 c # solving stops, if the given number of solutions were found (-1: no limit)
0.39/0.44 c # [type: int, range: [-1,2147483647], default: -1]
0.39/0.44 c limits/solutions = 1
0.39/0.44 c
0.39/0.44 c # maximal number of separation rounds per node (-1: unlimited)
0.39/0.44 c # [type: int, range: [-1,2147483647], default: 5]
0.39/0.44 c separating/maxrounds = 1
0.39/0.44 c
0.39/0.44 c # maximal number of separation rounds in the root node (-1: unlimited)
0.39/0.44 c # [type: int, range: [-1,2147483647], default: -1]
0.39/0.44 c separating/maxroundsroot = 5
0.39/0.44 c
0.39/0.44 c # default clock type (1: CPU user seconds, 2: wall clock time)
0.39/0.44 c # [type: int, range: [1,2], default: 1]
0.39/0.44 c timing/clocktype = 2
0.39/0.44 c
0.39/0.44 c # belongs reading time to solving time?
0.39/0.44 c # [type: bool, range: {TRUE,FALSE}, default: FALSE]
0.39/0.44 c timing/reading = TRUE
0.39/0.44 c
0.39/0.44 c # should disaggregation of knapsack constraints be allowed in preprocessing?
0.39/0.44 c # [type: bool, range: {TRUE,FALSE}, default: TRUE]
0.39/0.44 c constraints/knapsack/disaggregation = FALSE
0.39/0.44 c
0.39/0.44 c # frequency for calling primal heuristic <coefdiving> (-1: never, 0: only at depth freqofs)
0.39/0.44 c # [type: int, range: [-1,2147483647], default: 10]
0.39/0.44 c heuristics/coefdiving/freq = -1
0.39/0.44 c
0.39/0.44 c # maximal fraction of diving LP iterations compared to node LP iterations
0.39/0.44 c # [type: real, range: [0,1.79769313486232e+308], default: 0.05]
0.39/0.44 c heuristics/coefdiving/maxlpiterquot = 0.075
0.39/0.44 c
0.39/0.44 c # additional number of allowed LP iterations
0.39/0.44 c # [type: int, range: [0,2147483647], default: 1000]
0.39/0.44 c heuristics/coefdiving/maxlpiterofs = 1500
0.39/0.44 c
0.39/0.44 c # frequency for calling primal heuristic <crossover> (-1: never, 0: only at depth freqofs)
0.39/0.44 c # [type: int, range: [-1,2147483647], default: 30]
0.39/0.44 c heuristics/crossover/freq = -1
0.39/0.44 c
0.39/0.44 c # number of nodes added to the contingent of the total nodes
0.39/0.44 c # [type: longint, range: [0,9223372036854775807], default: 500]
0.39/0.44 c heuristics/crossover/nodesofs = 750
0.39/0.44 c
0.39/0.44 c # number of nodes without incumbent change that heuristic should wait
0.39/0.44 c # [type: longint, range: [0,9223372036854775807], default: 200]
0.39/0.44 c heuristics/crossover/nwaitingnodes = 100
0.39/0.44 c
0.39/0.44 c # contingent of sub problem nodes in relation to the number of nodes of the original problem
0.39/0.44 c # [type: real, range: [0,1], default: 0.1]
0.39/0.44 c heuristics/crossover/nodesquot = 0.15
0.39/0.44 c
0.39/0.44 c # minimum percentage of integer variables that have to be fixed
0.39/0.44 c # [type: real, range: [0,1], default: 0.666]
0.39/0.44 c heuristics/crossover/minfixingrate = 0.5
0.39/0.44 c
0.39/0.44 c # frequency for calling primal heuristic <feaspump> (-1: never, 0: only at depth freqofs)
0.39/0.44 c # [type: int, range: [-1,2147483647], default: 20]
0.39/0.44 c heuristics/feaspump/freq = -1
0.39/0.44 c
0.39/0.44 c # additional number of allowed LP iterations
0.39/0.44 c # [type: int, range: [0,2147483647], default: 1000]
0.39/0.44 c heuristics/feaspump/maxlpiterofs = 2000
0.39/0.44 c
0.39/0.44 c # frequency for calling primal heuristic <fracdiving> (-1: never, 0: only at depth freqofs)
0.39/0.44 c # [type: int, range: [-1,2147483647], default: 10]
0.39/0.44 c heuristics/fracdiving/freq = -1
0.39/0.44 c
0.39/0.44 c # maximal fraction of diving LP iterations compared to node LP iterations
0.39/0.44 c # [type: real, range: [0,1.79769313486232e+308], default: 0.05]
0.39/0.44 c heuristics/fracdiving/maxlpiterquot = 0.075
0.39/0.44 c
0.39/0.44 c # additional number of allowed LP iterations
0.39/0.44 c # [type: int, range: [0,2147483647], default: 1000]
0.39/0.44 c heuristics/fracdiving/maxlpiterofs = 1500
0.39/0.44 c
0.39/0.44 c # frequency for calling primal heuristic <guideddiving> (-1: never, 0: only at depth freqofs)
0.39/0.44 c # [type: int, range: [-1,2147483647], default: 10]
0.39/0.44 c heuristics/guideddiving/freq = -1
0.39/0.44 c
0.39/0.44 c # maximal fraction of diving LP iterations compared to node LP iterations
0.39/0.44 c # [type: real, range: [0,1.79769313486232e+308], default: 0.05]
0.39/0.44 c heuristics/guideddiving/maxlpiterquot = 0.075
0.39/0.44 c
0.39/0.44 c # additional number of allowed LP iterations
0.39/0.44 c # [type: int, range: [0,2147483647], default: 1000]
0.39/0.44 c heuristics/guideddiving/maxlpiterofs = 1500
0.39/0.44 c
0.39/0.44 c # maximal fraction of diving LP iterations compared to node LP iterations
0.39/0.44 c # [type: real, range: [0,1.79769313486232e+308], default: 0.05]
0.39/0.44 c heuristics/intdiving/maxlpiterquot = 0.075
0.39/0.44 c
0.39/0.44 c # frequency for calling primal heuristic <intshifting> (-1: never, 0: only at depth freqofs)
0.39/0.44 c # [type: int, range: [-1,2147483647], default: 10]
0.39/0.44 c heuristics/intshifting/freq = -1
0.39/0.44 c
0.39/0.44 c # frequency for calling primal heuristic <linesearchdiving> (-1: never, 0: only at depth freqofs)
0.39/0.44 c # [type: int, range: [-1,2147483647], default: 10]
0.39/0.44 c heuristics/linesearchdiving/freq = -1
0.39/0.44 c
0.39/0.44 c # maximal fraction of diving LP iterations compared to node LP iterations
0.39/0.44 c # [type: real, range: [0,1.79769313486232e+308], default: 0.05]
0.39/0.44 c heuristics/linesearchdiving/maxlpiterquot = 0.075
0.39/0.44 c
0.39/0.44 c # additional number of allowed LP iterations
0.39/0.44 c # [type: int, range: [0,2147483647], default: 1000]
0.39/0.44 c heuristics/linesearchdiving/maxlpiterofs = 1500
0.39/0.44 c
0.39/0.44 c # frequency for calling primal heuristic <objpscostdiving> (-1: never, 0: only at depth freqofs)
0.39/0.44 c # [type: int, range: [-1,2147483647], default: 20]
0.39/0.44 c heuristics/objpscostdiving/freq = -1
0.39/0.44 c
0.39/0.44 c # maximal fraction of diving LP iterations compared to total iteration number
0.39/0.44 c # [type: real, range: [0,1], default: 0.01]
0.39/0.44 c heuristics/objpscostdiving/maxlpiterquot = 0.015
0.39/0.44 c
0.39/0.44 c # additional number of allowed LP iterations
0.39/0.44 c # [type: int, range: [0,2147483647], default: 1000]
0.39/0.44 c heuristics/objpscostdiving/maxlpiterofs = 1500
0.39/0.44 c
0.39/0.44 c # frequency for calling primal heuristic <oneopt> (-1: never, 0: only at depth freqofs)
0.39/0.44 c # [type: int, range: [-1,2147483647], default: 1]
0.39/0.44 c heuristics/oneopt/freq = -1
0.39/0.44 c
0.39/0.44 c # frequency for calling primal heuristic <pscostdiving> (-1: never, 0: only at depth freqofs)
0.39/0.44 c # [type: int, range: [-1,2147483647], default: 10]
0.39/0.44 c heuristics/pscostdiving/freq = -1
0.39/0.44 c
0.39/0.44 c # maximal fraction of diving LP iterations compared to node LP iterations
0.39/0.44 c # [type: real, range: [0,1.79769313486232e+308], default: 0.05]
0.39/0.44 c heuristics/pscostdiving/maxlpiterquot = 0.075
0.39/0.44 c
0.39/0.44 c # additional number of allowed LP iterations
0.39/0.44 c # [type: int, range: [0,2147483647], default: 1000]
0.39/0.44 c heuristics/pscostdiving/maxlpiterofs = 1500
0.39/0.44 c
0.39/0.44 c # frequency for calling primal heuristic <rens> (-1: never, 0: only at depth freqofs)
0.39/0.44 c # [type: int, range: [-1,2147483647], default: 0]
0.39/0.44 c heuristics/rens/freq = -1
0.39/0.44 c
0.39/0.44 c # minimum percentage of integer variables that have to be fixable
0.39/0.44 c # [type: real, range: [0,1], default: 0.5]
0.39/0.44 c heuristics/rens/minfixingrate = 0.3
0.39/0.44 c
0.39/0.44 c # number of nodes added to the contingent of the total nodes
0.39/0.44 c # [type: longint, range: [0,9223372036854775807], default: 500]
0.39/0.44 c heuristics/rens/nodesofs = 2000
0.39/0.44 c
0.39/0.44 c # frequency for calling primal heuristic <rootsoldiving> (-1: never, 0: only at depth freqofs)
0.39/0.44 c # [type: int, range: [-1,2147483647], default: 20]
0.39/0.44 c heuristics/rootsoldiving/freq = -1
0.39/0.44 c
0.39/0.44 c # maximal fraction of diving LP iterations compared to node LP iterations
0.39/0.44 c # [type: real, range: [0,1.79769313486232e+308], default: 0.01]
0.39/0.44 c heuristics/rootsoldiving/maxlpiterquot = 0.015
0.39/0.44 c
0.39/0.44 c # additional number of allowed LP iterations
0.39/0.44 c # [type: int, range: [0,2147483647], default: 1000]
0.39/0.44 c heuristics/rootsoldiving/maxlpiterofs = 1500
0.39/0.44 c
0.39/0.44 c # frequency for calling primal heuristic <rounding> (-1: never, 0: only at depth freqofs)
0.39/0.44 c # [type: int, range: [-1,2147483647], default: 1]
0.39/0.44 c heuristics/rounding/freq = -1
0.39/0.44 c
0.39/0.44 c # frequency for calling primal heuristic <shiftandpropagate> (-1: never, 0: only at depth freqofs)
0.39/0.44 c # [type: int, range: [-1,2147483647], default: 0]
0.39/0.44 c heuristics/shiftandpropagate/freq = -1
0.39/0.44 c
0.39/0.44 c # frequency for calling primal heuristic <shifting> (-1: never, 0: only at depth freqofs)
0.39/0.44 c # [type: int, range: [-1,2147483647], default: 10]
0.39/0.44 c heuristics/shifting/freq = -1
0.39/0.44 c
0.39/0.44 c # frequency for calling primal heuristic <simplerounding> (-1: never, 0: only at depth freqofs)
0.39/0.44 c # [type: int, range: [-1,2147483647], default: 1]
0.39/0.44 c heuristics/simplerounding/freq = -1
0.39/0.44 c
0.39/0.44 c # frequency for calling primal heuristic <subnlp> (-1: never, 0: only at depth freqofs)
0.39/0.44 c # [type: int, range: [-1,2147483647], default: 1]
0.39/0.44 c heuristics/subnlp/freq = -1
0.39/0.44 c
0.39/0.44 c # frequency for calling primal heuristic <trivial> (-1: never, 0: only at depth freqofs)
0.39/0.44 c # [type: int, range: [-1,2147483647], default: 0]
0.39/0.44 c heuristics/trivial/freq = -1
0.39/0.44 c
0.39/0.44 c # frequency for calling primal heuristic <trysol> (-1: never, 0: only at depth freqofs)
0.39/0.44 c # [type: int, range: [-1,2147483647], default: 1]
0.39/0.44 c heuristics/trysol/freq = -1
0.39/0.44 c
0.39/0.44 c # frequency for calling primal heuristic <undercover> (-1: never, 0: only at depth freqofs)
0.39/0.44 c # [type: int, range: [-1,2147483647], default: 0]
0.39/0.44 c heuristics/undercover/freq = -1
0.39/0.44 c
0.39/0.44 c # frequency for calling primal heuristic <veclendiving> (-1: never, 0: only at depth freqofs)
0.39/0.44 c # [type: int, range: [-1,2147483647], default: 10]
0.39/0.44 c heuristics/veclendiving/freq = -1
0.39/0.44 c
0.39/0.44 c # maximal fraction of diving LP iterations compared to node LP iterations
0.39/0.44 c # [type: real, range: [0,1.79769313486232e+308], default: 0.05]
0.39/0.44 c heuristics/veclendiving/maxlpiterquot = 0.075
0.39/0.44 c
0.39/0.44 c # additional number of allowed LP iterations
0.39/0.44 c # [type: int, range: [0,2147483647], default: 1000]
0.39/0.44 c heuristics/veclendiving/maxlpiterofs = 1500
0.39/0.44 c
0.39/0.44 c # frequency for calling primal heuristic <zirounding> (-1: never, 0: only at depth freqofs)
0.39/0.44 c # [type: int, range: [-1,2147483647], default: 1]
0.39/0.44 c heuristics/zirounding/freq = -1
0.39/0.44 c
0.39/0.44 c # maximal number of presolving rounds the propagator participates in (-1: no limit)
0.39/0.44 c # [type: int, range: [-1,2147483647], default: -1]
0.39/0.44 c propagating/probing/maxprerounds = 0
0.39/0.44 c
0.39/0.44 c # frequency for calling separator <cmir> (-1: never, 0: only in root node)
0.39/0.44 c # [type: int, range: [-1,2147483647], default: 0]
0.39/0.44 c separating/cmir/freq = -1
0.39/0.44 c
0.39/0.44 c # frequency for calling separator <flowcover> (-1: never, 0: only in root node)
0.39/0.44 c # [type: int, range: [-1,2147483647], default: 0]
0.39/0.44 c separating/flowcover/freq = -1
0.39/0.44 c
0.39/0.44 c # frequency for calling separator <rapidlearning> (-1: never, 0: only in root node)
0.39/0.44 c # [type: int, range: [-1,2147483647], default: -1]
0.39/0.44 c separating/rapidlearning/freq = 0
0.39/0.44 c
0.39/0.44 c # frequency for calling primal heuristic <indoneopt> (-1: never, 0: only at depth freqofs)
0.39/0.44 c # [type: int, range: [-1,2147483647], default: 1]
0.39/0.44 c heuristics/indoneopt/freq = -1
0.39/0.44 c
0.39/0.44 c -----------------------------------------------------------------------------------------------
0.39/0.44 c start solving
0.39/0.44 c
0.39/0.44 c time | node | left |LP iter|LP it/n| mem |mdpt |frac |vars |cons |cols |rows |cuts |confs|strbr| dualbound | primalbound | gap
0.39/0.44 c 0.4s| 1 | 0 | 83 | - | 11M| 0 | 59 | 428 | 606 | 428 | 606 | 0 | 0 | 0 | 0.000000e+00 | -- | Inf
0.39/0.49 c y 0.5s| 1 | 0 | 83 | - | 11M| 0 | - | 428 | 606 | 428 | 606 | 0 | 0 | 0 | 0.000000e+00 | 0.000000e+00 | 0.00%
0.39/0.49 c 0.5s| 1 | 0 | 83 | - | 11M| 0 | - | 428 | 606 | 428 | 606 | 0 | 0 | 0 | 0.000000e+00 | 0.000000e+00 | 0.00%
0.39/0.49 c 0.5s| 1 | 0 | 83 | - | 11M| 0 | - | 428 | 606 | 428 | 606 | 0 | 0 | 0 | 0.000000e+00 | 0.000000e+00 | 0.00%
0.39/0.49 c
0.39/0.49 c SCIP Status : problem is solved [optimal solution found]
0.39/0.49 c Solving Time (sec) : 0.49
0.39/0.49 c Solving Nodes : 1
0.39/0.49 c Primal Bound : +0.00000000000000e+00 (1 solutions)
0.39/0.49 c Dual Bound : +0.00000000000000e+00
0.39/0.49 c Gap : 0.00 %
0.39/0.49 s SATISFIABLE
0.39/0.49 v x3100 -x3099 -x3098 -x3097 -x3096 -x3095 -x3094 -x3093 -x3092 -x3091 -x3090 -x3089 -x3088 -x3087 -x3086 -x3085 -x3084 -x3083 -x3082
0.39/0.49 v -x3081 -x3080 -x3079 -x3078 -x3077 -x3076 -x3075 -x3074 -x3073 -x3072 -x3071 -x3070 -x3069 -x3068 -x3067 -x3066 -x3065 -x3064
0.39/0.49 v -x3063 -x3062 -x3061 -x3060 -x3059 -x3058 -x3057 -x3056 -x3055 -x3054 -x3053 -x3052 -x3051 -x3050 -x3049 -x3048 -x3047
0.39/0.49 v -x3046 -x3045 -x3044 -x3043 -x3042 -x3041 -x3040 -x3039 -x3038 -x3037 -x3036 -x3035 -x3034 -x3033 -x3032 -x3031 -x3030 -x3029
0.39/0.49 v -x3028 -x3027 -x3026 x3025 x3024 x3023 x3022 x3021 x3020 -x3019 -x3018 -x3017 -x3016 -x3015 -x3014 -x3013 -x3012 -x3011 -x3010
0.39/0.49 v -x3009 -x3008 -x3007 -x3006 -x3005 -x3004 -x3003 -x3002 -x3001 -x3000 x2999 x2998 -x2997 -x2996 -x2995 -x2994 -x2993 -x2992
0.39/0.49 v -x2991 -x2990 -x2989 -x2988 -x2987 -x2986 -x2985 -x2984 -x2983 -x2982 -x2981 -x2980 -x2979 -x2978 -x2977 -x2976 -x2975 -x2974
0.39/0.49 v -x2973 -x2972 -x2971 -x2970 -x2969 -x2968 -x2967 -x2966 -x2965 -x2964 -x2963 -x2962 -x2961 -x2960 -x2959 -x2958 -x2957 -x2956
0.39/0.49 v -x2955 -x2954 -x2953 -x2952 -x2951 -x2950 x2949 -x2948 -x2947 -x2946 -x2945 -x2944 -x2943 -x2942 -x2941 -x2940 -x2939 -x2938
0.39/0.49 v -x2937 -x2936 -x2935 -x2934 -x2933 -x2932 -x2931 -x2930 -x2929 -x2928 -x2927 -x2926 -x2925 -x2924 -x2923 -x2922 -x2921 -x2920
0.39/0.49 v -x2919 -x2918 -x2917 -x2916 -x2915 -x2914 -x2913 -x2912 -x2911 -x2910 -x2909 -x2908 -x2907 -x2906 -x2905 -x2904 -x2903 -x2902
0.39/0.49 v -x2901 -x2900 -x2899 -x2898 x2897 x2896 -x2895 -x2894 -x2893 -x2892 -x2891 -x2890 -x2889 -x2888 -x2887 -x2886 -x2885 -x2884
0.39/0.49 v -x2883 -x2882 -x2881 -x2880 -x2879 -x2878 -x2877 -x2876 -x2875 -x2874 -x2873 -x2872 -x2871 -x2870 -x2869 -x2868 -x2867 -x2866
0.39/0.49 v -x2865 -x2864 -x2863 -x2862 -x2861 -x2860 -x2859 -x2858 -x2857 -x2856 -x2855 -x2854 -x2853 -x2852 -x2851 -x2850 -x2849
0.39/0.49 v -x2848 -x2847 -x2846 x2845 x2844 x2843 -x2842 -x2841 -x2840 -x2839 -x2838 -x2837 -x2836 -x2835 -x2834 -x2833 -x2832 -x2831 -x2830
0.39/0.49 v -x2829 -x2828 -x2827 -x2826 -x2825 -x2824 -x2823 -x2822 -x2821 -x2820 -x2819 -x2818 -x2817 -x2816 -x2815 -x2814 -x2813 -x2812
0.39/0.49 v -x2811 -x2810 -x2809 -x2808 -x2807 -x2806 -x2805 -x2804 -x2803 -x2802 -x2801 -x2800 -x2799 -x2798 -x2797 -x2796 -x2795
0.39/0.49 v -x2794 -x2793 x2792 x2791 x2790 x2789 x2788 x2787 x2786 x2785 -x2784 -x2783 -x2782 -x2781 -x2780 -x2779 -x2778 -x2777 -x2776
0.39/0.49 v -x2775 -x2774 -x2773 -x2772 -x2771 -x2770 -x2769 -x2768 -x2767 -x2766 -x2765 -x2764 -x2763 -x2762 -x2761 -x2760 -x2759 -x2758
0.39/0.49 v -x2757 -x2756 -x2755 -x2754 -x2753 -x2752 -x2751 -x2750 -x2749 -x2748 -x2747 -x2746 -x2745 -x2744 -x2743 -x2742 -x2741 -x2740
0.39/0.49 v -x2739 -x2738 -x2737 -x2736 -x2735 -x2734 -x2733 -x2732 -x2731 x2730 x2729 x2728 -x2727 -x2726 -x2725 -x2724 -x2723 -x2722
0.39/0.49 v -x2721 -x2720 -x2719 -x2718 -x2717 -x2716 -x2715 -x2714 -x2713 -x2712 -x2711 -x2710 -x2709 -x2708 -x2707 -x2706 -x2705 -x2704
0.39/0.49 v -x2703 -x2702 -x2701 -x2700 -x2699 -x2698 -x2697 -x2696 -x2695 -x2694 -x2693 -x2692 -x2691 -x2690 x2689 -x2688 -x2687 -x2686
0.39/0.49 v -x2685 -x2684 -x2683 -x2682 -x2681 -x2680 -x2679 -x2678 -x2677 -x2676 -x2675 -x2674 -x2673 -x2672 -x2671 -x2670 -x2669 -x2668
0.39/0.49 v -x2667 -x2666 -x2665 -x2664 -x2663 -x2662 -x2661 -x2660 -x2659 -x2658 -x2657 -x2656 -x2655 -x2654 -x2653 -x2652 -x2651 -x2650
0.39/0.49 v -x2649 -x2648 -x2647 -x2646 -x2645 -x2644 -x2643 -x2642 -x2641 -x2640 -x2639 -x2638 -x2637 -x2636 -x2635 x2634 x2633 x2632
0.39/0.49 v x2631 x2630 x2629 x2628 x2627 -x2626 -x2625 -x2624 -x2623 -x2622 -x2621 -x2620 -x2619 -x2618 -x2617 -x2616 -x2615 -x2614 -x2613
0.39/0.49 v -x2612 -x2611 -x2610 -x2609 -x2608 -x2607 -x2606 -x2605 -x2604 -x2603 -x2602 -x2601 -x2600 -x2599 -x2598 x2597 x2596 x2595
0.39/0.49 v x2594 x2593 x2592 x2591 x2590 -x2589 -x2588 -x2587 -x2586 -x2585 -x2584 -x2583 -x2582 -x2581 -x2580 -x2579 -x2578 -x2577 -x2576
0.39/0.49 v -x2575 -x2574 -x2573 -x2572 -x2571 -x2570 -x2569 -x2568 -x2567 -x2566 -x2565 -x2564 -x2563 -x2562 -x2561 -x2560 -x2559 -x2558
0.39/0.49 v -x2557 -x2556 -x2555 -x2554 -x2553 -x2552 -x2551 -x2550 -x2549 -x2548 -x2547 -x2546 -x2545 -x2544 -x2543 -x2542 -x2541
0.39/0.49 v -x2540 -x2539 x2538 x2537 x2536 x2535 x2534 x2533 x2532 x2531 -x2530 -x2529 -x2528 -x2527 -x2526 -x2525 -x2524 -x2523 -x2522
0.39/0.49 v -x2521 -x2520 -x2519 -x2518 -x2517 -x2516 -x2515 -x2514 -x2513 -x2512 -x2511 -x2510 -x2509 -x2508 -x2507 -x2506 -x2505 -x2504
0.39/0.49 v -x2503 -x2502 -x2501 -x2500 -x2499 -x2498 -x2497 -x2496 -x2495 -x2494 -x2493 -x2492 -x2491 -x2490 -x2489 x2488 x2487 x2486 -x2485
0.39/0.49 v -x2484 -x2483 -x2482 -x2481 -x2480 -x2479 -x2478 -x2477 -x2476 -x2475 -x2474 -x2473 -x2472 -x2471 -x2470 -x2469 -x2468
0.39/0.49 v -x2467 -x2466 -x2465 -x2464 -x2463 -x2462 -x2461 -x2460 -x2459 -x2458 -x2457 -x2456 -x2455 -x2454 -x2453 -x2452 -x2451 -x2450
0.39/0.49 v -x2449 -x2448 -x2447 -x2446 -x2445 -x2444 -x2443 -x2442 -x2441 -x2440 -x2439 -x2438 -x2437 -x2436 -x2435 x2434 x2433 x2432 x2431
0.39/0.49 v x2430 x2429 x2428 x2427 -x2426 -x2425 -x2424 -x2423 -x2422 -x2421 -x2420 -x2419 -x2418 -x2417 -x2416 -x2415 -x2414 -x2413
0.39/0.49 v -x2412 -x2411 -x2410 -x2409 -x2408 -x2407 -x2406 -x2405 -x2404 -x2403 -x2402 -x2401 -x2400 -x2399 -x2398 -x2397 -x2396 -x2395
0.39/0.49 v -x2394 -x2393 -x2392 -x2391 -x2390 -x2389 -x2388 -x2387 -x2386 -x2385 -x2384 -x2383 -x2382 -x2381 x2380 x2379 x2378 -x2377
0.39/0.49 v -x2376 -x2375 -x2374 -x2373 -x2372 -x2371 -x2370 -x2369 -x2368 -x2367 -x2366 -x2365 -x2364 -x2363 -x2362 -x2361 -x2360 -x2359
0.39/0.49 v -x2358 -x2357 -x2356 -x2355 -x2354 -x2353 -x2352 -x2351 -x2350 -x2349 -x2348 -x2347 -x2346 -x2345 -x2344 -x2343 -x2342 -x2341
0.39/0.49 v -x2340 -x2339 -x2338 -x2337 -x2336 -x2335 -x2334 -x2333 -x2332 -x2331 -x2330 -x2329 -x2328 x2327 x2326 x2325 x2324 x2323 x2322
0.39/0.49 v x2321 x2320 -x2319 -x2318 -x2317 -x2316 -x2315 -x2314 -x2313 -x2312 -x2311 -x2310 -x2309 -x2308 -x2307 -x2306 -x2305 -x2304
0.39/0.49 v -x2303 -x2302 -x2301 -x2300 -x2299 -x2298 -x2297 -x2296 -x2295 -x2294 -x2293 -x2292 -x2291 -x2290 -x2289 -x2288 -x2287 -x2286
0.39/0.49 v -x2285 -x2284 -x2283 -x2282 -x2281 -x2280 -x2279 -x2278 -x2277 -x2276 -x2275 -x2274 -x2273 -x2272 -x2271 -x2270 -x2269 x2268
0.39/0.49 v x2267 x2266 -x2265 -x2264 -x2263 -x2262 -x2261 -x2260 -x2259 -x2258 -x2257 -x2256 -x2255 -x2254 -x2253 -x2252 -x2251 -x2250
0.39/0.49 v -x2249 -x2248 -x2247 -x2246 -x2245 -x2244 -x2243 -x2242 -x2241 -x2240 -x2239 -x2238 -x2237 x2236 x2235 -x2234 -x2233 -x2232
0.39/0.49 v -x2231 -x2230 -x2229 -x2228 -x2227 -x2226 -x2225 -x2224 -x2223 -x2222 -x2221 -x2220 -x2219 -x2218 -x2217 -x2216 -x2215 -x2214
0.39/0.49 v -x2213 -x2212 -x2211 -x2210 -x2209 -x2208 -x2207 -x2206 -x2205 -x2204 -x2203 -x2202 -x2201 -x2200 -x2199 -x2198 -x2197 -x2196
0.39/0.49 v -x2195 -x2194 -x2193 -x2192 -x2191 -x2190 -x2189 -x2188 -x2187 -x2186 -x2185 -x2184 -x2183 -x2182 -x2181 -x2180 -x2179 -x2178
0.39/0.49 v -x2177 -x2176 -x2175 -x2174 -x2173 -x2172 -x2171 -x2170 -x2169 -x2168 -x2167 -x2166 x2165 x2164 x2163 x2162 x2161 -x2160
0.39/0.49 v -x2159 -x2158 -x2157 -x2156 -x2155 -x2154 -x2153 -x2152 -x2151 -x2150 -x2149 -x2148 -x2147 -x2146 -x2145 -x2144 -x2143 -x2142
0.39/0.49 v -x2141 -x2140 -x2139 -x2138 -x2137 -x2136 -x2135 -x2134 -x2133 -x2132 -x2131 -x2130 -x2129 -x2128 -x2127 x2126 x2125 x2124
0.39/0.49 v x2123 x2122 x2121 -x2120 -x2119 -x2118 -x2117 -x2116 -x2115 -x2114 -x2113 -x2112 -x2111 -x2110 -x2109 -x2108 -x2107 -x2106 -x2105
0.39/0.49 v -x2104 -x2103 -x2102 -x2101 -x2100 -x2099 -x2098 -x2097 -x2096 -x2095 -x2094 -x2093 -x2092 -x2091 -x2090 -x2089 -x2088
0.39/0.49 v -x2087 -x2086 -x2085 -x2084 -x2083 -x2082 -x2081 -x2080 -x2079 -x2078 -x2077 -x2076 -x2075 -x2074 -x2073 -x2072 -x2071 x2070
0.39/0.49 v x2069 x2068 x2067 x2066 x2065 x2064 x2063 x2062 x2061 -x2060 -x2059 -x2058 -x2057 -x2056 -x2055 -x2054 -x2053 -x2052 -x2051 -x2050
0.39/0.49 v -x2049 -x2048 -x2047 -x2046 -x2045 -x2044 -x2043 -x2042 -x2041 -x2040 -x2039 -x2038 -x2037 -x2036 -x2035 -x2034 -x2033
0.39/0.49 v -x2032 -x2031 -x2030 -x2029 -x2028 -x2027 -x2026 -x2025 -x2024 -x2023 -x2022 -x2021 -x2020 -x2019 -x2018 x2017 x2016 x2015 x2014
0.39/0.49 v x2013 x2012 x2011 -x2010 -x2009 -x2008 -x2007 -x2006 -x2005 -x2004 -x2003 -x2002 -x2001 -x2000 -x1999 -x1998 -x1997 -x1996
0.39/0.49 v -x1995 -x1994 -x1993 -x1992 -x1991 -x1990 -x1989 -x1988 -x1987 -x1986 -x1985 -x1984 -x1983 -x1982 -x1981 -x1980 -x1979 -x1978
0.39/0.49 v -x1977 x1976 -x1975 -x1974 -x1973 -x1972 -x1971 -x1970 -x1969 -x1968 -x1967 -x1966 -x1965 -x1964 -x1963 -x1962 -x1961 -x1960
0.39/0.49 v -x1959 -x1958 -x1957 -x1956 -x1955 -x1954 -x1953 -x1952 -x1951 -x1950 -x1949 -x1948 -x1947 -x1946 -x1945 -x1944 -x1943 -x1942
0.39/0.49 v -x1941 -x1940 -x1939 -x1938 -x1937 -x1936 -x1935 -x1934 -x1933 -x1932 -x1931 -x1930 -x1929 -x1928 -x1927 -x1926 x1925 x1924
0.39/0.49 v -x1923 -x1922 -x1921 -x1920 -x1919 -x1918 -x1917 -x1916 -x1915 -x1914 -x1913 -x1912 -x1911 -x1910 -x1909 -x1908 -x1907 -x1906
0.39/0.49 v -x1905 -x1904 -x1903 -x1902 -x1901 -x1900 -x1899 -x1898 -x1897 x1896 x1895 x1894 x1893 x1892 x1891 x1890 -x1889 -x1888 -x1887
0.39/0.49 v -x1886 -x1885 -x1884 -x1883 -x1882 -x1881 -x1880 -x1879 -x1878 -x1877 -x1876 -x1875 -x1874 -x1873 -x1872 -x1871 -x1870 -x1869
0.39/0.49 v -x1868 -x1867 -x1866 -x1865 -x1864 -x1863 -x1862 -x1861 -x1860 -x1859 -x1858 -x1857 -x1856 -x1855 -x1854 -x1853 -x1852
0.39/0.49 v -x1851 -x1850 -x1849 -x1848 -x1847 -x1846 -x1845 -x1844 -x1843 -x1842 -x1841 -x1840 -x1839 -x1838 -x1837 -x1836 -x1835 -x1834
0.39/0.49 v -x1833 -x1832 -x1831 -x1830 -x1829 -x1828 -x1827 -x1826 -x1825 -x1824 -x1823 -x1822 -x1821 -x1820 x1819 x1818 x1817 x1816 -x1815
0.39/0.49 v -x1814 -x1813 -x1812 -x1811 -x1810 -x1809 -x1808 -x1807 -x1806 -x1805 -x1804 -x1803 -x1802 -x1801 -x1800 -x1799 -x1798 -x1797
0.39/0.49 v -x1796 -x1795 -x1794 -x1793 -x1792 -x1791 -x1790 -x1789 -x1788 -x1787 -x1786 -x1785 -x1784 -x1783 -x1782 -x1781 -x1780
0.39/0.49 v -x1779 -x1778 -x1777 -x1776 -x1775 -x1774 -x1773 -x1772 -x1771 -x1770 -x1769 -x1768 -x1767 -x1766 x1765 x1764 x1763 x1762 x1761
0.39/0.49 v -x1760 -x1759 -x1758 -x1757 -x1756 -x1755 -x1754 -x1753 -x1752 -x1751 -x1750 -x1749 -x1748 -x1747 -x1746 -x1745 -x1744 -x1743
0.39/0.49 v -x1742 -x1741 -x1740 -x1739 -x1738 -x1737 -x1736 -x1735 -x1734 -x1733 -x1732 -x1731 -x1730 -x1729 -x1728 -x1727 -x1726 -x1725
0.39/0.49 v -x1724 -x1723 -x1722 -x1721 -x1720 -x1719 -x1718 -x1717 -x1716 -x1715 -x1714 -x1713 -x1712 -x1711 x1710 x1709 x1708 x1707
0.39/0.49 v x1706 x1705 -x1704 -x1703 -x1702 -x1701 -x1700 -x1699 -x1698 -x1697 -x1696 -x1695 -x1694 -x1693 -x1692 -x1691 -x1690 -x1689
0.39/0.49 v -x1688 -x1687 -x1686 -x1685 -x1684 -x1683 -x1682 -x1681 -x1680 -x1679 -x1678 -x1677 -x1676 -x1675 -x1674 -x1673 -x1672 -x1671
0.39/0.49 v -x1670 -x1669 -x1668 -x1667 -x1666 -x1665 -x1664 -x1663 -x1662 -x1661 -x1660 -x1659 -x1658 -x1657 -x1656 -x1655 x1654 x1653
0.39/0.49 v x1652 x1651 -x1650 -x1649 -x1648 -x1647 -x1646 -x1645 -x1644 -x1643 -x1642 -x1641 -x1640 -x1639 -x1638 -x1637 -x1636 -x1635
0.39/0.49 v -x1634 -x1633 -x1632 -x1631 -x1630 -x1629 -x1628 -x1627 -x1626 -x1625 -x1624 -x1623 -x1622 -x1621 -x1620 -x1619 -x1618 -x1617
0.39/0.49 v -x1616 -x1615 -x1614 -x1613 -x1612 -x1611 x1610 x1609 x1608 x1607 x1606 x1605 x1604 x1603 x1602 x1601 -x1600 -x1599 -x1598 -x1597
0.39/0.49 v -x1596 -x1595 -x1594 -x1593 -x1592 -x1591 -x1590 -x1589 -x1588 -x1587 -x1586 -x1585 -x1584 -x1583 -x1582 -x1581 -x1580
0.39/0.49 v -x1579 -x1578 -x1577 -x1576 -x1575 -x1574 -x1573 -x1572 -x1571 -x1570 x1569 x1568 -x1567 -x1566 -x1565 -x1564 -x1563 -x1562 -x1561
0.39/0.49 v -x1560 -x1559 -x1558 -x1557 -x1556 -x1555 -x1554 -x1553 -x1552 -x1551 -x1549 -x1548 -x1547 -x1546 -x1545 -x1544 -x1543
0.39/0.49 v -x1542 -x1541 -x1540 -x1539 -x1538 -x1537 -x1536 -x1535 -x1534 -x1533 -x1532 -x1531 -x1530 -x1529 -x1528 -x1527 -x1526 -x1525
0.39/0.49 v -x1524 -x1523 -x1522 -x1521 -x1520 -x1519 -x1518 -x1517 -x1516 -x1515 -x1514 -x1513 -x1512 -x1511 -x1510 -x1509 -x1508 -x1507
0.39/0.49 v -x1506 -x1505 -x1504 -x1503 -x1502 -x1501 x1500 x1499 x1498 x1497 x1496 x1495 x1494 x1493 x1492 x1491 x1490 x1489 x1488 x1487
0.39/0.49 v x1486 x1485 x1484 x1483 x1482 x1481 x1480 x1479 x1478 x1477 x1476 x1475 x1474 x1473 x1472 x1471 x1470 -x1469 -x1468 -x1467
0.39/0.49 v -x1466 -x1465 -x1464 -x1463 -x1462 -x1461 -x1460 -x1459 -x1458 -x1457 -x1456 -x1455 -x1454 -x1453 -x1452 -x1451 x1450 x1449
0.39/0.49 v x1448 -x1447 -x1446 -x1445 -x1444 -x1443 -x1442 -x1441 -x1440 -x1439 -x1438 -x1437 -x1436 -x1435 -x1434 -x1433 -x1432 -x1431
0.39/0.49 v -x1430 -x1429 -x1428 -x1427 -x1426 -x1425 -x1424 -x1423 -x1422 -x1421 -x1420 -x1419 -x1418 -x1417 -x1416 -x1415 -x1414 -x1413
0.39/0.49 v -x1412 -x1411 -x1410 -x1409 -x1408 -x1407 -x1406 -x1405 -x1404 -x1403 -x1402 -x1401 x1400 x1399 -x1398 -x1397 -x1396 -x1395
0.39/0.49 v -x1394 -x1393 -x1392 -x1391 -x1390 -x1389 -x1388 -x1387 -x1386 -x1385 -x1384 -x1383 -x1382 -x1381 -x1380 -x1379 -x1378 -x1377
0.39/0.49 v -x1376 -x1375 -x1374 -x1373 -x1372 -x1371 -x1370 -x1369 -x1368 -x1367 -x1366 -x1365 -x1364 -x1363 -x1362 -x1361 -x1360 -x1359
0.39/0.49 v -x1358 -x1357 -x1356 -x1355 -x1354 -x1353 -x1352 -x1351 x1350 x1349 x1348 x1347 x1346 -x1345 -x1344 -x1343 -x1342 -x1341 -x1340
0.39/0.49 v -x1339 -x1338 -x1337 -x1336 -x1335 -x1334 -x1333 -x1332 -x1331 -x1330 -x1329 -x1328 -x1327 -x1326 -x1325 -x1324 -x1323 -x1322
0.39/0.49 v -x1321 -x1320 -x1319 -x1318 -x1317 -x1316 -x1315 -x1314 -x1313 -x1312 -x1311 -x1310 -x1309 -x1308 -x1307 -x1306 -x1305
0.39/0.49 v -x1304 -x1303 -x1302 -x1301 x1300 x1299 x1298 x1297 x1296 x1295 x1294 x1293 -x1292 -x1291 -x1290 -x1289 -x1288 -x1287 -x1286
0.39/0.49 v -x1285 -x1284 -x1283 -x1282 -x1281 -x1280 -x1279 -x1278 -x1277 -x1276 -x1275 -x1274 -x1273 -x1272 -x1271 -x1270 -x1269 -x1268
0.39/0.49 v -x1267 -x1266 -x1265 -x1264 -x1263 -x1262 -x1261 -x1260 -x1259 -x1258 -x1257 -x1256 -x1255 -x1254 -x1253 -x1252 -x1251 x1250
0.39/0.49 v x1249 x1248 x1247 x1246 x1245 x1244 x1243 x1242 x1241 x1240 x1239 x1238 x1237 x1236 x1235 -x1234 -x1233 -x1232 -x1231 -x1230
0.39/0.49 v -x1229 -x1228 -x1227 -x1226 -x1225 -x1224 -x1223 -x1222 -x1221 -x1220 -x1219 -x1218 -x1217 -x1216 -x1215 -x1214 -x1213 -x1212
0.39/0.49 v -x1211 -x1210 -x1209 -x1208 -x1207 -x1206 -x1205 -x1204 -x1203 -x1202 -x1201 x1200 x1199 x1198 x1197 x1196 x1195 x1194 x1193
0.39/0.49 v x1192 x1191 x1190 x1189 x1188 x1187 x1186 x1185 x1184 x1183 x1182 x1181 x1180 x1179 x1178 -x1177 -x1176 -x1175 -x1174 -x1173
0.39/0.49 v -x1172 -x1171 -x1170 -x1169 -x1168 -x1167 -x1166 -x1165 -x1164 -x1163 -x1162 -x1161 -x1160 -x1159 -x1158 -x1157 -x1156 -x1155
0.39/0.49 v -x1154 -x1153 -x1152 -x1151 x1150 x1149 x1148 x1147 x1146 x1145 x1144 x1143 x1142 x1141 x1140 x1139 -x1138 -x1137 -x1136 -x1135
0.39/0.49 v -x1134 -x1133 -x1132 -x1131 -x1130 -x1129 -x1128 -x1127 -x1126 -x1125 -x1124 -x1123 -x1122 -x1121 -x1120 -x1119 -x1118
0.39/0.49 v -x1117 -x1116 -x1115 -x1114 -x1113 -x1112 -x1111 -x1110 -x1109 -x1108 -x1107 -x1106 -x1105 -x1104 -x1103 -x1102 -x1101 x1100
0.39/0.49 v x1099 x1098 x1097 x1096 x1095 x1094 x1093 x1092 x1091 x1090 x1089 x1088 x1087 x1086 x1085 x1084 x1083 x1082 x1081 x1080 x1079
0.39/0.49 v x1078 x1077 -x1076 -x1075 -x1074 -x1073 -x1072 -x1071 -x1070 -x1069 -x1068 -x1067 -x1066 -x1065 -x1064 -x1063 -x1062 -x1061
0.39/0.49 v -x1060 -x1059 -x1058 -x1057 -x1056 -x1055 -x1054 -x1053 -x1052 -x1051 x1050 x1049 x1048 x1047 x1046 x1045 x1044 x1043 x1042 x1041
0.39/0.49 v x1040 -x1039 -x1038 -x1037 -x1036 -x1035 -x1034 -x1033 -x1032 -x1031 -x1030 -x1029 -x1028 -x1027 -x1026 -x1025 -x1024 -x1023
0.39/0.49 v -x1022 -x1021 -x1020 -x1019 -x1018 -x1017 -x1016 -x1015 -x1014 -x1013 -x1012 -x1011 -x1010 -x1009 -x1008 -x1007 -x1006 -x1005
0.39/0.49 v -x1004 -x1003 -x1002 -x1001 x1000 x999 x998 x997 x996 x995 x994 x993 x992 x991 x990 x989 x988 x987 x986 x985 x984 x983
0.39/0.49 v x982 x981 -x980 -x979 -x978 -x977 -x976 -x975 -x974 -x973 -x972 -x971 -x970 -x969 -x968 -x967 -x966 -x965 -x964 -x963 -x962 -x961
0.39/0.49 v -x960 -x959 -x958 -x957 -x956 -x955 -x954 -x953 -x952 -x951 x950 x949 x948 x947 x946 x945 x944 x943 x942 x941 x940 x939
0.39/0.49 v x938 x937 x936 -x935 -x934 -x933 -x932 -x931 -x930 -x929 -x928 -x927 -x926 -x925 -x924 -x923 -x922 -x921 -x920 -x919 -x918 -x917
0.39/0.49 v -x916 -x915 -x914 -x913 -x912 -x911 -x910 -x909 -x908 -x907 -x906 -x905 -x904 -x903 -x902 -x901 x900 x899 x898 x897 x896
0.39/0.50 v x895 x894 x893 x892 x891 x890 x889 x888 x887 x886 x885 x884 x883 x882 x881 x880 x879 x878 x877 -x876 -x875 -x874 -x873 -x872
0.39/0.50 v -x871 -x870 -x869 -x868 -x867 -x866 -x865 -x864 -x863 -x862 -x861 -x860 -x859 -x858 -x857 -x856 -x855 -x854 -x853 -x852 -x851
0.39/0.50 v x850 x849 x848 x847 x846 x845 x844 x843 x842 x841 x840 x839 x838 x837 x836 x835 x834 x833 x832 x831 x830 x829 x828 -x827 -x826
0.39/0.50 v -x825 -x824 -x823 -x822 -x821 -x820 -x819 -x818 -x817 -x816 -x815 -x814 -x813 -x812 -x811 -x810 -x809 -x808 -x807 -x806 -x805
0.39/0.50 v -x804 -x803 -x802 -x801 x800 x799 x798 x797 x796 x795 x794 x793 x792 x791 x790 x789 x788 x787 x786 x785 x784 x783 x782 x781
0.39/0.50 v x780 x779 x778 x777 x776 x775 x774 x773 x772 x771 x770 -x769 -x768 -x767 -x766 -x765 -x764 -x763 -x762 -x761 -x760 -x759 -x758
0.39/0.50 v -x757 -x756 -x755 -x754 -x753 -x752 -x751 x750 x749 x748 x747 x746 x745 x744 x743 x742 x741 x740 x739 x738 x737 x736 x735
0.39/0.50 v x734 x733 x732 x731 x730 x729 x728 x727 x726 x725 x724 x723 x722 x721 x720 x719 x718 x717 x716 -x715 -x714 -x713 -x712 -x711
0.39/0.50 v -x710 -x709 -x708 -x707 -x706 -x705 -x704 -x703 -x702 -x701 x700 x699 x698 x697 x696 x695 x694 x693 x692 x691 x690 x689 x688
0.39/0.50 v x687 x686 x685 -x684 -x683 -x682 -x681 -x680 -x679 -x678 -x677 -x676 -x675 -x674 -x673 -x672 -x671 -x670 -x669 -x668 -x667
0.39/0.50 v -x666 -x665 -x664 -x663 -x662 -x661 -x660 -x659 -x658 -x657 -x656 -x655 -x654 -x653 -x652 -x651 x650 x649 x648 x647 x646 x645
0.39/0.50 v x644 x643 x642 x641 x640 x639 x638 x637 x636 x635 x634 x633 x632 x631 x630 x629 x628 x627 x626 x625 x624 x623 x622 x621 x620
0.39/0.50 v x619 x618 x617 x616 x615 x614 x613 x612 x611 -x610 -x609 -x608 -x607 -x606 -x605 -x604 -x603 -x602 -x601 x600 x599 x598 x597
0.39/0.50 v x596 x595 x594 x593 x592 x591 x590 x589 x588 x587 x586 x585 x584 x583 x582 x581 x580 x579 x578 x577 x576 x575 x574 x573 x572
0.39/0.50 v x571 -x570 -x569 -x568 -x567 -x566 -x565 -x564 -x563 -x562 -x561 -x560 -x559 -x558 -x557 -x556 -x555 -x554 -x553 -x552 -x551
0.39/0.50 v x550 x549 x548 x547 x546 x545 x544 x543 x542 x541 x540 x539 x538 x537 x536 x535 x534 x533 x532 x531 x530 x529 x528 x527 x526
0.39/0.50 v x525 x524 x523 x522 x521 x520 x519 x518 x517 x516 x515 x514 x513 x512 x511 -x510 -x509 -x508 -x507 -x506 -x505 -x504 -x503 -x502
0.39/0.50 v -x501 x500 x499 x498 x497 x496 x495 x494 x493 x492 x491 x490 x489 x488 x487 x486 x485 x484 x483 x482 x481 x480 x479 x478
0.39/0.50 v x477 x476 x475 x474 x473 x472 x471 x470 x469 x468 x467 x466 x465 x464 x463 x462 x461 -x460 -x459 -x458 -x457 -x456 -x455 -x454
0.39/0.50 v -x453 -x452 -x451 x450 x449 x448 x447 x446 x445 x444 x443 x442 x441 x440 x439 x438 x437 x436 x435 x434 x433 x432 x431 x430
0.39/0.50 v x429 x428 x427 x426 -x425 -x424 -x423 -x422 -x421 -x420 -x419 -x418 -x417 -x416 -x415 -x414 -x413 -x412 -x411 -x410 -x409 -x408
0.39/0.50 v -x407 -x406 -x405 -x404 -x403 -x402 -x401 x400 x399 x398 x397 x396 x395 x394 x393 x392 x391 x390 x389 x388 x387 x386 x385
0.39/0.50 v x384 x383 x382 x381 x380 x379 x378 x377 x376 x375 x374 -x373 -x372 -x371 -x370 -x369 -x368 -x367 -x366 -x365 -x364 -x363 -x362
0.39/0.50 v -x361 -x360 -x359 -x358 -x357 -x356 -x355 -x354 -x353 -x352 -x351 x350 x349 x348 x347 x346 x345 x344 x343 x342 x341 x340 -x339
0.39/0.50 v -x338 -x337 -x336 -x335 -x334 -x333 -x332 -x331 -x330 -x329 -x328 -x327 -x326 -x325 -x324 -x323 -x322 -x321 -x320 -x319
0.39/0.50 v -x318 -x317 -x316 -x315 -x314 -x313 -x312 -x311 -x310 -x309 -x308 -x307 -x306 -x305 -x304 -x303 -x302 -x301 x300 x299 x298 x297
0.39/0.50 v x296 x295 x294 x293 x292 x291 x290 x289 x288 x287 x286 x285 x284 x283 x282 x281 x280 x279 x278 x277 x276 x275 x274 x273 x272
0.39/0.50 v x271 x270 x269 x268 x267 x266 -x265 -x264 -x263 -x262 -x261 -x260 -x259 -x258 -x257 -x256 -x255 -x254 -x253 -x252 -x251 x250
0.39/0.50 v x249 x248 x247 x246 x245 x244 x243 x242 x241 x240 x239 x238 x237 x236 x235 x234 x233 x232 x231 x230 x229 x228 x227 x226 x225
0.39/0.50 v x224 x223 x222 x221 x220 x219 x218 x217 x216 x215 x214 x213 x212 x211 -x210 -x209 -x208 -x207 -x206 -x205 -x204 -x203 -x202
0.39/0.50 v -x201 x200 x199 x198 x197 x196 x195 x194 x193 x192 x191 x190 x189 x188 x187 x186 x185 x184 x183 x182 x181 x180 x179 x178 x177
0.39/0.50 v x176 x175 x174 x173 x172 x171 x170 x169 x168 x167 x166 x165 x164 x163 x162 x161 x160 x159 x158 x157 x156 x155 -x154 -x153
0.39/0.50 v -x152 -x151 x150 x149 x148 x147 x146 x145 x144 x143 x142 x141 x140 x139 x138 x137 x136 x135 x134 x133 x132 x131 x130 x129 x128
0.39/0.50 v x127 x126 x125 x124 x123 x122 x121 x120 x119 x118 x117 x116 x115 x114 x113 x112 x111 x110 x109 x108 x107 x106 x105 x104 x103
0.39/0.50 v x102 x101 x100 x99 x98 x97 x96 x95 x94 x93 x92 x91 x90 x89 x88 x87 x86 x85 x84 x83 x82 x81 x80 x79 x78 x77 x76 x75 x74 x73
0.39/0.50 v x72 x71 x70 x69 x68 x67 x66 x65 x64 x63 x62 x61 x60 x59 x58 x57 x56 x55 x54 x53 x52 x51 x50 x49 x48 x47 x46 x45 x44 x43 x42 x41
0.39/0.50 v x40 x39 x38 x37 x36 x35 x34 x33 x32 x31 x30 x29 x28 x27 x26 x25 x24 x23 x22 x21 x20 x19 x18 -x17 -x16 -x15 -x14 -x13 -x12
0.39/0.50 v -x11 -x10 -x9 -x8 -x7 -x6 -x5 -x4 -x3 -x2 -x1 x1550
0.39/0.50 c SCIP Status : problem is solved [optimal solution found]
0.39/0.50 c Total Time : 0.49
0.39/0.50 c solving : 0.49
0.39/0.50 c presolving : 0.40 (included in solving)
0.39/0.50 c reading : 0.03 (included in solving)
0.39/0.50 c copying : 0.01 (1 #copies) (minimal 0.01, maximal 0.01, average 0.01)
0.39/0.50 c Original Problem :
0.39/0.50 c Problem name : HOME/instance-3690555-1338022608.opb
0.39/0.50 c Variables : 3100 (3100 binary, 0 integer, 0 implicit integer, 0 continuous)
0.39/0.50 c Constraints : 9569 initial, 9569 maximal
0.39/0.50 c Objective sense : minimize
0.39/0.50 c Presolved Problem :
0.39/0.50 c Problem name : t_HOME/instance-3690555-1338022608.opb
0.39/0.50 c Variables : 428 (428 binary, 0 integer, 0 implicit integer, 0 continuous)
0.39/0.50 c Constraints : 606 initial, 606 maximal
0.39/0.50 c Presolvers : ExecTime SetupTime FixedVars AggrVars ChgTypes ChgBounds AddHoles DelCons AddCons ChgSides ChgCoefs
0.39/0.50 c domcol : 0.00 0.00 0 0 0 0 0 0 0 0 0
0.39/0.50 c trivial : 0.00 0.00 203 0 0 0 0 0 0 0 0
0.39/0.50 c dualfix : 0.00 0.00 41 0 0 0 0 0 0 0 0
0.39/0.50 c boundshift : 0.00 0.00 0 0 0 0 0 0 0 0 0
0.39/0.50 c inttobinary : 0.00 0.00 0 0 0 0 0 0 0 0 0
0.39/0.50 c convertinttobin : 0.00 0.00 0 0 0 0 0 0 0 0 0
0.39/0.50 c gateextraction : 0.00 0.00 0 0 0 0 0 552 175 0 0
0.39/0.50 c implics : 0.00 0.00 0 89 0 0 0 0 0 0 0
0.39/0.50 c components : 0.00 0.00 0 0 0 0 0 0 0 0 0
0.39/0.50 c pseudoobj : 0.00 0.00 0 0 0 0 0 0 0 0 0
0.39/0.50 c probing : 0.00 0.00 0 0 0 0 0 0 0 0 0
0.39/0.50 c knapsack : 0.02 0.00 37 0 0 2 0 46 0 246 656
0.39/0.50 c setppc : 0.02 0.00 74 0 0 0 0 529 0 0 0
0.39/0.50 c and : 0.00 0.00 0 0 0 0 0 148 148 0 0
0.39/0.50 c linear : 0.30 0.00 1605 620 0 1775 0 7925 0 91 96
0.39/0.50 c logicor : 0.01 0.00 3 0 0 26 0 86 0 0 0
0.39/0.50 c root node : - - 4 - - 4 - - - - -
0.39/0.50 c Constraints : Number MaxNumber #Separate #Propagate #EnfoLP #EnfoPS #Check #ResProp Cutoffs DomReds Cuts Conss Children
0.39/0.50 c integral : 0 0 0 0 0 0 4 0 0 0 0 0 0
0.39/0.50 c knapsack : 81 81 1 1 0 0 1 0 0 0 38 0 0
0.39/0.50 c setppc : 525 525 1 1 0 0 1 0 0 0 0 0 0
0.39/0.50 c countsols : 0 0 0 0 0 0 3 0 0 0 0 0 0
0.39/0.50 c Constraint Timings : TotalTime SetupTime Separate Propagate EnfoLP EnfoPS Check ResProp
0.39/0.50 c integral : 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.39/0.50 c knapsack : 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.39/0.50 c setppc : 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.39/0.50 c countsols : 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.39/0.50 c Propagators : #Propagate #ResProp Cutoffs DomReds
0.39/0.50 c rootredcost : 0 0 0 0
0.39/0.50 c pseudoobj : 0 0 0 0
0.39/0.50 c vbounds : 0 0 0 0
0.39/0.50 c redcost : 1 0 0 0
0.39/0.50 c probing : 0 0 0 0
0.39/0.50 c Propagator Timings : TotalTime SetupTime Presolve Propagate ResProp
0.39/0.50 c rootredcost : 0.00 0.00 0.00 0.00 0.00
0.39/0.50 c pseudoobj : 0.00 0.00 0.00 0.00 0.00
0.39/0.50 c vbounds : 0.00 0.00 0.00 0.00 0.00
0.39/0.50 c redcost : 0.00 0.00 0.00 0.00 0.00
0.39/0.50 c probing : 0.00 0.00 0.00 0.00 0.00
0.39/0.50 c Conflict Analysis : Time Calls Success Conflicts Literals Reconvs ReconvLits LP Iters
0.39/0.50 c propagation : 0.00 0 0 0 0.0 0 0.0 -
0.39/0.50 c infeasible LP : 0.00 0 0 0 0.0 0 0.0 0
0.39/0.50 c bound exceed. LP : 0.00 0 0 0 0.0 0 0.0 0
0.39/0.50 c strong branching : 0.00 0 0 0 0.0 0 0.0 0
0.39/0.50 c pseudo solution : 0.00 0 0 0 0.0 0 0.0 -
0.39/0.50 c applied globally : - - - 0 0.0 - - -
0.39/0.50 c applied locally : - - - 0 0.0 - - -
0.39/0.50 c Separators : ExecTime SetupTime Calls Cutoffs DomReds Cuts Conss
0.39/0.50 c cut pool : 0.00 0 - - 0 - (maximal pool size: 136)
0.39/0.50 c closecuts : 0.00 0.00 0 0 0 0 0
0.39/0.50 c impliedbounds : 0.00 0.00 1 0 0 68 0
0.39/0.50 c intobj : 0.00 0.00 0 0 0 0 0
0.39/0.50 c gomory : 0.00 0.00 1 0 0 50 0
0.39/0.50 c cgmip : 0.00 0.00 0 0 0 0 0
0.39/0.50 c strongcg : 0.00 0.00 1 0 0 139 0
0.39/0.50 c cmir : 0.00 0.00 0 0 0 0 0
0.39/0.50 c flowcover : 0.00 0.00 0 0 0 0 0
0.39/0.50 c clique : 0.01 0.00 1 0 0 6 0
0.39/0.50 c zerohalf : 0.00 0.00 0 0 0 0 0
0.39/0.50 c mcf : 0.00 0.00 1 0 0 0 0
0.39/0.50 c oddcycle : 0.00 0.00 0 0 0 0 0
0.39/0.50 c rapidlearning : 0.03 0.00 1 0 4 0 0
0.39/0.50 c Pricers : ExecTime SetupTime Calls Vars
0.39/0.50 c problem variables: 0.00 - 0 0
0.39/0.50 c Branching Rules : ExecTime SetupTime Calls Cutoffs DomReds Cuts Conss Children
0.39/0.50 c pscost : 0.00 0.00 0 0 0 0 0 0
0.39/0.50 c inference : 0.00 0.00 0 0 0 0 0 0
0.49/0.50 c mostinf : 0.00 0.00 0 0 0 0 0 0
0.49/0.50 c leastinf : 0.00 0.00 0 0 0 0 0 0
0.49/0.50 c fullstrong : 0.00 0.00 0 0 0 0 0 0
0.49/0.50 c allfullstrong : 0.00 0.00 0 0 0 0 0 0
0.49/0.50 c random : 0.00 0.00 0 0 0 0 0 0
0.49/0.50 c relpscost : 0.00 0.00 0 0 0 0 0 0
0.49/0.50 c Primal Heuristics : ExecTime SetupTime Calls Found
0.49/0.50 c LP solutions : 0.00 - - 0
0.49/0.50 c pseudo solutions : 0.00 - - 0
0.49/0.50 c smallcard : 0.00 0.00 0 0
0.49/0.50 c trivial : 0.00 0.00 1 0
0.49/0.50 c shiftandpropagate: 0.00 0.00 0 0
0.49/0.50 c simplerounding : 0.00 0.00 0 0
0.49/0.50 c zirounding : 0.00 0.00 0 0
0.49/0.50 c rounding : 0.00 0.00 0 0
0.49/0.50 c shifting : 0.00 0.00 0 0
0.49/0.50 c intshifting : 0.00 0.00 0 0
0.49/0.50 c oneopt : 0.00 0.00 0 0
0.49/0.50 c twoopt : 0.00 0.00 0 0
0.49/0.50 c indtwoopt : 0.00 0.00 0 0
0.49/0.50 c indoneopt : 0.00 0.00 0 0
0.49/0.50 c fixandinfer : 0.00 0.00 0 0
0.49/0.50 c feaspump : 0.00 0.00 0 0
0.49/0.50 c clique : 0.00 0.00 0 0
0.49/0.50 c indrounding : 0.00 0.00 0 0
0.49/0.50 c indcoefdiving : 0.00 0.00 0 0
0.49/0.50 c coefdiving : 0.00 0.00 0 0
0.49/0.50 c pscostdiving : 0.00 0.00 0 0
0.49/0.50 c nlpdiving : 0.00 0.00 0 0
0.49/0.50 c fracdiving : 0.00 0.00 0 0
0.49/0.50 c veclendiving : 0.00 0.00 0 0
0.49/0.50 c intdiving : 0.00 0.00 0 0
0.49/0.50 c actconsdiving : 0.00 0.00 0 0
0.49/0.50 c objpscostdiving : 0.00 0.00 0 0
0.49/0.50 c rootsoldiving : 0.00 0.00 0 0
0.49/0.50 c linesearchdiving : 0.00 0.00 0 0
0.49/0.50 c guideddiving : 0.00 0.00 0 0
0.49/0.50 c octane : 0.00 0.00 0 0
0.49/0.50 c rens : 0.00 0.00 0 0
0.49/0.50 c rins : 0.00 0.00 0 0
0.49/0.50 c localbranching : 0.00 0.00 0 0
0.49/0.50 c mutation : 0.00 0.00 0 0
0.49/0.50 c crossover : 0.00 0.00 0 0
0.49/0.50 c dins : 0.00 0.00 0 0
0.49/0.50 c vbounds : 0.00 0.00 0 0
0.49/0.50 c undercover : 0.00 0.00 0 0
0.49/0.50 c subnlp : 0.00 0.00 0 0
0.49/0.50 c trysol : 0.00 0.00 0 0
0.49/0.50 c LP : Time Calls Iterations Iter/call Iter/sec Time-0-It Calls-0-It
0.49/0.50 c primal LP : 0.00 0 0 0.00 - 0.00 0
0.49/0.50 c dual LP : 0.00 2 83 83.00 - 0.00 1
0.49/0.50 c lex dual LP : 0.00 0 0 0.00 -
0.49/0.50 c barrier LP : 0.00 0 0 0.00 - 0.00 0
0.49/0.50 c diving/probing LP: 0.00 0 0 0.00 -
0.49/0.50 c strong branching : 0.00 0 0 0.00 -
0.49/0.50 c (at root node) : - 0 0 0.00 -
0.49/0.50 c conflict analysis: 0.00 0 0 0.00 -
0.49/0.50 c B&B Tree :
0.49/0.50 c number of runs : 1
0.49/0.50 c nodes : 1
0.49/0.50 c nodes (total) : 1
0.49/0.50 c nodes left : 0
0.49/0.50 c max depth : 0
0.49/0.50 c max depth (total): 0
0.49/0.50 c backtracks : 0 (0.0%)
0.49/0.50 c delayed cutoffs : 0
0.49/0.50 c repropagations : 0 (0 domain reductions, 0 cutoffs)
0.49/0.50 c avg switch length: 2.00
0.49/0.50 c switching time : 0.00
0.49/0.50 c Solution :
0.49/0.50 c Solutions found : 1 (1 improvements)
0.49/0.50 c First Solution : +0.00000000000000e+00 (in run 1, after 1 nodes, 0.49 seconds, depth 0, found by <trysol>)
0.49/0.50 c Primal Bound : +0.00000000000000e+00 (in run 1, after 1 nodes, 0.49 seconds, depth 0, found by <trysol>)
0.49/0.50 c Dual Bound : +0.00000000000000e+00
0.49/0.50 c Gap : 0.00 %
0.49/0.50 c Root Dual Bound : +0.00000000000000e+00
0.49/0.50 c Root Iterations : 83
0.49/0.51 c Time complete: 0.51.