0.00/0.00 c SCIP version 2.1.1.4 [precision: 8 byte] [memory: block] [mode: optimized] [LP solver: SoPlex 1.6.0.3] [GitHash: a3bf3a4-dirty]
0.00/0.00 c Copyright (c) 2002-2012 Konrad-Zuse-Zentrum fuer Informationstechnik Berlin (ZIB)
0.00/0.00 c
0.00/0.00 c user parameter file <scip.set> not found - using default parameters
0.00/0.00 c reading problem <HOME/instance-3690550-1338022610.opb>
0.00/0.03 c original problem has 3658 variables (3658 bin, 0 int, 0 impl, 0 cont) and 11959 constraints
0.00/0.03 c problem read in 0.03
0.00/0.03 c No objective function, only one solution is needed.
0.00/0.03 c presolving settings loaded
0.00/0.08 c presolving:
0.29/0.30 c (round 1) 1043 del vars, 2628 del conss, 0 add conss, 755 chg bounds, 0 chg sides, 0 chg coeffs, 0 upgd conss, 544824 impls, 0 clqs
0.39/0.40 c (round 2) 1946 del vars, 6517 del conss, 0 add conss, 1557 chg bounds, 0 chg sides, 0 chg coeffs, 0 upgd conss, 551635 impls, 0 clqs
0.39/0.42 c (round 3) 2234 del vars, 7739 del conss, 0 add conss, 1736 chg bounds, 23 chg sides, 35 chg coeffs, 0 upgd conss, 552345 impls, 0 clqs
0.39/0.43 c (round 4) 2334 del vars, 8149 del conss, 0 add conss, 1795 chg bounds, 35 chg sides, 48 chg coeffs, 0 upgd conss, 554588 impls, 0 clqs
0.39/0.43 c (round 5) 2379 del vars, 8308 del conss, 0 add conss, 1820 chg bounds, 35 chg sides, 48 chg coeffs, 0 upgd conss, 555039 impls, 0 clqs
0.39/0.44 c (round 6) 2396 del vars, 8393 del conss, 0 add conss, 1824 chg bounds, 35 chg sides, 48 chg coeffs, 0 upgd conss, 555171 impls, 0 clqs
0.39/0.44 c (round 7) 2399 del vars, 8404 del conss, 0 add conss, 1826 chg bounds, 35 chg sides, 48 chg coeffs, 0 upgd conss, 555194 impls, 0 clqs
0.39/0.44 c (round 8) 2400 del vars, 8413 del conss, 0 add conss, 1826 chg bounds, 35 chg sides, 48 chg coeffs, 0 upgd conss, 555198 impls, 0 clqs
0.39/0.45 c (round 9) 2400 del vars, 8414 del conss, 0 add conss, 1826 chg bounds, 35 chg sides, 48 chg coeffs, 0 upgd conss, 555198 impls, 0 clqs
0.39/0.48 c (round 10) 2400 del vars, 8414 del conss, 0 add conss, 1826 chg bounds, 35 chg sides, 48 chg coeffs, 3551 upgd conss, 555198 impls, 0 clqs
0.48/0.50 c (round 11) 2400 del vars, 8416 del conss, 0 add conss, 1826 chg bounds, 67 chg sides, 183 chg coeffs, 3551 upgd conss, 556156 impls, 270 clqs
0.48/0.51 c (round 12) 2400 del vars, 8416 del conss, 0 add conss, 1826 chg bounds, 68 chg sides, 262 chg coeffs, 3551 upgd conss, 556156 impls, 338 clqs
0.48/0.52 c (round 13) 2403 del vars, 8421 del conss, 0 add conss, 1829 chg bounds, 68 chg sides, 297 chg coeffs, 3551 upgd conss, 556933 impls, 370 clqs
0.48/0.53 c (round 14) 2408 del vars, 8436 del conss, 0 add conss, 1829 chg bounds, 69 chg sides, 324 chg coeffs, 3551 upgd conss, 556947 impls, 378 clqs
0.48/0.54 c (round 15) 2408 del vars, 8440 del conss, 0 add conss, 1829 chg bounds, 69 chg sides, 339 chg coeffs, 3551 upgd conss, 556949 impls, 385 clqs
0.48/0.55 c (round 16) 2408 del vars, 8440 del conss, 0 add conss, 1829 chg bounds, 69 chg sides, 351 chg coeffs, 3551 upgd conss, 556949 impls, 389 clqs
0.48/0.56 c (round 17) 2408 del vars, 8440 del conss, 0 add conss, 1829 chg bounds, 69 chg sides, 360 chg coeffs, 3551 upgd conss, 556949 impls, 393 clqs
0.48/0.57 c (round 18) 2408 del vars, 8440 del conss, 0 add conss, 1829 chg bounds, 69 chg sides, 366 chg coeffs, 3551 upgd conss, 556949 impls, 397 clqs
0.48/0.58 c (round 19) 2408 del vars, 10254 del conss, 556 add conss, 1829 chg bounds, 69 chg sides, 370 chg coeffs, 3551 upgd conss, 556949 impls, 400 clqs
0.58/0.60 c (round 20) 2408 del vars, 10664 del conss, 966 add conss, 1829 chg bounds, 69 chg sides, 371 chg coeffs, 3551 upgd conss, 556949 impls, 547 clqs
0.58/0.61 c presolving (21 rounds):
0.58/0.61 c 2408 deleted vars, 10664 deleted constraints, 966 added constraints, 1829 tightened bounds, 0 added holes, 69 changed sides, 371 changed coefficients
0.58/0.61 c 556949 implications, 958 cliques
0.58/0.61 c presolved problem has 1250 variables (1250 bin, 0 int, 0 impl, 0 cont) and 2261 constraints
0.58/0.61 c 207 constraints of type <knapsack>
0.58/0.61 c 2053 constraints of type <setppc>
0.58/0.61 c 1 constraints of type <logicor>
0.58/0.61 c transformed objective value is always integral (scale: 1)
0.58/0.61 c Presolving Time: 0.56
0.58/0.61 c - non default parameters ----------------------------------------------------------------------
0.58/0.61 c # SCIP version 2.1.1.4
0.58/0.61 c
0.58/0.61 c # maximal time in seconds to run
0.58/0.61 c # [type: real, range: [0,1.79769313486232e+308], default: 1e+20]
0.58/0.61 c limits/time = 1797
0.58/0.61 c
0.58/0.61 c # maximal memory usage in MB; reported memory usage is lower than real memory usage!
0.58/0.61 c # [type: real, range: [0,1.79769313486232e+308], default: 1e+20]
0.58/0.61 c limits/memory = 13950
0.58/0.61 c
0.58/0.61 c # solving stops, if the given number of solutions were found (-1: no limit)
0.58/0.61 c # [type: int, range: [-1,2147483647], default: -1]
0.58/0.61 c limits/solutions = 1
0.58/0.61 c
0.58/0.61 c # maximal number of separation rounds per node (-1: unlimited)
0.58/0.61 c # [type: int, range: [-1,2147483647], default: 5]
0.58/0.61 c separating/maxrounds = 1
0.58/0.61 c
0.58/0.61 c # maximal number of separation rounds in the root node (-1: unlimited)
0.58/0.61 c # [type: int, range: [-1,2147483647], default: -1]
0.58/0.61 c separating/maxroundsroot = 5
0.58/0.61 c
0.58/0.61 c # default clock type (1: CPU user seconds, 2: wall clock time)
0.58/0.61 c # [type: int, range: [1,2], default: 1]
0.58/0.61 c timing/clocktype = 2
0.58/0.61 c
0.58/0.61 c # belongs reading time to solving time?
0.58/0.61 c # [type: bool, range: {TRUE,FALSE}, default: FALSE]
0.58/0.61 c timing/reading = TRUE
0.58/0.61 c
0.58/0.61 c # should disaggregation of knapsack constraints be allowed in preprocessing?
0.58/0.61 c # [type: bool, range: {TRUE,FALSE}, default: TRUE]
0.58/0.61 c constraints/knapsack/disaggregation = FALSE
0.58/0.61 c
0.58/0.61 c # frequency for calling primal heuristic <coefdiving> (-1: never, 0: only at depth freqofs)
0.58/0.61 c # [type: int, range: [-1,2147483647], default: 10]
0.58/0.61 c heuristics/coefdiving/freq = -1
0.58/0.61 c
0.58/0.61 c # maximal fraction of diving LP iterations compared to node LP iterations
0.58/0.61 c # [type: real, range: [0,1.79769313486232e+308], default: 0.05]
0.58/0.61 c heuristics/coefdiving/maxlpiterquot = 0.075
0.58/0.61 c
0.58/0.61 c # additional number of allowed LP iterations
0.58/0.61 c # [type: int, range: [0,2147483647], default: 1000]
0.58/0.61 c heuristics/coefdiving/maxlpiterofs = 1500
0.58/0.61 c
0.58/0.61 c # frequency for calling primal heuristic <crossover> (-1: never, 0: only at depth freqofs)
0.58/0.61 c # [type: int, range: [-1,2147483647], default: 30]
0.58/0.61 c heuristics/crossover/freq = -1
0.58/0.61 c
0.58/0.61 c # number of nodes added to the contingent of the total nodes
0.58/0.61 c # [type: longint, range: [0,9223372036854775807], default: 500]
0.58/0.61 c heuristics/crossover/nodesofs = 750
0.58/0.61 c
0.58/0.61 c # number of nodes without incumbent change that heuristic should wait
0.58/0.61 c # [type: longint, range: [0,9223372036854775807], default: 200]
0.58/0.61 c heuristics/crossover/nwaitingnodes = 100
0.58/0.61 c
0.58/0.61 c # contingent of sub problem nodes in relation to the number of nodes of the original problem
0.58/0.61 c # [type: real, range: [0,1], default: 0.1]
0.58/0.61 c heuristics/crossover/nodesquot = 0.15
0.58/0.61 c
0.58/0.61 c # minimum percentage of integer variables that have to be fixed
0.58/0.61 c # [type: real, range: [0,1], default: 0.666]
0.58/0.61 c heuristics/crossover/minfixingrate = 0.5
0.58/0.61 c
0.58/0.61 c # frequency for calling primal heuristic <feaspump> (-1: never, 0: only at depth freqofs)
0.58/0.61 c # [type: int, range: [-1,2147483647], default: 20]
0.58/0.61 c heuristics/feaspump/freq = -1
0.58/0.61 c
0.58/0.61 c # additional number of allowed LP iterations
0.58/0.61 c # [type: int, range: [0,2147483647], default: 1000]
0.58/0.61 c heuristics/feaspump/maxlpiterofs = 2000
0.58/0.61 c
0.58/0.61 c # frequency for calling primal heuristic <fracdiving> (-1: never, 0: only at depth freqofs)
0.58/0.61 c # [type: int, range: [-1,2147483647], default: 10]
0.58/0.61 c heuristics/fracdiving/freq = -1
0.58/0.61 c
0.58/0.61 c # maximal fraction of diving LP iterations compared to node LP iterations
0.58/0.61 c # [type: real, range: [0,1.79769313486232e+308], default: 0.05]
0.58/0.61 c heuristics/fracdiving/maxlpiterquot = 0.075
0.58/0.61 c
0.58/0.61 c # additional number of allowed LP iterations
0.58/0.61 c # [type: int, range: [0,2147483647], default: 1000]
0.58/0.61 c heuristics/fracdiving/maxlpiterofs = 1500
0.58/0.61 c
0.58/0.61 c # frequency for calling primal heuristic <guideddiving> (-1: never, 0: only at depth freqofs)
0.58/0.61 c # [type: int, range: [-1,2147483647], default: 10]
0.58/0.61 c heuristics/guideddiving/freq = -1
0.58/0.61 c
0.58/0.61 c # maximal fraction of diving LP iterations compared to node LP iterations
0.58/0.61 c # [type: real, range: [0,1.79769313486232e+308], default: 0.05]
0.58/0.61 c heuristics/guideddiving/maxlpiterquot = 0.075
0.58/0.61 c
0.58/0.61 c # additional number of allowed LP iterations
0.58/0.61 c # [type: int, range: [0,2147483647], default: 1000]
0.58/0.61 c heuristics/guideddiving/maxlpiterofs = 1500
0.58/0.61 c
0.58/0.61 c # maximal fraction of diving LP iterations compared to node LP iterations
0.58/0.61 c # [type: real, range: [0,1.79769313486232e+308], default: 0.05]
0.58/0.61 c heuristics/intdiving/maxlpiterquot = 0.075
0.58/0.61 c
0.58/0.61 c # frequency for calling primal heuristic <intshifting> (-1: never, 0: only at depth freqofs)
0.58/0.61 c # [type: int, range: [-1,2147483647], default: 10]
0.58/0.61 c heuristics/intshifting/freq = -1
0.58/0.61 c
0.58/0.61 c # frequency for calling primal heuristic <linesearchdiving> (-1: never, 0: only at depth freqofs)
0.58/0.61 c # [type: int, range: [-1,2147483647], default: 10]
0.58/0.61 c heuristics/linesearchdiving/freq = -1
0.58/0.61 c
0.58/0.61 c # maximal fraction of diving LP iterations compared to node LP iterations
0.58/0.61 c # [type: real, range: [0,1.79769313486232e+308], default: 0.05]
0.58/0.61 c heuristics/linesearchdiving/maxlpiterquot = 0.075
0.58/0.61 c
0.58/0.61 c # additional number of allowed LP iterations
0.58/0.61 c # [type: int, range: [0,2147483647], default: 1000]
0.58/0.61 c heuristics/linesearchdiving/maxlpiterofs = 1500
0.58/0.61 c
0.58/0.61 c # frequency for calling primal heuristic <objpscostdiving> (-1: never, 0: only at depth freqofs)
0.58/0.61 c # [type: int, range: [-1,2147483647], default: 20]
0.58/0.61 c heuristics/objpscostdiving/freq = -1
0.58/0.61 c
0.58/0.61 c # maximal fraction of diving LP iterations compared to total iteration number
0.58/0.61 c # [type: real, range: [0,1], default: 0.01]
0.58/0.61 c heuristics/objpscostdiving/maxlpiterquot = 0.015
0.58/0.61 c
0.58/0.61 c # additional number of allowed LP iterations
0.58/0.61 c # [type: int, range: [0,2147483647], default: 1000]
0.58/0.61 c heuristics/objpscostdiving/maxlpiterofs = 1500
0.58/0.61 c
0.58/0.61 c # frequency for calling primal heuristic <oneopt> (-1: never, 0: only at depth freqofs)
0.58/0.61 c # [type: int, range: [-1,2147483647], default: 1]
0.58/0.61 c heuristics/oneopt/freq = -1
0.58/0.61 c
0.58/0.61 c # frequency for calling primal heuristic <pscostdiving> (-1: never, 0: only at depth freqofs)
0.58/0.61 c # [type: int, range: [-1,2147483647], default: 10]
0.58/0.61 c heuristics/pscostdiving/freq = -1
0.58/0.61 c
0.58/0.61 c # maximal fraction of diving LP iterations compared to node LP iterations
0.58/0.61 c # [type: real, range: [0,1.79769313486232e+308], default: 0.05]
0.58/0.61 c heuristics/pscostdiving/maxlpiterquot = 0.075
0.58/0.61 c
0.58/0.61 c # additional number of allowed LP iterations
0.58/0.61 c # [type: int, range: [0,2147483647], default: 1000]
0.58/0.61 c heuristics/pscostdiving/maxlpiterofs = 1500
0.58/0.61 c
0.58/0.61 c # frequency for calling primal heuristic <rens> (-1: never, 0: only at depth freqofs)
0.58/0.61 c # [type: int, range: [-1,2147483647], default: 0]
0.58/0.61 c heuristics/rens/freq = -1
0.58/0.61 c
0.58/0.61 c # minimum percentage of integer variables that have to be fixable
0.58/0.61 c # [type: real, range: [0,1], default: 0.5]
0.58/0.61 c heuristics/rens/minfixingrate = 0.3
0.58/0.61 c
0.58/0.61 c # number of nodes added to the contingent of the total nodes
0.58/0.61 c # [type: longint, range: [0,9223372036854775807], default: 500]
0.58/0.61 c heuristics/rens/nodesofs = 2000
0.58/0.61 c
0.58/0.61 c # frequency for calling primal heuristic <rootsoldiving> (-1: never, 0: only at depth freqofs)
0.58/0.61 c # [type: int, range: [-1,2147483647], default: 20]
0.58/0.61 c heuristics/rootsoldiving/freq = -1
0.58/0.61 c
0.58/0.61 c # maximal fraction of diving LP iterations compared to node LP iterations
0.58/0.61 c # [type: real, range: [0,1.79769313486232e+308], default: 0.01]
0.58/0.61 c heuristics/rootsoldiving/maxlpiterquot = 0.015
0.58/0.61 c
0.58/0.61 c # additional number of allowed LP iterations
0.58/0.61 c # [type: int, range: [0,2147483647], default: 1000]
0.58/0.61 c heuristics/rootsoldiving/maxlpiterofs = 1500
0.58/0.61 c
0.58/0.61 c # frequency for calling primal heuristic <rounding> (-1: never, 0: only at depth freqofs)
0.58/0.61 c # [type: int, range: [-1,2147483647], default: 1]
0.58/0.61 c heuristics/rounding/freq = -1
0.58/0.61 c
0.58/0.61 c # frequency for calling primal heuristic <shiftandpropagate> (-1: never, 0: only at depth freqofs)
0.58/0.61 c # [type: int, range: [-1,2147483647], default: 0]
0.58/0.61 c heuristics/shiftandpropagate/freq = -1
0.58/0.61 c
0.58/0.61 c # frequency for calling primal heuristic <shifting> (-1: never, 0: only at depth freqofs)
0.58/0.61 c # [type: int, range: [-1,2147483647], default: 10]
0.58/0.61 c heuristics/shifting/freq = -1
0.58/0.61 c
0.58/0.61 c # frequency for calling primal heuristic <simplerounding> (-1: never, 0: only at depth freqofs)
0.58/0.61 c # [type: int, range: [-1,2147483647], default: 1]
0.58/0.61 c heuristics/simplerounding/freq = -1
0.58/0.61 c
0.58/0.61 c # frequency for calling primal heuristic <subnlp> (-1: never, 0: only at depth freqofs)
0.58/0.61 c # [type: int, range: [-1,2147483647], default: 1]
0.58/0.61 c heuristics/subnlp/freq = -1
0.58/0.61 c
0.58/0.61 c # frequency for calling primal heuristic <trivial> (-1: never, 0: only at depth freqofs)
0.58/0.61 c # [type: int, range: [-1,2147483647], default: 0]
0.58/0.61 c heuristics/trivial/freq = -1
0.58/0.61 c
0.58/0.61 c # frequency for calling primal heuristic <trysol> (-1: never, 0: only at depth freqofs)
0.58/0.61 c # [type: int, range: [-1,2147483647], default: 1]
0.58/0.61 c heuristics/trysol/freq = -1
0.58/0.61 c
0.58/0.61 c # frequency for calling primal heuristic <undercover> (-1: never, 0: only at depth freqofs)
0.58/0.61 c # [type: int, range: [-1,2147483647], default: 0]
0.58/0.61 c heuristics/undercover/freq = -1
0.58/0.61 c
0.58/0.61 c # frequency for calling primal heuristic <veclendiving> (-1: never, 0: only at depth freqofs)
0.58/0.61 c # [type: int, range: [-1,2147483647], default: 10]
0.58/0.61 c heuristics/veclendiving/freq = -1
0.58/0.61 c
0.58/0.61 c # maximal fraction of diving LP iterations compared to node LP iterations
0.58/0.61 c # [type: real, range: [0,1.79769313486232e+308], default: 0.05]
0.58/0.61 c heuristics/veclendiving/maxlpiterquot = 0.075
0.58/0.61 c
0.58/0.61 c # additional number of allowed LP iterations
0.58/0.61 c # [type: int, range: [0,2147483647], default: 1000]
0.58/0.61 c heuristics/veclendiving/maxlpiterofs = 1500
0.58/0.61 c
0.58/0.61 c # frequency for calling primal heuristic <zirounding> (-1: never, 0: only at depth freqofs)
0.58/0.61 c # [type: int, range: [-1,2147483647], default: 1]
0.58/0.61 c heuristics/zirounding/freq = -1
0.58/0.61 c
0.58/0.61 c # maximal number of presolving rounds the propagator participates in (-1: no limit)
0.58/0.61 c # [type: int, range: [-1,2147483647], default: -1]
0.58/0.61 c propagating/probing/maxprerounds = 0
0.58/0.61 c
0.58/0.61 c # frequency for calling separator <cmir> (-1: never, 0: only in root node)
0.58/0.61 c # [type: int, range: [-1,2147483647], default: 0]
0.58/0.61 c separating/cmir/freq = -1
0.58/0.61 c
0.58/0.61 c # frequency for calling separator <flowcover> (-1: never, 0: only in root node)
0.58/0.61 c # [type: int, range: [-1,2147483647], default: 0]
0.58/0.61 c separating/flowcover/freq = -1
0.58/0.61 c
0.58/0.61 c # frequency for calling separator <rapidlearning> (-1: never, 0: only in root node)
0.58/0.61 c # [type: int, range: [-1,2147483647], default: -1]
0.58/0.61 c separating/rapidlearning/freq = 0
0.58/0.61 c
0.58/0.61 c # frequency for calling primal heuristic <indoneopt> (-1: never, 0: only at depth freqofs)
0.58/0.61 c # [type: int, range: [-1,2147483647], default: 1]
0.58/0.61 c heuristics/indoneopt/freq = -1
0.58/0.61 c
0.58/0.61 c -----------------------------------------------------------------------------------------------
0.58/0.61 c start solving
0.58/0.61 c
0.69/0.79 c time | node | left |LP iter|LP it/n| mem |mdpt |frac |vars |cons |cols |rows |cuts |confs|strbr| dualbound | primalbound | gap
0.69/0.79 c 0.8s| 1 | 0 | 1832 | - | 18M| 0 | 739 |1250 |2261 |1250 |2261 | 0 | 0 | 0 | 0.000000e+00 | -- | Inf
1.39/1.49 c y 1.5s| 1 | 0 | 1832 | - | 24M| 0 | - |1250 |2261 |1250 |2261 | 0 | 0 | 0 | 0.000000e+00 | 0.000000e+00 | 0.00%
1.49/1.51 c 1.5s| 1 | 0 | 1832 | - | 21M| 0 | - |1250 |2402 |1250 |2261 | 0 | 0 | 0 | 0.000000e+00 | 0.000000e+00 | 0.00%
1.49/1.51 c 1.5s| 1 | 0 | 1832 | - | 21M| 0 | - |1250 |2402 |1250 |2261 | 0 | 0 | 0 | 0.000000e+00 | 0.000000e+00 | 0.00%
1.49/1.51 c
1.49/1.51 c SCIP Status : problem is solved [optimal solution found]
1.49/1.51 c Solving Time (sec) : 1.51
1.49/1.51 c Solving Nodes : 1
1.49/1.51 c Primal Bound : +0.00000000000000e+00 (1 solutions)
1.49/1.51 c Dual Bound : +0.00000000000000e+00
1.49/1.51 c Gap : 0.00 %
1.49/1.51 s SATISFIABLE
1.49/1.51 v x3658 -x3657 -x3656 -x3655 -x3654 -x3653 -x3652 -x3651 -x3650 -x3649 -x3648 -x3647 -x3646 -x3645 -x3644 -x3643 -x3642 -x3641 -x3640
1.49/1.51 v -x3639 -x3638 -x3637 -x3636 -x3635 -x3634 -x3633 -x3632 -x3631 -x3630 -x3629 -x3628 -x3627 -x3626 -x3625 -x3624 -x3623 -x3622
1.49/1.51 v -x3621 -x3620 -x3619 -x3618 -x3617 -x3616 -x3615 -x3614 -x3613 -x3612 -x3611 -x3610 -x3609 -x3608 -x3607 -x3606 -x3605
1.49/1.51 v -x3604 -x3603 -x3602 -x3601 -x3600 -x3599 -x3598 -x3597 -x3596 -x3595 x3594 -x3593 -x3592 -x3591 -x3590 -x3589 -x3588 -x3587
1.49/1.51 v -x3586 -x3585 -x3584 -x3583 -x3582 -x3581 -x3580 -x3579 -x3578 -x3577 -x3576 -x3575 -x3574 -x3573 -x3572 -x3571 -x3570 -x3569
1.49/1.51 v -x3568 -x3567 -x3566 -x3565 -x3564 -x3563 -x3562 -x3561 -x3560 -x3559 -x3558 -x3557 -x3556 -x3555 -x3554 -x3553 -x3552 -x3551
1.49/1.51 v -x3550 -x3549 -x3548 -x3547 -x3546 -x3545 -x3544 -x3543 -x3542 -x3541 -x3540 x3539 x3538 x3537 x3536 -x3535 -x3534 -x3533 -x3532
1.49/1.51 v -x3531 -x3530 -x3529 -x3528 -x3527 -x3526 -x3525 -x3524 -x3523 -x3522 -x3521 -x3520 -x3519 -x3518 -x3517 -x3516 -x3515
1.49/1.51 v -x3514 -x3513 -x3512 -x3511 -x3510 -x3509 -x3508 -x3507 -x3506 -x3505 -x3504 -x3503 -x3502 -x3501 -x3500 -x3499 -x3498 -x3497
1.49/1.51 v -x3496 -x3495 -x3494 -x3493 -x3492 -x3491 -x3490 -x3489 -x3488 -x3487 -x3486 -x3485 -x3484 -x3483 -x3482 -x3481 x3480 x3479
1.49/1.51 v x3478 x3477 x3476 x3475 x3474 -x3473 -x3472 -x3471 -x3470 -x3469 -x3468 -x3467 -x3466 -x3465 -x3464 -x3463 -x3462 -x3461 -x3460
1.49/1.51 v -x3459 -x3458 -x3457 -x3456 -x3455 -x3454 -x3453 -x3452 -x3451 -x3450 -x3449 -x3448 -x3447 -x3446 -x3445 -x3444 -x3443 -x3442
1.49/1.51 v -x3441 -x3440 -x3439 -x3438 -x3437 -x3436 -x3435 -x3434 -x3433 -x3432 -x3431 -x3430 -x3429 -x3428 -x3427 -x3426 -x3425 -x3424
1.49/1.51 v -x3423 -x3422 -x3421 -x3420 -x3419 -x3418 -x3417 -x3416 -x3415 x3414 -x3413 -x3412 -x3411 -x3410 -x3409 -x3408 -x3407 -x3406
1.49/1.51 v -x3405 -x3404 -x3403 -x3402 -x3401 -x3400 -x3399 -x3398 -x3397 -x3396 -x3395 -x3394 -x3393 -x3392 -x3391 -x3390 -x3389 -x3388
1.49/1.51 v -x3387 -x3386 -x3385 -x3384 -x3383 -x3382 -x3381 -x3380 -x3379 -x3378 -x3377 -x3376 -x3375 -x3374 -x3373 -x3372 -x3371
1.49/1.51 v -x3370 -x3369 -x3368 -x3367 -x3366 -x3365 -x3364 -x3363 -x3362 -x3361 -x3360 -x3359 -x3358 -x3357 -x3356 -x3355 x3354 x3353 -x3352
1.49/1.51 v -x3351 -x3350 -x3349 -x3348 -x3347 -x3346 -x3345 -x3344 -x3343 -x3342 -x3341 -x3340 -x3339 -x3338 -x3337 -x3336 -x3335
1.49/1.51 v -x3334 -x3333 -x3332 -x3331 -x3330 -x3329 -x3328 -x3327 -x3326 -x3325 -x3324 -x3323 -x3322 -x3321 -x3320 -x3319 -x3318 -x3317
1.49/1.51 v -x3316 -x3315 -x3314 -x3313 -x3312 -x3311 -x3310 -x3309 -x3308 -x3307 -x3306 -x3305 -x3304 -x3303 -x3302 -x3301 -x3300 -x3299
1.49/1.51 v -x3298 -x3297 -x3296 -x3295 -x3294 -x3293 -x3292 x3291 x3290 x3289 x3288 x3287 x3286 x3285 -x3284 -x3283 -x3282 -x3281 -x3280
1.49/1.51 v -x3279 -x3278 -x3277 -x3276 -x3275 -x3274 -x3273 -x3272 -x3271 -x3270 -x3269 -x3268 -x3267 -x3266 -x3265 -x3264 -x3263 -x3262
1.49/1.51 v -x3261 -x3260 -x3259 -x3258 -x3257 -x3256 -x3255 -x3254 -x3253 -x3252 -x3251 -x3250 -x3249 -x3248 -x3247 -x3246 -x3245 -x3244
1.49/1.51 v -x3243 -x3242 -x3241 -x3240 -x3239 -x3238 x3237 x3236 x3235 x3234 x3233 -x3232 -x3231 -x3230 -x3229 -x3228 -x3227 -x3226
1.49/1.51 v -x3225 -x3224 -x3223 -x3222 -x3221 -x3220 -x3219 -x3218 -x3217 -x3216 -x3215 -x3214 -x3213 -x3212 -x3211 -x3210 -x3209 -x3208
1.49/1.51 v -x3207 -x3206 -x3205 -x3204 -x3203 -x3202 -x3201 -x3200 -x3199 -x3198 -x3197 -x3196 -x3195 -x3194 -x3193 -x3192 -x3191 -x3190
1.49/1.51 v -x3189 -x3188 -x3187 -x3186 -x3185 -x3184 -x3183 -x3182 -x3181 -x3180 -x3179 -x3178 -x3177 -x3176 -x3175 -x3174 -x3173 x3172
1.49/1.51 v x3171 x3170 x3169 x3168 x3167 x3166 x3165 -x3164 -x3163 -x3162 -x3161 -x3160 -x3159 -x3158 -x3157 -x3156 -x3155 -x3154 -x3153
1.49/1.51 v -x3152 -x3151 -x3150 -x3149 -x3148 -x3147 -x3146 -x3145 -x3144 -x3143 -x3142 -x3141 -x3140 -x3139 -x3138 -x3137 -x3136 -x3135
1.49/1.51 v -x3134 -x3133 -x3132 -x3131 -x3130 -x3129 -x3128 -x3127 -x3126 -x3125 -x3124 -x3123 -x3122 -x3121 -x3120 -x3119 -x3118 -x3117
1.49/1.51 v -x3116 -x3115 -x3114 -x3113 -x3112 -x3111 -x3110 -x3109 -x3108 -x3107 -x3106 x3105 x3104 x3103 x3102 x3101 x3100 x3099
1.49/1.51 v x3098 x3097 -x3096 -x3095 -x3094 -x3093 -x3092 -x3091 -x3090 -x3089 -x3088 -x3087 -x3086 -x3085 -x3084 -x3083 -x3082 -x3081 -x3080
1.49/1.51 v -x3079 -x3078 -x3077 -x3076 -x3075 -x3074 -x3073 -x3072 -x3071 -x3070 -x3069 -x3068 -x3067 -x3066 -x3065 -x3064 -x3063
1.49/1.51 v -x3062 -x3061 -x3060 -x3059 -x3058 -x3057 -x3056 -x3055 -x3054 -x3053 -x3052 -x3051 -x3050 -x3049 -x3048 -x3047 -x3046 -x3045
1.49/1.51 v -x3044 -x3043 -x3042 -x3041 -x3040 -x3039 -x3038 -x3037 -x3036 -x3035 -x3034 -x3033 -x3032 -x3031 -x3030 -x3029 -x3028 -x3027
1.49/1.51 v -x3026 -x3025 -x3024 -x3023 -x3022 -x3021 -x3020 x3019 x3018 x3017 x3016 -x3015 -x3014 -x3013 -x3012 -x3011 -x3010 -x3009 -x3008
1.49/1.51 v -x3007 -x3006 -x3005 -x3004 -x3003 -x3002 -x3001 -x3000 -x2999 -x2998 -x2997 -x2996 -x2995 -x2994 -x2993 -x2992 -x2991
1.49/1.51 v -x2990 -x2989 -x2988 x2987 -x2986 -x2985 -x2984 -x2983 -x2982 -x2981 -x2980 -x2979 -x2978 -x2977 -x2976 -x2975 -x2974 -x2973
1.49/1.51 v -x2972 -x2971 -x2970 -x2969 -x2968 -x2967 -x2966 -x2965 -x2964 -x2963 -x2962 -x2961 -x2960 -x2959 -x2958 -x2957 -x2956 -x2955
1.49/1.51 v -x2954 -x2953 -x2952 -x2951 -x2950 -x2949 -x2948 -x2947 -x2946 -x2945 -x2944 -x2943 -x2942 -x2941 -x2940 -x2939 -x2938 -x2937
1.49/1.51 v -x2936 -x2935 -x2934 -x2933 -x2932 -x2931 -x2930 -x2929 -x2928 -x2927 -x2926 -x2925 -x2924 -x2923 -x2922 -x2921 -x2920 x2919
1.49/1.51 v x2918 x2917 x2916 x2915 -x2914 -x2913 -x2912 -x2911 -x2910 -x2909 -x2908 -x2907 -x2906 -x2905 -x2904 -x2903 -x2902 -x2901 -x2900
1.49/1.51 v -x2899 -x2898 -x2897 -x2896 -x2895 -x2894 -x2893 -x2892 -x2891 -x2890 -x2889 -x2888 -x2887 -x2886 -x2885 -x2884 -x2883
1.49/1.51 v -x2882 -x2881 x2880 x2879 x2878 -x2877 -x2876 -x2875 -x2874 -x2873 -x2872 -x2871 -x2870 -x2869 -x2868 -x2867 -x2866 -x2865 -x2864
1.49/1.51 v -x2863 -x2862 -x2861 -x2860 -x2859 -x2858 -x2857 -x2856 -x2855 -x2854 -x2853 -x2852 -x2851 -x2850 -x2849 -x2848 -x2847 -x2846
1.49/1.51 v -x2845 -x2844 -x2843 -x2842 -x2841 -x2840 -x2839 -x2838 -x2837 -x2836 -x2835 -x2834 -x2833 -x2832 -x2831 -x2830 -x2829
1.49/1.51 v -x2828 -x2827 -x2826 -x2825 -x2824 -x2823 -x2822 -x2821 -x2820 -x2819 -x2818 -x2817 -x2816 -x2815 -x2814 -x2813 x2812 x2811 x2810
1.49/1.51 v x2809 x2808 -x2807 -x2806 -x2805 -x2804 -x2803 -x2802 -x2801 -x2800 -x2799 -x2798 -x2797 -x2796 -x2795 -x2794 -x2793 -x2792
1.49/1.51 v -x2791 -x2790 -x2789 -x2788 -x2787 -x2786 -x2785 -x2784 -x2783 -x2782 -x2781 -x2780 -x2779 -x2778 -x2777 -x2776 -x2775 -x2774
1.49/1.51 v -x2773 -x2772 -x2771 -x2770 -x2769 -x2768 -x2767 -x2766 -x2765 -x2764 -x2763 -x2762 -x2761 -x2760 -x2759 -x2758 -x2757 -x2756
1.49/1.51 v -x2755 -x2754 -x2753 -x2752 -x2751 -x2750 -x2749 -x2748 -x2747 -x2746 -x2745 -x2744 -x2743 -x2742 -x2741 -x2740 -x2739
1.49/1.51 v -x2738 -x2737 -x2736 -x2735 -x2734 x2733 x2732 x2731 x2730 x2729 x2728 x2727 x2726 x2725 -x2724 -x2723 -x2722 -x2721 -x2720 -x2719
1.49/1.51 v -x2718 -x2717 -x2716 -x2715 -x2714 -x2713 -x2712 -x2711 -x2710 -x2709 -x2708 -x2707 -x2706 -x2705 -x2704 -x2703 -x2702
1.49/1.51 v -x2701 -x2700 -x2699 -x2698 -x2697 -x2696 -x2695 -x2694 -x2693 -x2692 -x2691 -x2690 -x2689 -x2688 -x2687 -x2686 -x2685 -x2684
1.49/1.51 v -x2683 -x2682 -x2681 -x2680 -x2679 -x2678 -x2677 -x2676 -x2675 -x2674 -x2673 -x2672 -x2671 -x2670 -x2669 -x2668 -x2667 -x2666
1.49/1.51 v -x2665 -x2664 -x2663 -x2662 x2661 -x2660 -x2659 -x2658 -x2657 -x2656 -x2655 -x2654 -x2653 -x2652 -x2651 -x2650 -x2649 -x2648
1.49/1.51 v -x2647 -x2646 -x2645 -x2644 -x2643 -x2642 -x2641 -x2640 -x2639 -x2638 -x2637 -x2636 -x2635 -x2634 -x2633 -x2632 -x2631 -x2630
1.49/1.51 v -x2629 -x2628 -x2627 -x2626 -x2625 -x2624 -x2623 -x2622 -x2621 -x2620 x2619 x2618 x2617 x2616 x2615 x2614 x2613 x2612 -x2611
1.49/1.51 v -x2610 -x2609 -x2608 -x2607 -x2606 -x2605 -x2604 -x2603 -x2602 -x2601 -x2600 -x2599 -x2598 -x2597 -x2596 -x2595 -x2594 -x2593
1.49/1.51 v -x2592 -x2591 -x2590 -x2589 -x2588 -x2587 -x2586 -x2585 -x2584 -x2583 -x2582 -x2581 -x2580 -x2579 -x2578 -x2577 -x2576 -x2575
1.49/1.51 v -x2574 x2573 x2572 x2571 x2570 x2569 x2568 x2567 x2566 x2565 -x2564 -x2563 -x2562 -x2561 -x2560 -x2559 -x2558 -x2557 -x2556
1.49/1.51 v -x2555 -x2554 -x2553 -x2552 -x2551 -x2550 -x2549 -x2548 -x2547 -x2546 -x2545 -x2544 -x2543 -x2542 -x2541 -x2540 -x2539 -x2538
1.49/1.51 v -x2537 -x2536 -x2535 -x2534 -x2533 -x2532 -x2531 -x2530 -x2529 -x2528 -x2527 -x2526 -x2525 -x2524 -x2523 -x2522 -x2521 -x2520
1.49/1.51 v -x2519 -x2518 -x2517 -x2516 -x2515 -x2514 -x2513 -x2512 -x2511 -x2510 -x2509 -x2508 -x2507 -x2506 -x2505 -x2504 -x2503
1.49/1.51 v -x2502 -x2501 -x2500 -x2499 -x2498 x2497 x2496 x2495 -x2494 -x2493 -x2492 -x2491 -x2490 -x2489 -x2488 -x2487 -x2486 -x2485 -x2484
1.49/1.51 v -x2483 -x2482 -x2481 -x2480 -x2479 -x2478 -x2477 -x2476 -x2475 -x2474 -x2473 -x2472 -x2471 -x2470 -x2469 -x2468 -x2467 -x2466
1.49/1.51 v -x2465 -x2464 -x2463 -x2462 -x2461 -x2460 -x2459 -x2458 -x2457 -x2456 -x2455 -x2454 -x2453 -x2452 -x2451 -x2450 -x2449
1.49/1.51 v -x2448 -x2447 -x2446 -x2445 -x2444 -x2443 -x2442 -x2441 -x2440 -x2439 -x2438 -x2437 -x2436 -x2435 -x2434 -x2433 -x2432 -x2431
1.49/1.51 v -x2430 -x2429 -x2428 -x2427 -x2426 -x2425 x2424 -x2423 -x2422 -x2421 -x2420 -x2419 -x2418 -x2417 -x2416 -x2415 -x2414 -x2413
1.49/1.51 v -x2412 -x2411 -x2410 -x2409 -x2408 -x2407 -x2406 -x2405 -x2404 -x2403 -x2402 -x2401 -x2400 -x2399 -x2398 -x2397 -x2396 -x2395
1.49/1.51 v -x2394 -x2393 -x2392 -x2391 -x2390 -x2389 -x2388 -x2387 -x2386 -x2385 -x2384 x2383 x2382 x2381 x2380 x2379 x2378 x2377 x2376
1.49/1.51 v x2375 -x2374 -x2373 -x2372 -x2371 -x2370 -x2369 -x2368 -x2367 -x2366 -x2365 -x2364 -x2363 -x2362 -x2361 -x2360 -x2359 -x2358
1.49/1.51 v -x2357 -x2356 -x2355 -x2354 -x2353 -x2352 -x2351 -x2350 -x2349 -x2348 -x2347 -x2346 -x2345 -x2344 -x2343 -x2342 -x2341 -x2340
1.49/1.51 v -x2339 -x2338 -x2337 -x2336 -x2335 -x2334 -x2333 -x2332 -x2331 -x2330 -x2329 -x2328 -x2327 -x2326 -x2325 -x2324 -x2323 -x2322
1.49/1.51 v -x2321 -x2320 -x2319 -x2318 -x2317 -x2316 -x2315 x2314 x2313 -x2312 -x2311 -x2310 -x2309 -x2308 -x2307 -x2306 -x2305 -x2304
1.49/1.51 v -x2303 -x2302 -x2301 -x2300 -x2299 -x2298 -x2297 -x2296 -x2295 -x2294 -x2293 -x2292 -x2291 -x2290 -x2289 -x2288 -x2287 -x2286
1.49/1.51 v -x2285 -x2284 -x2283 -x2282 -x2281 -x2280 -x2279 -x2278 -x2277 -x2276 -x2275 -x2274 -x2273 -x2272 -x2271 -x2270 -x2269 -x2268
1.49/1.51 v -x2267 -x2266 -x2265 -x2264 -x2263 -x2262 -x2261 -x2260 -x2259 -x2258 -x2257 -x2256 -x2255 -x2254 x2253 x2252 x2251 x2250
1.49/1.51 v -x2249 -x2248 -x2247 -x2246 -x2245 -x2244 -x2243 -x2242 -x2241 -x2240 -x2239 -x2238 -x2237 -x2236 -x2235 -x2234 -x2233 -x2232
1.49/1.51 v -x2231 -x2230 -x2229 -x2228 -x2227 -x2226 -x2225 -x2224 -x2223 -x2222 -x2221 -x2220 -x2219 -x2218 -x2217 -x2216 -x2215 -x2214
1.49/1.51 v -x2213 -x2212 -x2211 -x2210 -x2209 -x2208 -x2207 -x2206 -x2205 -x2204 -x2203 -x2202 -x2201 -x2200 -x2199 x2198 x2197 -x2196
1.49/1.51 v -x2195 -x2194 -x2193 -x2192 -x2191 -x2190 -x2189 -x2188 -x2187 -x2186 -x2185 -x2184 -x2183 -x2182 -x2181 -x2180 -x2179 -x2178
1.49/1.51 v -x2177 -x2176 -x2175 -x2174 -x2173 -x2172 -x2171 -x2170 -x2169 -x2168 -x2167 -x2166 -x2165 -x2164 -x2163 -x2162 -x2161 -x2160
1.49/1.51 v -x2159 x2158 x2157 x2156 x2155 x2154 x2153 x2152 -x2151 -x2150 -x2149 -x2148 -x2147 -x2146 -x2145 -x2144 -x2143 -x2142 -x2141
1.49/1.51 v -x2140 -x2139 -x2138 -x2137 -x2136 -x2135 -x2134 -x2133 -x2132 -x2131 -x2130 -x2129 -x2128 -x2127 -x2126 -x2125 -x2124
1.49/1.51 v -x2123 -x2122 -x2121 -x2120 -x2119 -x2118 -x2117 -x2116 -x2115 -x2114 -x2113 -x2112 -x2111 -x2110 -x2109 -x2108 -x2107 -x2106
1.49/1.51 v -x2105 -x2104 -x2103 -x2102 -x2101 -x2100 -x2099 -x2098 -x2097 -x2096 -x2095 -x2094 -x2093 x2092 x2091 x2090 x2089 x2088 x2087
1.49/1.51 v x2086 x2085 -x2084 -x2083 -x2082 -x2081 -x2080 -x2079 -x2078 -x2077 -x2076 -x2075 -x2074 -x2073 -x2072 -x2071 -x2070 -x2069
1.49/1.51 v -x2068 -x2067 -x2066 -x2065 -x2064 -x2063 -x2062 -x2061 -x2060 -x2059 -x2058 -x2057 -x2056 -x2055 -x2054 -x2053 -x2052 -x2051
1.49/1.51 v -x2050 -x2049 -x2048 -x2047 -x2046 -x2045 -x2044 -x2043 -x2042 -x2041 -x2040 -x2039 -x2038 -x2037 -x2036 -x2035 -x2034 -x2033
1.49/1.51 v -x2032 -x2031 -x2030 -x2029 -x2028 -x2027 -x2026 -x2025 -x2024 -x2023 -x2022 -x2021 -x2020 -x2019 x2018 -x2017 -x2016 -x2015
1.49/1.51 v -x2014 -x2013 -x2012 -x2011 -x2010 -x2009 -x2008 -x2007 -x2006 -x2005 -x2004 -x2003 -x2002 -x2001 -x2000 -x1999 -x1998 -x1997
1.49/1.51 v -x1996 -x1995 -x1994 -x1993 -x1992 -x1991 -x1990 -x1989 -x1988 -x1987 -x1986 -x1985 -x1984 -x1983 -x1982 -x1981 -x1980 -x1979
1.49/1.51 v -x1978 -x1977 -x1976 -x1975 -x1974 -x1973 -x1972 -x1971 -x1970 -x1969 -x1968 -x1967 -x1966 -x1965 -x1964 -x1963 -x1962
1.49/1.51 v -x1961 -x1960 -x1959 -x1958 -x1957 -x1956 -x1955 -x1954 -x1953 x1952 x1951 x1950 x1949 x1948 -x1947 -x1946 -x1945 -x1944 -x1943
1.49/1.51 v -x1942 -x1941 -x1940 -x1939 -x1938 -x1937 -x1936 -x1935 -x1934 -x1933 -x1932 -x1931 -x1930 -x1929 -x1928 -x1927 -x1926 -x1925
1.49/1.51 v -x1924 -x1923 -x1922 -x1921 -x1920 -x1919 -x1918 -x1917 -x1916 -x1915 -x1914 -x1913 -x1912 -x1911 -x1910 -x1909 -x1908 -x1907
1.49/1.51 v -x1906 -x1905 -x1904 -x1903 -x1902 -x1901 -x1900 -x1899 -x1898 -x1897 -x1896 -x1895 -x1894 -x1893 x1892 x1891 x1890 x1889
1.49/1.51 v -x1888 -x1887 -x1886 -x1885 -x1884 -x1883 -x1882 -x1881 -x1880 -x1879 -x1878 -x1877 -x1876 -x1875 -x1874 -x1873 -x1872 -x1871
1.49/1.51 v -x1870 -x1869 -x1868 -x1867 -x1866 -x1865 -x1864 -x1863 -x1862 -x1861 -x1860 -x1859 -x1858 -x1857 -x1856 -x1855 -x1854 -x1853
1.49/1.51 v -x1852 -x1851 -x1850 -x1849 -x1848 -x1847 -x1846 -x1845 -x1844 -x1843 -x1842 -x1841 -x1840 -x1839 -x1838 -x1837 x1836 x1835
1.49/1.51 v -x1834 -x1833 -x1832 -x1831 -x1830 -x1828 -x1827 -x1826 -x1825 -x1824 -x1823 -x1822 -x1821 -x1820 -x1819 -x1818 -x1817 -x1816
1.49/1.51 v -x1815 -x1814 -x1813 -x1812 -x1811 -x1810 -x1809 -x1808 -x1807 -x1806 -x1805 -x1804 -x1803 -x1802 -x1801 -x1800 -x1799 -x1798
1.49/1.51 v -x1797 -x1796 -x1795 -x1794 -x1793 -x1792 -x1791 -x1790 -x1789 -x1788 -x1787 -x1786 -x1785 -x1784 -x1783 -x1782 -x1781 -x1780
1.49/1.51 v -x1779 -x1778 -x1777 -x1776 -x1775 -x1774 -x1773 -x1772 -x1771 x1770 x1769 x1768 x1767 x1766 x1765 -x1764 -x1763 -x1762
1.49/1.51 v -x1761 -x1760 -x1759 -x1758 -x1757 -x1756 -x1755 -x1754 -x1753 -x1752 -x1751 -x1750 -x1749 -x1748 -x1747 -x1746 -x1745 -x1744
1.49/1.51 v -x1743 -x1742 -x1741 -x1740 -x1739 -x1738 -x1737 -x1736 -x1735 -x1734 -x1733 -x1732 -x1731 -x1730 -x1729 -x1728 -x1727 -x1726
1.49/1.51 v -x1725 -x1724 -x1723 -x1722 -x1721 -x1720 -x1719 -x1718 -x1717 -x1716 -x1715 -x1714 -x1713 -x1712 x1711 x1710 x1709 x1708
1.49/1.51 v x1707 -x1706 -x1705 -x1704 -x1703 -x1702 -x1701 -x1700 -x1699 -x1698 -x1697 -x1696 -x1695 -x1694 -x1693 -x1692 -x1691 -x1690
1.49/1.51 v -x1689 -x1688 -x1687 -x1686 -x1685 -x1684 -x1683 -x1682 -x1681 -x1680 -x1679 -x1678 -x1677 -x1676 -x1675 -x1674 -x1673 -x1672
1.49/1.51 v -x1671 -x1670 -x1669 -x1668 -x1667 -x1666 -x1665 -x1664 -x1663 -x1662 -x1661 -x1660 -x1659 -x1658 -x1657 -x1656 -x1655 -x1654
1.49/1.51 v -x1653 x1652 x1651 x1650 x1649 x1648 x1647 x1646 x1645 -x1644 -x1643 -x1642 -x1641 -x1640 -x1639 -x1638 -x1637 -x1636 -x1635
1.49/1.51 v -x1634 -x1633 -x1632 -x1631 -x1630 -x1629 -x1628 -x1627 -x1626 -x1625 -x1624 -x1623 -x1622 -x1621 -x1620 -x1619 -x1618 -x1617
1.49/1.51 v -x1616 -x1615 -x1614 -x1613 -x1612 -x1611 -x1610 -x1609 -x1608 -x1607 -x1606 -x1605 -x1604 -x1603 -x1602 -x1601 -x1600 -x1599
1.49/1.51 v -x1598 -x1597 -x1596 -x1595 -x1594 x1593 x1592 x1591 x1590 x1589 x1588 x1587 x1586 x1585 -x1584 -x1583 -x1582 -x1581 -x1580
1.49/1.51 v -x1579 -x1578 -x1577 -x1576 -x1575 -x1574 -x1573 -x1572 -x1571 -x1570 -x1569 -x1568 -x1567 -x1566 -x1565 -x1564 -x1563 -x1562
1.49/1.51 v -x1561 -x1560 -x1559 -x1558 -x1557 -x1556 -x1555 -x1554 -x1553 -x1552 -x1551 -x1550 -x1549 -x1548 -x1547 -x1546 -x1545 -x1544
1.49/1.51 v -x1543 -x1542 -x1541 -x1540 -x1539 -x1538 -x1537 -x1536 -x1535 x1534 x1533 x1532 x1531 x1530 x1529 x1528 x1527 x1526 x1525
1.49/1.51 v x1524 -x1523 -x1522 -x1521 -x1520 -x1519 -x1518 -x1517 -x1516 -x1515 -x1514 -x1513 -x1512 -x1511 -x1510 -x1509 -x1508 -x1507
1.49/1.51 v -x1506 -x1505 -x1504 -x1503 -x1502 -x1501 -x1500 -x1499 -x1498 -x1497 -x1496 -x1495 -x1494 -x1493 -x1492 -x1491 -x1490 -x1489
1.49/1.51 v -x1488 -x1487 -x1486 -x1485 -x1484 -x1483 -x1482 -x1481 -x1480 -x1479 -x1478 -x1477 -x1476 x1475 x1474 x1473 x1472 x1471
1.49/1.51 v x1470 x1469 x1468 x1467 x1466 x1465 x1464 x1463 x1462 x1461 x1460 x1459 x1458 x1457 x1456 -x1455 -x1454 -x1453 -x1452 -x1451
1.49/1.51 v -x1450 -x1449 -x1448 -x1447 -x1446 -x1445 -x1444 -x1443 -x1442 -x1441 -x1440 -x1439 -x1438 -x1437 -x1436 -x1435 -x1434 -x1433
1.49/1.51 v -x1432 -x1431 -x1430 -x1429 -x1428 -x1427 -x1426 -x1425 -x1424 -x1423 -x1422 -x1421 -x1420 -x1419 -x1418 -x1417 x1416 x1415
1.49/1.51 v x1414 x1413 x1412 x1411 x1410 x1409 x1408 x1407 x1406 x1405 x1404 -x1403 -x1402 -x1401 -x1400 -x1399 -x1398 -x1397 -x1396 -x1395
1.49/1.51 v -x1394 -x1393 -x1392 -x1391 -x1390 -x1389 -x1388 -x1387 -x1386 -x1385 -x1384 -x1383 -x1382 -x1381 -x1380 -x1379 -x1378 -x1377
1.49/1.51 v -x1376 -x1375 -x1374 -x1373 -x1372 -x1371 -x1370 -x1369 -x1368 -x1367 -x1366 -x1365 -x1364 -x1363 -x1362 -x1361 -x1360 -x1359
1.49/1.51 v -x1358 x1357 x1356 x1355 x1354 x1353 x1352 x1351 x1350 x1349 x1348 x1347 x1346 x1345 x1344 x1343 x1342 x1341 x1340 x1339
1.49/1.51 v x1338 x1337 x1336 -x1335 -x1334 -x1333 -x1332 -x1331 -x1330 -x1329 -x1328 -x1327 -x1326 -x1325 -x1324 -x1323 -x1322 -x1321
1.49/1.51 v -x1320 -x1319 -x1318 -x1317 -x1316 -x1315 -x1314 -x1313 -x1312 -x1311 -x1310 -x1309 -x1308 -x1307 -x1306 -x1305 -x1304 -x1303
1.49/1.51 v -x1302 -x1301 -x1300 -x1299 x1298 x1297 x1296 x1295 x1294 x1293 x1292 x1291 x1290 x1289 x1288 x1287 x1286 x1285 x1284 x1283
1.49/1.51 v x1282 x1281 x1280 x1279 x1278 x1277 x1276 x1275 x1274 x1273 x1272 x1271 x1270 x1269 x1268 -x1267 -x1266 -x1265 -x1264 -x1263
1.49/1.51 v -x1262 -x1261 -x1260 -x1259 -x1258 -x1257 -x1256 -x1255 -x1254 -x1253 -x1252 -x1251 -x1250 -x1249 -x1248 -x1247 -x1246 -x1245
1.49/1.51 v -x1244 -x1243 -x1242 -x1241 -x1240 x1239 x1238 x1237 x1236 x1235 x1234 x1233 x1232 x1231 x1230 x1229 x1228 x1227 x1226 x1225
1.49/1.51 v x1224 x1223 x1222 x1221 x1220 x1219 x1218 x1217 x1216 x1215 x1214 x1213 x1212 x1211 x1210 x1209 x1208 x1207 x1206 x1205 x1204
1.49/1.51 v x1203 x1202 x1201 x1200 x1199 x1198 x1197 x1196 x1195 x1194 x1193 x1192 x1191 x1190 x1189 x1188 x1187 -x1186 -x1185 -x1184
1.49/1.51 v -x1183 -x1182 -x1181 x1180 x1179 x1178 x1177 x1176 x1175 x1174 x1173 x1172 x1171 x1170 x1169 x1168 x1167 x1166 x1165 x1164 x1163
1.49/1.51 v x1162 x1161 x1160 x1159 x1158 -x1157 -x1156 -x1155 -x1154 -x1153 -x1152 -x1151 -x1150 -x1149 -x1148 -x1147 -x1146 -x1145
1.49/1.51 v -x1144 -x1143 -x1142 -x1141 -x1140 -x1139 -x1138 -x1137 -x1136 -x1135 -x1134 -x1133 -x1132 -x1131 -x1130 -x1129 -x1128 -x1127
1.49/1.51 v -x1126 -x1125 -x1124 -x1123 -x1122 x1121 x1120 x1119 x1118 x1117 x1116 x1115 x1114 x1113 x1112 x1111 x1110 x1109 x1108 x1107
1.49/1.51 v x1106 x1105 x1104 x1103 x1102 x1101 x1100 x1099 x1098 x1097 x1096 x1095 x1094 x1093 x1092 x1091 x1090 x1089 x1088 x1087 x1086
1.49/1.51 v -x1085 -x1084 -x1083 -x1082 -x1081 -x1080 -x1079 -x1078 -x1077 -x1076 -x1075 -x1074 -x1073 -x1072 -x1071 -x1070 -x1069 -x1068
1.49/1.51 v -x1067 -x1066 -x1065 -x1064 -x1063 x1062 x1061 x1060 x1059 x1058 x1057 x1056 x1055 x1054 x1053 x1052 x1051 x1050 x1049 -x1048
1.49/1.51 v -x1047 -x1046 -x1045 -x1044 -x1043 -x1042 -x1041 -x1040 -x1039 -x1038 -x1037 -x1036 -x1035 -x1034 -x1033 -x1032 -x1031 -x1030
1.49/1.51 v -x1029 -x1028 -x1027 -x1026 -x1025 -x1024 -x1023 -x1022 -x1021 -x1020 -x1019 -x1018 -x1017 -x1016 -x1015 -x1014 -x1013 -x1012
1.49/1.51 v -x1011 -x1010 -x1009 -x1008 -x1007 -x1006 -x1005 -x1004 x1003 x1002 x1001 x1000 x999 x998 x997 x996 x995 x994 x993 x992
1.49/1.51 v x991 x990 x989 x988 x987 x986 x985 x984 x983 x982 x981 x980 x979 -x978 -x977 -x976 -x975 -x974 -x973 -x972 -x971 -x970 -x969
1.49/1.51 v -x968 -x967 -x966 -x965 -x964 -x963 -x962 -x961 -x960 -x959 -x958 -x957 -x956 -x955 -x954 -x953 -x952 -x951 -x950 -x949 -x948
1.49/1.51 v -x947 -x946 -x945 x944 x943 x942 x941 x940 x939 x938 x937 x936 x935 x934 x933 x932 x931 x930 x929 x928 x927 x926 x925 x924
1.49/1.51 v x923 x922 x921 x920 x919 x918 x917 x916 x915 x914 x913 x912 x911 x910 x909 x908 x907 x906 x905 x904 x903 x902 x901 x900 x899
1.49/1.51 v x898 x897 x896 -x895 -x894 -x893 -x892 -x891 -x890 -x889 -x888 -x887 -x886 x885 x884 x883 x882 x881 x880 x879 x878 x877 x876
1.49/1.51 v x875 x874 x873 x872 x871 x870 x869 x868 x867 x866 x865 x864 x863 x862 x861 x860 x859 x858 x857 x856 x855 x854 x853 x852 x851
1.49/1.51 v x850 x849 x848 x847 x846 x845 x844 x843 x842 x841 x840 x839 x838 x837 x836 x835 x834 x833 x832 -x831 -x830 -x829 -x828 -x827
1.49/1.51 v x826 x825 x824 x823 x822 x821 x820 x819 x818 x817 x816 x815 x814 x813 x812 x811 x810 x809 x808 x807 x806 x805 x804 x803 x802
1.49/1.51 v x801 x800 x799 x798 x797 x796 x795 x794 x793 x792 x791 x790 x789 x788 x787 x786 x785 x784 x783 -x782 -x781 -x780 -x779 -x778
1.49/1.51 v -x777 -x776 -x775 -x774 -x773 -x772 -x771 -x770 -x769 -x768 x767 x766 x765 x764 x763 x762 x761 x760 x759 x758 x757 x756 x755
1.49/1.51 v x754 x753 x752 x751 x750 x749 x748 x747 x746 x745 x744 x743 x742 x741 x740 x739 x738 x737 x736 -x735 -x734 -x733 -x732 -x731
1.49/1.51 v -x730 -x729 -x728 -x727 -x726 -x725 -x724 -x723 -x722 -x721 -x720 -x719 -x718 -x717 -x716 -x715 -x714 -x713 -x712 -x711 -x710
1.49/1.51 v -x709 x708 x707 x706 x705 x704 x703 x702 x701 x700 x699 x698 x697 x696 x695 x694 x693 x692 x691 x690 x689 x688 x687 x686 x685
1.49/1.51 v x684 x683 x682 x681 x680 x679 x678 x677 x676 x675 x674 x673 x672 x671 x670 x669 x668 x667 x666 -x665 -x664 -x663 -x662 -x661
1.49/1.51 v -x660 -x659 -x658 -x657 -x656 -x655 -x654 -x653 -x652 -x651 -x650 x649 x648 x647 x646 x645 x644 x643 x642 x641 x640 x639 x638
1.49/1.51 v x637 x636 x635 x634 x633 x632 x631 x630 x629 x628 x627 x626 x625 x624 x623 x622 x621 x620 x619 x618 x617 x616 x615 x614 x613
1.49/1.51 v x612 x611 x610 x609 x608 x607 x606 x605 x604 x603 x602 x601 x600 x599 x598 x597 x596 x595 -x594 -x593 -x592 -x591 x590 x589
1.49/1.51 v x588 x587 x586 x585 x584 x583 x582 x581 x580 x579 x578 x577 x576 x575 x574 x573 x572 x571 x570 x569 x568 x567 x566 x565 x564
1.49/1.51 v x563 x562 x561 x560 x559 x558 x557 x556 x555 x554 x553 x552 x551 x550 x549 x548 x547 x546 -x545 -x544 -x543 -x542 -x541 -x540
1.49/1.51 v -x539 -x538 -x537 -x536 -x535 -x534 -x533 -x532 x531 x530 x529 x528 x527 x526 x525 x524 x523 x522 x521 x520 x519 x518 x517
1.49/1.51 v x516 x515 x514 x513 x512 x511 x510 x509 x508 x507 x506 x505 x504 x503 x502 x501 x500 x499 x498 x497 x496 x495 x494 x493 x492
1.49/1.51 v x491 x490 x489 x488 x487 x486 x485 x484 -x483 -x482 -x481 -x480 -x479 -x478 -x477 -x476 -x475 -x474 -x473 x472 x471 x470 x469
1.49/1.51 v x468 x467 x466 x465 x464 x463 x462 x461 x460 x459 x458 x457 x456 x455 x454 x453 x452 x451 x450 x449 x448 x447 x446 x445 x444
1.49/1.51 v x443 x442 x441 x440 x439 x438 x437 x436 x435 x434 x433 x432 x431 x430 x429 x428 x427 x426 x425 x424 x423 x422 x421 -x420 -x419
1.49/1.51 v -x418 -x417 -x416 -x415 -x414 x413 x412 x411 x410 x409 x408 x407 x406 x405 x404 x403 x402 x401 x400 x399 x398 x397 x396 x395
1.49/1.51 v x394 x393 x392 x391 x390 x389 x388 x387 x386 x385 x384 x383 x382 x381 x380 x379 x378 x377 x376 x375 x374 x373 x372 x371 x370
1.49/1.51 v x369 x368 -x367 -x366 -x365 -x364 -x363 -x362 -x361 -x360 -x359 -x358 -x357 -x356 -x355 x354 x353 x352 x351 x350 x349 x348
1.49/1.51 v x347 x346 x345 x344 x343 x342 x341 x340 x339 x338 x337 x336 x335 x334 x333 x332 x331 x330 x329 x328 x327 x326 x325 x324 x323
1.49/1.51 v -x322 -x321 -x320 -x319 -x318 -x317 -x316 -x315 -x314 -x313 -x312 -x311 -x310 -x309 -x308 -x307 -x306 -x305 -x304 -x303 -x302
1.49/1.51 v -x301 -x300 -x299 -x298 -x297 -x296 x295 x294 x293 x292 x291 x290 x289 x288 x287 x286 x285 x284 x283 x282 x281 x280 x279 x278
1.49/1.51 v x277 x276 x275 x274 x273 x272 x271 x270 x269 x268 x267 x266 x265 x264 x263 x262 x261 x260 x259 x258 x257 x256 -x255 -x254
1.49/1.51 v -x253 -x252 -x251 -x250 -x249 -x248 -x247 -x246 -x245 -x244 -x243 -x242 -x241 -x240 -x239 -x238 -x237 x236 x235 x234 x233 x232
1.49/1.51 v x231 x230 x229 x228 x227 x226 x225 x224 x223 x222 x221 x220 x219 x218 x217 x216 x215 x214 x213 x212 x211 x210 x209 x208 x207
1.49/1.51 v x206 x205 x204 x203 x202 x201 x200 x199 x198 x197 x196 x195 x194 x193 x192 x191 x190 x189 -x188 -x187 -x186 -x185 -x184 -x183
1.49/1.51 v -x182 -x181 -x180 -x179 -x178 x177 x176 x175 x174 x173 x172 x171 x170 x169 x168 x167 x166 x165 x164 x163 x162 x161 x160 x159
1.49/1.51 v x158 x157 x156 x155 x154 x153 x152 x151 x150 x149 x148 x147 x146 x145 x144 x143 x142 x141 x140 x139 x138 x137 x136 x135 x134
1.49/1.51 v x133 x132 x131 x130 x129 x128 x127 x126 x125 x124 x123 x122 x121 x120 x119 x118 x117 x116 x115 x114 x113 x112 x111 x110 x109
1.49/1.51 v x108 x107 x106 x105 x104 x103 x102 x101 x100 x99 x98 x97 x96 x95 x94 x93 x92 x91 x90 x89 x88 x87 x86 x85 x84 x83 x82 x81
1.49/1.51 v x80 x79 x78 x77 x76 x75 x74 x73 x72 x71 x70 x69 x68 x67 x66 x65 x64 x63 x62 x61 x60 x59 x58 x57 x56 x55 x54 x53 x52 x51 x50 x49
1.49/1.51 v x48 x47 x46 x45 x44 x43 x42 x41 x40 x39 x38 x37 x36 x35 x34 x33 x32 x31 x30 x29 x28 x27 x26 x25 x24 x23 x22 x21 x20 x19 x18
1.49/1.51 v x17 x16 x15 x14 x13 x12 x11 x10 x9 x8 x7 x6 -x5 -x4 -x3 -x2 -x1 x1829
1.49/1.51 c SCIP Status : problem is solved [optimal solution found]
1.49/1.51 c Total Time : 1.51
1.49/1.51 c solving : 1.51
1.49/1.51 c presolving : 0.56 (included in solving)
1.49/1.51 c reading : 0.03 (included in solving)
1.49/1.51 c copying : 0.01 (1 #copies) (minimal 0.01, maximal 0.01, average 0.01)
1.49/1.51 c Original Problem :
1.49/1.51 c Problem name : HOME/instance-3690550-1338022610.opb
1.49/1.51 c Variables : 3658 (3658 binary, 0 integer, 0 implicit integer, 0 continuous)
1.49/1.51 c Constraints : 11959 initial, 11959 maximal
1.49/1.51 c Objective sense : minimize
1.49/1.51 c Presolved Problem :
1.49/1.51 c Problem name : t_HOME/instance-3690550-1338022610.opb
1.49/1.51 c Variables : 1250 (1250 binary, 0 integer, 0 implicit integer, 0 continuous)
1.49/1.51 c Constraints : 2261 initial, 2402 maximal
1.49/1.51 c Presolvers : ExecTime SetupTime FixedVars AggrVars ChgTypes ChgBounds AddHoles DelCons AddCons ChgSides ChgCoefs
1.49/1.51 c domcol : 0.00 0.00 0 0 0 0 0 0 0 0 0
1.49/1.51 c trivial : 0.00 0.00 115 0 0 0 0 0 0 0 0
1.49/1.51 c dualfix : 0.00 0.00 26 0 0 0 0 0 0 0 0
1.49/1.51 c boundshift : 0.00 0.00 0 0 0 0 0 0 0 0 0
1.49/1.51 c inttobinary : 0.00 0.00 0 0 0 0 0 0 0 0 0
1.49/1.51 c convertinttobin : 0.00 0.00 0 0 0 0 0 0 0 0 0
1.49/1.51 c gateextraction : 0.01 0.00 0 0 0 0 0 1814 556 0 0
1.49/1.51 c implics : 0.01 0.00 0 4 0 0 0 0 0 0 0
1.49/1.51 c components : 0.00 0.00 0 0 0 0 0 0 0 0 0
1.49/1.51 c pseudoobj : 0.00 0.00 0 0 0 0 0 0 0 0 0
1.49/1.51 c probing : 0.00 0.00 0 0 0 0 0 0 0 0 0
1.49/1.51 c knapsack : 0.05 0.00 0 0 0 1 0 0 0 34 323
1.49/1.51 c setppc : 0.05 0.00 1 0 0 0 0 22 0 0 0
1.49/1.51 c and : 0.00 0.00 0 0 0 0 0 410 410 0 0
1.49/1.51 c linear : 0.37 0.00 1714 548 0 1826 0 8414 0 35 48
1.49/1.51 c logicor : 0.02 0.00 0 0 0 2 0 4 0 0 0
1.49/1.51 c root node : - - 107 - - 107 - - - - -
1.49/1.51 c Constraints : Number MaxNumber #Separate #Propagate #EnfoLP #EnfoPS #Check #ResProp Cutoffs DomReds Cuts Conss Children
1.49/1.51 c integral : 0 0 0 0 0 0 4 0 0 0 0 0 0
1.49/1.51 c knapsack : 207 207 1 1 0 0 1 0 0 0 144 0 0
1.49/1.51 c setppc : 2053 2053 1 1 0 0 1 0 0 0 0 0 0
1.49/1.51 c linear : 0+ 141 0 0 0 0 0 0 0 0 0 0 0
1.49/1.51 c logicor : 1 1 1 1 0 0 1 0 0 0 0 0 0
1.49/1.51 c countsols : 0 0 0 0 0 0 3 0 0 0 0 0 0
1.49/1.51 c Constraint Timings : TotalTime SetupTime Separate Propagate EnfoLP EnfoPS Check ResProp
1.49/1.51 c integral : 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
1.49/1.51 c knapsack : 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
1.49/1.51 c setppc : 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
1.49/1.51 c linear : 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
1.49/1.51 c logicor : 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
1.49/1.51 c countsols : 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
1.49/1.51 c Propagators : #Propagate #ResProp Cutoffs DomReds
1.49/1.51 c rootredcost : 0 0 0 0
1.49/1.51 c pseudoobj : 0 0 0 0
1.49/1.51 c vbounds : 0 0 0 0
1.49/1.51 c redcost : 1 0 0 0
1.49/1.51 c probing : 0 0 0 0
1.49/1.51 c Propagator Timings : TotalTime SetupTime Presolve Propagate ResProp
1.49/1.51 c rootredcost : 0.00 0.00 0.00 0.00 0.00
1.49/1.51 c pseudoobj : 0.00 0.00 0.00 0.00 0.00
1.49/1.51 c vbounds : 0.00 0.00 0.00 0.00 0.00
1.49/1.51 c redcost : 0.00 0.00 0.00 0.00 0.00
1.49/1.51 c probing : 0.00 0.00 0.00 0.00 0.00
1.49/1.51 c Conflict Analysis : Time Calls Success Conflicts Literals Reconvs ReconvLits LP Iters
1.49/1.51 c propagation : 0.00 0 0 0 0.0 0 0.0 -
1.49/1.51 c infeasible LP : 0.00 0 0 0 0.0 0 0.0 0
1.49/1.51 c bound exceed. LP : 0.00 0 0 0 0.0 0 0.0 0
1.49/1.51 c strong branching : 0.00 0 0 0 0.0 0 0.0 0
1.49/1.51 c pseudo solution : 0.00 0 0 0 0.0 0 0.0 -
1.49/1.51 c applied globally : - - - 0 0.0 - - -
1.49/1.51 c applied locally : - - - 0 0.0 - - -
1.49/1.51 c Separators : ExecTime SetupTime Calls Cutoffs DomReds Cuts Conss
1.49/1.51 c cut pool : 0.00 0 - - 0 - (maximal pool size: 364)
1.49/1.51 c closecuts : 0.00 0.00 0 0 0 0 0
1.49/1.51 c impliedbounds : 0.00 0.00 1 0 0 134 0
1.49/1.51 c intobj : 0.00 0.00 0 0 0 0 0
1.49/1.51 c gomory : 0.27 0.00 1 0 0 0 0
1.49/1.51 c cgmip : 0.00 0.00 0 0 0 0 0
1.49/1.52 c strongcg : 0.12 0.00 1 0 0 500 0
1.49/1.52 c cmir : 0.00 0.00 0 0 0 0 0
1.49/1.52 c flowcover : 0.00 0.00 0 0 0 0 0
1.49/1.52 c clique : 0.08 0.00 1 0 0 8 0
1.49/1.52 c zerohalf : 0.00 0.00 0 0 0 0 0
1.49/1.52 c mcf : 0.00 0.00 1 0 0 0 0
1.49/1.52 c oddcycle : 0.00 0.00 0 0 0 0 0
1.49/1.52 c rapidlearning : 0.24 0.00 1 0 107 0 141
1.49/1.52 c Pricers : ExecTime SetupTime Calls Vars
1.49/1.52 c problem variables: 0.00 - 0 0
1.49/1.52 c Branching Rules : ExecTime SetupTime Calls Cutoffs DomReds Cuts Conss Children
1.49/1.52 c pscost : 0.00 0.00 0 0 0 0 0 0
1.49/1.52 c inference : 0.00 0.00 0 0 0 0 0 0
1.49/1.52 c mostinf : 0.00 0.00 0 0 0 0 0 0
1.49/1.52 c leastinf : 0.00 0.00 0 0 0 0 0 0
1.49/1.52 c fullstrong : 0.00 0.00 0 0 0 0 0 0
1.49/1.52 c allfullstrong : 0.00 0.00 0 0 0 0 0 0
1.49/1.52 c random : 0.00 0.00 0 0 0 0 0 0
1.49/1.52 c relpscost : 0.00 0.00 0 0 0 0 0 0
1.49/1.52 c Primal Heuristics : ExecTime SetupTime Calls Found
1.49/1.52 c LP solutions : 0.00 - - 0
1.49/1.52 c pseudo solutions : 0.00 - - 0
1.49/1.52 c smallcard : 0.00 0.00 0 0
1.49/1.52 c trivial : 0.00 0.00 1 0
1.49/1.52 c shiftandpropagate: 0.00 0.00 0 0
1.49/1.52 c simplerounding : 0.00 0.00 0 0
1.49/1.52 c zirounding : 0.00 0.00 0 0
1.49/1.52 c rounding : 0.00 0.00 0 0
1.49/1.52 c shifting : 0.00 0.00 0 0
1.49/1.52 c intshifting : 0.00 0.00 0 0
1.49/1.52 c oneopt : 0.00 0.00 0 0
1.49/1.52 c twoopt : 0.00 0.00 0 0
1.49/1.52 c indtwoopt : 0.00 0.00 0 0
1.49/1.52 c indoneopt : 0.00 0.00 0 0
1.49/1.52 c fixandinfer : 0.00 0.00 0 0
1.49/1.52 c feaspump : 0.00 0.00 0 0
1.49/1.52 c clique : 0.00 0.00 0 0
1.49/1.52 c indrounding : 0.00 0.00 0 0
1.49/1.52 c indcoefdiving : 0.00 0.00 0 0
1.49/1.52 c coefdiving : 0.00 0.00 0 0
1.49/1.52 c pscostdiving : 0.00 0.00 0 0
1.49/1.52 c nlpdiving : 0.00 0.00 0 0
1.49/1.52 c fracdiving : 0.00 0.00 0 0
1.49/1.52 c veclendiving : 0.00 0.00 0 0
1.49/1.52 c intdiving : 0.00 0.00 0 0
1.49/1.52 c actconsdiving : 0.00 0.00 0 0
1.49/1.52 c objpscostdiving : 0.00 0.00 0 0
1.49/1.52 c rootsoldiving : 0.00 0.00 0 0
1.49/1.52 c linesearchdiving : 0.00 0.00 0 0
1.49/1.52 c guideddiving : 0.00 0.00 0 0
1.49/1.52 c octane : 0.00 0.00 0 0
1.49/1.52 c rens : 0.00 0.00 0 0
1.49/1.52 c rins : 0.00 0.00 0 0
1.49/1.52 c localbranching : 0.00 0.00 0 0
1.49/1.52 c mutation : 0.00 0.00 0 0
1.49/1.52 c crossover : 0.00 0.00 0 0
1.49/1.52 c dins : 0.00 0.00 0 0
1.49/1.52 c vbounds : 0.00 0.00 0 0
1.49/1.52 c undercover : 0.00 0.00 0 0
1.49/1.52 c subnlp : 0.00 0.00 0 0
1.49/1.52 c trysol : 0.00 0.00 0 0
1.49/1.52 c LP : Time Calls Iterations Iter/call Iter/sec Time-0-It Calls-0-It
1.49/1.52 c primal LP : 0.00 0 0 0.00 - 0.00 0
1.49/1.52 c dual LP : 0.17 2 1832 1832.00 10921.47 0.00 1
1.49/1.52 c lex dual LP : 0.00 0 0 0.00 -
1.49/1.52 c barrier LP : 0.00 0 0 0.00 - 0.00 0
1.49/1.52 c diving/probing LP: 0.00 0 0 0.00 -
1.49/1.52 c strong branching : 0.00 0 0 0.00 -
1.49/1.52 c (at root node) : - 0 0 0.00 -
1.49/1.52 c conflict analysis: 0.00 0 0 0.00 -
1.49/1.52 c B&B Tree :
1.49/1.52 c number of runs : 1
1.49/1.52 c nodes : 1
1.49/1.52 c nodes (total) : 1
1.49/1.52 c nodes left : 0
1.49/1.52 c max depth : 0
1.49/1.52 c max depth (total): 0
1.49/1.52 c backtracks : 0 (0.0%)
1.49/1.52 c delayed cutoffs : 0
1.49/1.52 c repropagations : 0 (0 domain reductions, 0 cutoffs)
1.49/1.52 c avg switch length: 2.00
1.49/1.52 c switching time : 0.00
1.49/1.52 c Solution :
1.49/1.52 c Solutions found : 1 (1 improvements)
1.49/1.52 c First Solution : +0.00000000000000e+00 (in run 1, after 1 nodes, 1.49 seconds, depth 0, found by <trysol>)
1.49/1.52 c Primal Bound : +0.00000000000000e+00 (in run 1, after 1 nodes, 1.49 seconds, depth 0, found by <trysol>)
1.49/1.52 c Dual Bound : +0.00000000000000e+00
1.49/1.52 c Gap : 0.00 %
1.49/1.52 c Root Dual Bound : +0.00000000000000e+00
1.49/1.52 c Root Iterations : 1832
1.49/1.54 c Time complete: 1.54.