
CSP4J: a black-box CSP solving API for Java
http://cspfj.sourceforge.net/

Julien Vion

CRIL-CNRS FRE 2499,
Université d’Artois

Lens, France
vion@cril.univ-artois.fr

Abstract. We propose an API, namely CSP4J forConstraint Satisfaction Prob-
lem for Java, that aims to solve a CSP problem part of any Java application.
CSP4J is distributed online using the LGPL license [17]. We intend our API to
be a “black box”, i.e. to be able to solve any problem without tuning parame-
ters or programming complex constraints. We intend CSP4J tomove towards the
Graal of AI: the ability to solve any problem in a reasonable time with a minimal
expertise from the user.

1 Introduction

Many problems arising in the computing industry involve constraint satisfaction as an
essential component. Such problems occur in numerous domains such as scheduling,
planning, molecular biology and circuit design. Problems involving constraints are usu-
ally NP-Complete and need, if able, powerful Artificial Intelligence techniques to be
solved in reasonable time. Problems involving constraintsare usually represented by
so-called constraint networks. A constraint network is simply composed of a set of
variables and of a set of constraints. Finding a solution to aconstraint network involves
assigning a value to each variable such that all constraintsare satisfied. The Constraint
Satisfaction Problem (CSP) is the task to determine whetheror not a given constraint
network, also called CSP instance, is satisfiable. The Maximal Constraint Satisfaction
Problem (Max-CSP) is the task to find a solution that satisfiesas much constraints as
possible, and eventually proving that a given solution is optimal, i.e. no other solution
exists that can satisfy more constraints than the given one.

CSP4J has been in development since 2005 and is quickly acquiring maturity. We
intend our API to be a “black box” solving CSP and Max-CSP. Given this assumption,
CSP4J does not focus on problem-specific global constraints, although the Object de-
sign of CSP4J permits to develop such constraints. For example, CSP4J is shipped with
the well known “all-different” global constraint including a simple specific propagator.

CSP4J proposes powerful engines based on the latest refinements of current re-
search in AI.

– MGAC , a complete solver based on the well known MGAC-dom/wdeg algorithm
[14]. It can solve any CSP in a complete way: if given enough time, a feasible
solution, if exists, will be found. If no solution exists, this engine is able to prove it.

– MCRW , an incomplete local search solver based on theMin-Conflicts Hill-Climbing
with Random Walksalgorithm [12]. This engine can be used to solve optimization
problems that can be formalized as a Max-CSP problem in an “anytime” way: the
algorithm can be stopped after a given amount of time, and thebest solution found
so far will be given.

– Tabu, an incomplete local search solver performing a Tabu search[4]. Tabu have
similar characteristics asMCRW .

– WMC , an incomplete local search solver based on theBreakout Method[13], that
show similar characteristics asMCRW andTabu, although not really suited for
Max-CSP problems.

– Combo, a complete solver based on the hybridization of MGAC-dom/wdeg with
WMC [20].

In order to prove the interest of our library, we developed a few test applications, all
distributed online using the GPL license [16]. One of these test applications is dedicated
to participate to the International CSP Solver Competitions, and tries to solve problems
delivered under the XCSP 2.0 format [1]. This solver participated to the two first In-
ternational CSP Solver Competitions. This “competitor” version of CSP4J is shipped
with a particular constraint called “Predicate Constraint”, that compiles intentional con-
straints as defined by the XCSP 2.0 format.

Other example applications include :

– a random problem generator and solver, which is very useful to benchmark algo-
rithms and computers,

– a Minimal Unsatisfiable Core (MUC) extractor, able to extract a minimally unsat-
isfiable set of variable and constraints from a larger incoherent CSP,

– an Open-Shop solver, able to find feasible and optimal solutions to Open-Shop
problems

– last but not least, a Sudoku solver

2 Solving a CSP in a black-box

In order to be able to solve any kind of problem, CSP4J focuseson two main topics:
genericity and flexibility. Flexibility was obtained by thechoice of an object-oriented
language for its development: Java 5. The object-oriented conception of CSP4J permits
to model problems using a fully object-oriented scheme.

A few classes and interfaces are in the heart of CSP4J, as described by the UML
diagram on Figure 1: TheProblem, V ariable andConstraint classes define a CSP
instance. The Solver interface is implemented by all engines provided with CSP4J.

TheV ariable class: It can be used directly through its constructor.domain simply
contains the domain of the variable (i.e. the set of value thevariable can take its value
in) under the form of an array of integers.

«interface»ProblemGenerator+generate()+getVariables()+getConstraints()Problem+load(generator:ProblemGenerator):Problem
Variable+Variable(domain:int[],name:String)+getName():String Constraint+Constraint(scope:Variable[])+check():bool#getValue(variablePosition:int):int+revise(variablePosition:int,level:int)
«interface»Solver+runSolver():bool+getSolution()AbstractSolver+AbstractSolver(problem:Problem)

1..n1..n1..n

Fig. 1.UML sketch of CSP4J

p u b l i c f i n a l c l a s s DTPConst ra in t extends C o n s t r a i n t {

f i n a l p r i v a t e i n t d u r a t i o n 0 ;
f i n a l p r i v a t e i n t d u r a t i o n 1 ;

p u b l i c DTPConst ra in t (f i n a l V a r i a b l e [] scope ,
f i n a l i n t d u r a t i o n 0 , f i n a l i n t d u r a t i o n 1) {

super(scope) ;
t h i s . d u r a t i o n 0 = d u r a t i o n 0 ;
t h i s . d u r a t i o n 1 = d u r a t i o n 1 ;

}

@Overr ide
p u b l i c boolean check () {

f i n a l i n t va lue0 = ge tVa lue (0) ;
f i n a l i n t va lue1 = ge tVa lue (1) ;

re tu rn (va l ue0 + d u r a t i o n 0< va lue1
| | va lue1 + d u r a t i o n 1< va lue0) ;

}

}

Listing 1.1. The Disjunctive Temporal Constraint

f i n a l P r e d i c a t e p r e d i c a t e =new P r e d i c a t e () ;
p r e d i c a t e . s e t E x p r e s s i o n (” (X0+ X1 < X2) | | (X2 + X3 < X0) ”) ;
p r e d i c a t e . s e t P a r a m e t e r s (” i n tX0 i n t X1 i n t X2 i n t X3”) ;

f i n a l P r e d i c a t e C o n s t r a i n t d t p C o n s t r a i n t =
new P r e d i c a t e C o n s t r a i n t (scope , p r e d i c a t e) ;

d t p C o n s t r a i n t . s e t P a r a m e t e r s (scope [0] . getName () + ”” + d u r a t i o n 0
+ ” ” + scope [1] . getName () + ” ” + d u r a t i o n 1) ;

t r y {
d t p C o n s t r a i n t . c o m p i l e P a r a m e t e rs () ;

} catch (F a i l e d G e n e r a t i o n E x c e p t i o n e){
System . e r r . p r i n t l n (” F a i l e d t o compi le c o n s t r a i n t ”) ;
System . e x i t (1) ;

}

Listing 1.2. Defining a DT Constraint with predicates

TheConstraint class . It consists of an abstract class that must be extended to define
the constraints that define the problem. In particular, the abstract methodcheck() must
be overridden.check() must return whether the current tuple is allowed by the con-
straint. The current tuple is accessible through thegetV alue(int variablePosition)
method,variablePosition corresponding to the position of the variable in the con-
straint, as defined by thescope in the constructor. Listing 1.1 gives an example on how
to easily define a constraint. Alternatively, one could use thePredicateConstraint to
define such a constraint as shown on Listing 1.2. Notice, however, that source code from
PredicateConstraint is released amongst the Competitor test application for CSP4J
under the GPL, and not directly with the CSP4J API.

If desired, one may also override therevise(int variablePosition, int level) me-
thod in order to develop constraint-specific propagators. If not, a revision using the
AC3rm algorithm (see section 3.1) is done.

TheProblem class: It defines a CSP. TheProblemGenerator interface permits to
define classes that will be intended to generate problems to solve. To define a problem
to be solved with CSP4J, one has to implement the ProblemGenerator interface. An in-
stance of the problem is then loaded by calling the static method
Problem.load(ProblemGenerator). TheProblemGenerator interface only defines
three methods.

– generate(): this method is called upon loading of the Problem, it can be used to
create constraints and variables

– Collection 〈V ariable〉 getV ariables(): this method must return the set of vari-
ables that defines the problem

– Collection 〈Constraint〉 getConstraints(): this method must return the set of
constraints that defines the problem

TheSolver interface and theAbstractSolver helper class: These permit to define
additional engines for CSP4J. The MGAC and MCRW engines thatcome with CSP4J

Algorithm 1 : revise-rm(X: Variable): Boolean

domainSize← |dom(X)|1

foreachC | X ∈ vars(C) do2

foreach v ∈ dom(X) do3

if supp[C,X, v] is valid then continue4

tuple← seekSupport(C,Xv)5

if tuple = ⊤ then removev from dom(X)6

else7

foreachY ∈ vars(C) do8

supp[C,Y, tuple[Y]]← tuple9

/* for wdeg: */
if dom(X) = ∅ then wght[C]++10

return domainSize 6= |dom(X)|11

Algorithm 2 : GAC3rm (P = (X , C): CN)

Q← X1

while Q 6= ∅ do2

pick X from Q3

foreach Y ∈X | ∃C ∈ C |X ∈ C ∧ Y ∈ C ∧X 6= Y do4

if revise-rm(Y) then5

if dom(Y) = ∅ then return false6

Q← Q ∪ Y7

are classes that extendsAbstractSolver. TherunSolver() method launches the res-
olution and returnstrue if the problem is satisfiable andfalse if it is not. The method
getSolution() returns the last found solution (the best solution found so far for Max-
CSP). To use CSP4J as an incomplete Max-CSP solver, one has tolaunchrunSolver()
from a thread to control its execution.

To illustrate how CSP4J can be used in a Java application, Listing 1.3 defines the
well-known Pigeons problem, using a clique ofdifferent constraints defined as pred-
icates. Once the problem has been defined and loaded, the solving process can be
launched in a few lines of code, as shown on Listing 1.4.

3 Under the hood

3.1 The MGAC engine

Generalized Arc Consistency guarantees the existence of a support of each value in each
constraint. Establishing Generalized Arc Consistency on agiven networkP involves
removing all generalized arc inconsistent values.

Many algorithms establishing Arc Consistency have been proposed in the literature.
We believe that GAC3rm [9] is a very efficient and robust one. GAC3rm is a refine-

p u b l i c c l a s s P igeons implements P rob lemGenera to r{
f i n a l p r i v a t e i n t s i z e ;
f i n a l p r i v a t e L i s t<Var i ab le> v a r i a b l e s ;
f i n a l p r i v a t e C o l l e c t i o n<C o n s t r a i n t> c o n s t r a i n t s ;
f i n a l p r i v a t e P r e d i c a t e p r e d i c a t e ;

p u b l i c P igeons (i n t s i z e) {
t h i s . s i z e = s i z e ;
v a r i a b l e s = new Ar rayL i s t<Var i ab le>(s i z e) ;
c o n s t r a i n t s =new Ar rayL i s t<C o n s t r a i n t> () ;
p r e d i c a t e = new P r e d i c a t e () ;
p r e d i c a t e . s e t E x p r e s s i o n (”X0!= X1”) ;
p r e d i c a t e . s e t P a r a m e t e r s (” i n tX0 i n t X1”) ;

}

p u b l i c void g e n e r a t e () throws F a i l e d G e n e r a t i o n E x c e p t i o n{
f i n a l i n t [] domain = new i n t [s i z e − 1] ;
f o r (i n t i = s i z e − 1 ; −− i >= 0 ;) { domain [i] = i ; }
f o r (i n t i = s i z e ; −− i >= 0 ;) {

v a r i a b l e s . add (new V a r i a b l e (domain , ”V” + i)) ;
}
f o r (i n t i = s i z e ; −− i >= 0 ;) {

f o r (i n t j = s i z e ; −− j >= i + 1 ;) {
c o n s t r a i n t s . add (d i f f (v a r i a b l e s . g e t (i) , v a r i a b l e s

. g e t (j))) ;
}

}
}

p r i v a t e C o n s t r a i n t d i f f (f i n a l V a r i a b l e var1 ,
f i n a l V a r i a b l e var2) throws F a i l e d G e n e r a t i o n E x c e p t i o n{
P r e d i c a t e C o n s t r a i n t c o n s t r a i n t =new P r e d i c a t e C o n s t r a i n t (

new V a r i a b l e [] { var1 , var2 } , p r e d i c a t e) ;
c o n s t r a i n t . s e t P a r a m e t e r s (var1 . getName () + ””

+ var2 . getName ()) ;
c o n s t r a i n t . c o m p i l e P a r a m e t e rs () ;
re tu rn c o n s t r a i n t ;

}

p u b l i c C o l l e c t i o n<Var i ab le> g e t V a r i a b l e s () {
re tu rn v a r i a b l e s ;

}

p u b l i c C o l l e c t i o n<C o n s t r a i n t> g e t C o n s t r a i n t s (){
re tu rn c o n s t r a i n t s ;

}
}

Listing 1.3. The Pigeons problem

p u b l i c s t a t i c void main () throws
F a i l e d G e n e r a t i o n E x c e p t i o n , IOExcept ion{
f i n a l Problem problem = Problem . l oad (1 0) ;
f i n a l S o l v e r s o l v e r = new MGAC(problem) ;
f i n a l boolean r e s u l t = s o l v e r . r u n S o l v e r () ;
System . ou t . p r i n t l n (r e s u l t) ;
i f (r e s u l t) {

System . ou t . p r i n t l n (s o l v e r . g e t S o l u t i o n ()) ;
}

}

Listing 1.4. Solving the Pigeons-10 problem

Algorithm 3 : MGAC(P =(X , C) : CN, maxBT : Integer): Boolean

if maxBT < 0 then throw Expiration1

if X = ∅ then return true2

select(X, v) |X ∈X ∧ a ∈ dom(X)3

P ′ ← GACrm(P |X=a)4

if P ′ 6= ⊥ ∧MGAC(P ′\X, maxBT) then return true5

P ′ ← GACrm(P |X 6=a)6

return P ′ 6= ⊥ ∧MGAC(P ′, maxBT − 1)7

ment of GAC3 [10]. They both admit a worst-case time complexity of O(er3dr+1).
GAC2001 [2] admits a worst-case time complexity ofO(er2dr) and has been proved
to be an optimal algorithm for establishing Generalized ArcConsistency.

The GAC3rm algorithm is described in Algorithm 2. Every variable of the CN is put
in a queue in order to be revised one by one using Algorithm 1. If an effective revision is
done (i.e. at least one value is removed from the variable), all neighbors of the variable
are put in the queue. The algorithm continues until a fix-point is reached, i.e. no more
value can be removed in the CN. A neighbor variable is one thatshares at least one
constraint with the current variable.

Residual supports (supp[C, X, v]) are used during the revision in order to speed up
the search. Contrary to GAC2001, if the residue is no longer valid, the search for a
valid tuple is restarted from scratch, which allow us to keepthe residues from one call
to another, even after a backtrack. Although GAC3rm by itself is not optimal, [9] shows
that maintaining GAC3rm during search (see below) is more efficient than maintaining
GAC2001.

The MGAC algorithm [14] aims at solving a CSP instance and performs a depth-
first search with backtracking while maintaining (generalized) arc consistency. More
precisely, at each step of the search, a variable assignmentis performed followed by a
filtering process called constraint propagation which corresponds to enforcing general-
ized arc-consistency.

Recent implementations of MGAC use a binary (2-way) branching scheme [7]: at
each node of the search tree, a variableX is selected, a valuea ∈ dom(X) is selected,

Algorithm 4 : initP(P = (X , C) : CN): Integer

foreachX ∈ X do1

selectv ∈ dom(X) | countConflicts(P |X=v) is minimal2

P ← P |X=v3

return countConflicts(P)4

and two edges are considered: the first one corresponds toX = a and the second one
to X 6= a.

Algorithm 3 corresponds to a recursive version of the MGAC algorithm (using bi-
nary branching). A CSP instance is solved by calling theMGAC function: it returns
true iff the instance is satisfiable.P |X=a denotes the constraint network obtained from
P by restricting the domain ofX to the singleton{a} whereasP |X 6=a denotes the con-
straint network obtained fromP by removing the valuea from the domain ofX . P\X
denotes the constraint network obtained fromP by removing the variableX .

The heuristics that allows the selection of the pair(X, a) has been recognized has a
crucial issue for a long time. Using different variable ordering heuristics to solve a CSP
instance can lead to drastically different results in termsof efficiency.

In [3], it is proposed to associate a counter, denotedwght[C], with any constraintC
of the problem. These counters are used as constraint weighting. Whenever a constraint
is shown to be unsatisfied (during the constraint propagation process), its weight is
incremented by 1 (see line 11 of Algorithm 1).

The weighted degree of a variableX is then defined as the sum of the weights of
the constraints involvingX and at least another uninstantiated variable. The adaptive
heuristicdom/wdeg [3] involves selecting first the variable with the smallest ratio cur-
rent domain size to current weighted degree. As search progresses, the weight of hard
constraints become more and more important and this particularly helps the heuristic to
select variables appearing in the hard part of the network. This heuristic has been shown
to be quite efficient [19].

3.2 Local Search algorithms

Although there also has been some interest in using Local Search techniques to solve
the CSP problem [12, 4, 5, 18], these algorithms have not be studied a fraction as much
as MGAC. Contrary to systematic backtracking algorithms like MGAC, local search
techniques are incomplete by nature: if a solution exists, it is not guaranteed to be
found, and the absence of solution can usually not be proved.However, on very large
instances, local search techniques have been proved to be the best practical alternative.
We also found that local learch algorithms are far more efficient than MGAC on quite
small, dense instances.

A local search algorithm works oncomplete assignments: each variable is assigned
with some value, then the assignment is iterativelyrepaireduntil a solution is found.
A repair generally involves changing the value assigned to avariable so that as few
constraints as possible are violated [12]. The initial variable assignments may be ran-
domly generated. However, in order to make the first repairs more significant, we use

Algorithm 5 : initγ(P = (X , C) : CN)

foreachX ∈ X do1

foreach v ∈ dom(X) do2

γ(X, v)← 03

foreachC ∈ C |X ∈ vars(C) do4

if ¬check(C|X=v) then γ(X, v)← γ(X, v) + wght[C]5

Algorithm 6 : updateγ(X : Variable,vold: Value)

foreachC ∈ C |X ∈ vars(C) do1

foreach Y ∈ vars(C) |X 6= Y do2

foreachvy ∈ dom(Y) do3

if check(C|Y =vy) 6= check(C|Y =vy∧X=vold
) then4

if check(C|Y =vy) then5

γ(Y, vy)← γ(Y, vy)− wght[C]6

else7

γ(Y, vy)← γ(Y, vy) + wght[C]8

Algorithm 4 to build the initial variable assignment. The algorithm tries to minimize
the number of conflicting constraints after initialization. countConflicts(P) returns
the number of falsified constraints involving only assignedvariables.

Designing efficient local search algorithms for CSP requires the use of clever data
structures and powerful incremental algorithms in order tokeep track of the efficiency
of each repair. [4] proposes to use a data structureγ(X, v) which at any time contains
the number of conflicts a repair would lead to. Algorithms 5 and 6 describes the man-
agement ofγ (check(C) controls whetherC is satisfied by the current assignments of
vars(C)). Since each assignation has an impact only on the constraints involving the
selected variable, we can count conflicts incrementally at each iteration with a worst-
time complexity ofO(Γmaxrd).

There are many cases where no value change can improve the current assignment
in terms of constraint satisfaction. In this case, we have reached alocal minimum. The
main challenge over local search techniques is to find the best way to avoid or escape
local minima and carry on the search. AmaxIterations parameter is given to each
local search algorithm. It mostly allows to define a restart strategy: if no solution is
found after a fixed number of iterations, the search is restarted with a new initial as-
signment. The best value ofmaxIterations is highly dependant on the nature of the
problem. This comes against our view of a “black box” CSP solver, and future progress
on CSP4J will be aimed to eliminate that kind of parameter. However, default values
are given to each algorithms and we found them to be quite robust.

The MCRW Engine With a probabilityp, the repair is chosen randomly instead of
being selected into the set of repairs that improves the current assignment. The first al-

Algorithm 7 : MCRW(P = (X , C) : CN, maxIterations: Integer): Boolean

nbConflicts← initP (P) ; initγ(P) ; nbIterations← 01

while nbConflicts > 0 do2

selectX randomly|X is in conflict3

if random[0, 1] < p then4

selectv ∈ dom(X) randomly5

else6

selectv ∈ dom(X) | γ(X, v) is minimal7

vold ← current value forX8

if v 6= vold then9

P ← P |X=v10

nbConflicts ← γ(X, v)11

updateγ(X,vold)12

if nbIterations++ > maxIterations then throw Expiration13

return true14

Algorithm 8 : Tabu(P = (X , C) : CN, maxIterations: Integer): Boolean

nbConflicts← initP (P) ; initγ(P) ; nbIterations← 01

init TABU randomly2

while nbConflicts > 0 do3

select(X, v) 6∈ TABU∨meets the aspiration criteria| γ(X, v) is minimal4

vold ← current value forX5

insert(X, vold) in TABU and delete oldest element fromTABU6

P ← P |X=v7

nbConflicts ← γ(X, v)8

updateγ(X,vold)9

if nbIterations++ > maxIterations then throw Expiration10

return true11

gorithm implementing this technique was described in [12] and we call itMin-Conflicts
Random Walk(MCRW). Algorithm 7 performs a MCRW local search. At each itera-
tion, a variable in conflict is selected (line 3). A variableX is in conflict if any constraint
involving X is in conflict. Then, with a probabilityp, a random value (line 5) or, with
a probability1 − p, the best value (line 7) is selected.p is one additional parameter we
aim to eliminate in further versions of CSP4J. Again, the default value (p = 0.04) is
quite robust for most problems.

The Tabu engine: Previous repairs are recorded so that we can avoid repairs that lead
back to an already visited assignment. A limited number of repairs is remembered, and
older ones are forgotten, allowing us to always have a fairlyhigh number of repairs
available at each iteration. The size of the Tabu List is arbitrary fixed before search.
Note that theaspiration criterionallows to select a repair in the Tabu list if it permits
to achieve a new best assignment. There have been previous works that mention the

Algorithm 9 : WMC(P = (X , C) : CN, maxIterations: Integer): Boolean

nbConflicts← initP (P) ; initγ(P) ; nbIterations← 01

while nbConflicts > 0 do2

select(X, v) | γ(X, v) is minimal3

vold ← current value forX4

if γ(X, v) ≥ γ(X, vold) then5

foreachC ∈ C | C is in conflictdo6

wght[C]++ ; nbConflicts++7

foreachY ∈ vars(C) do8

foreachw ∈ dom(Y) do9

if ¬check(C|Y =w) then γ(Y, w)++10

else11

P ← P |X=v12

nbConflicts ← γ(X, v)13

updateγ(X,vold)14

if nbIterations++ > maxIterations then throw Expiration15

return true16

Fig. 2. Escaping from a local minimum

efficiency of Tabu search for Constraint Optimization problems (Max-CSP) [4, 5]. Al-
gorithm 8 performs a Tabu search. The size of the Tabu list is one additional parameter
we aim to eliminate in further versions of CSP4J. Again, the default value (30) is quite
robust for most problems.

The WMC Engine Another efficient way to escape from local minima, called the
Breakout method, has also been proposed [13]. We use this method to design a local
search algorithm aimed to find solutions to satisfiable CSPs.

The resulting algorithm,Weighted Min-Conflicts(WMC) is described in Algorithm
9. Line 5 detects local minima. When a local minimum is encountered, all conflicting
constraints are weighted (line 12). Note that a main advantage of WMC over Tabu
search or MCRW is that it involves no parameter outside ofmaxIterations.

Algorithm 10 : Hybrid(P =(X , C): CN, maxIter: Integer,α: Float): Boolean

maxTries← 1 ; maxBT ← maxIter× 8n

ed
1

repeat2

startT ime← now()3

repeat ⌊maxTries⌋ times4

try5

return WMC(P , maxIter)6

catch Expiration7

WMCDuration← now()− startT ime8

startT ime← now()9

try10

return MGAC(P , maxBT)11

catch Expiration12

MGACDuration← now()− startT ime13

maxTries← α×maxTries14

maxBT ← α×maxBT ×WMCDuration/MGACDuration15

Incrementing the weight of constraints permits to effectively and durably escape
from local minima, as illustrated by Figure 2. Incrementingthe constraints “fills” the
local minimum until another parts of the search space are reached. Constraints that are
heavily weighted are expected to be the “hardest” constraints to satisfy. By weighting
them, there importance is enhanced and the algorithm will try to satisfy them in priority.

The Combo engine It is well known that the main drawback of systematic backtrack-
ing strategies such as MGAC is that an early bad choice may lead to explore a huge
sub-tree that could be avoided if the heuristic had lead to focus on a rather small, very
hard or even inconsistent sub-problem. In this case, the solver is said to be subject to
“thrashing”: it rediscovers the same inconsistencies multiple times. On the other hand,
it is important to note that some instances are not inherently very difficult. These often
show a “heavy tailed” behavior when they are solved multipletimes with some random-
ization [6]. Thedom/wdeg heuristic was designed to avoid thrashing by focusing the
search on one hard sub-problem [3, 18]. This technique is reported to work quite well
on structured problems.

On the other hand, the main drawback of local search algorithms is quite straight-
forward: their inability to prove the unsatisfiability of problems and the absence of
guarantee, even on satisfiable problems, that a solution will be found. The development
of hybrid algorithms, hopefully earning the best from each world, has been devised as
a great challenge in both satisfiability and constraint satisfaction problems [15].

Constraint weighting used bydom/wdeg heuristic and WMC work in a similar
way. Both help to identify hard sub-problems. [11] reports that statistics earned dur-
ing a failed run of local search can be successfully as an oracle to guide a systematic
algorithm in the search of a solution or to extract an incoherent core. We propose to
use directly the weights of the constraints obtained at the end of a WMC run to initiate

dom/wdeg weights. We devise a simple hybrid algorithm, described by Algorithm 10
based on this assumption.

4 Conclusion and perspectives

We presented CSP4J, an API for Java 5, intended to solve CSPs as part on any Java
application, in a “black-box” scheme. We introduced clues on CSP4J usage and given
some examples of use, the we presented the five engines shipped with CSP4J and their
respective interest.

We will continue to develop CSP4J, by optimizing the algorithms as well as refining
them according to the latest refinements of fundamental research is Constraint Program-
ming, and especially SAT and CSP solving. Next developmentsof CSP4J will focus on
preprocessing, especially using promising algorithms such as Dual Consistency [8]. We
will also try to eliminate any user-supplied parameter fromour algorithms and will fo-
cus towards merging the advantages of all engines so that no expertise at all should be
needed from the user, in the spirit of CLP(FD) used in Prolog interpreters.

References

1. Second International CSP Solvers Competition. http://www.cril.univ-artois.fr/CPAI06, 2006.
2. C. Bessiere, J.C. Régin, R.H.C. Yap, and Y. Zhang. An optimal coarse-grained arc consis-

tency algorithm.Artificial Intelligence, 165(2):165–185, 2005.
3. F. Boussemart, F. Hemery, C. Lecoutre, and L. Sais. Boosting systematic search by weighting

constraints. InProceedings of ECAI’04, pages 146–150, 2004.
4. P. Galinier and J.K. Hao. Tabu search for maximal constraint satisfaction problems.Pro-

ceedings of CP’97, pages 196–208, 1997.
5. P. Galinier and J.K. Hao. A General Approach for Constraint Solving by Local Search.

Journal of Mathematical Modelling and Algorithms, 3(1):73–88, 2004.
6. C.P. Gomes, B. Selman, N. Crato, and H. Kautz. Heavy-tailed phenomena in satisfiability

and constraint satisfaction problems.Journal of Automated Reasoning, 24:67–100, 2000.
7. J. Hwang and D.G. Mitchell. 2-way vs d-way branching for CSP. InProceedings of CP’05,

pages 343–357, 2005.
8. C. Lecoutre, S. Cardon, and J. Vion. Conservative Dual Consistency. InProceedings of

AAAI’07, to appear, 2007.
9. C. Lecoutre and F. Hemery. A study of residual supports in arc consistency. InProceedings

of the 20th International Joint Conference on Artificial Intelligence (IJCAI’2007), pages
125–130, 2007.

10. A.K. Mackworth. Consistency in networks of relations.Artificial Intelligence, 8(1):99–118,
1977.

11. B. Mazure, L. Sais, and E. Gregoire. Boosting complete techniques thanks to local search
methods.Annals of Mathematics and Artificial Intelligence, 22:319–331, 1998.

12. S. Minton, M.D. Johnston, A.B. Philips, and P. Laird. Minimizing conflicts: a heuristic
repair method for constraint-satisfaction and schedulingproblems. Artificial Intelligence,
58(1-3):161–205, 1992.

13. P. Morris. The breakout method for escaping from local minima. InProceedings of AAAI’93,
pages 40–45, 1993.

14. D. Sabin and E. Freuder. Contradicting conventional wisdom in constraint satisfaction. In
Proceedings of CP’94, pages 10–20, 1994.

15. B. Selman, H. Kautz, and D. McAllester. Ten challenges inpropositional reasoning and
search.Proc. IJCAI’97, 1997.

16. R.M. Stallman. GNU General Public License.GNU Project–Free Software Foundation,
http://gnu.org/licenses, 1991.

17. R.M. Stallman. GNU Lesser General Public License.GNU Project–Free Software Founda-
tion, http://gnu.org/licenses, 1999.

18. J.R. Thornton.Constraint weighting local search for constraint satisfaction. PhD thesis,
Griffith University, Australia, 2000.

19. M. R. C. van Dongen, editor.Proceedings of CPAI’05 workshop held with CP’05, volume II,
2005.

20. J. Vion. Hybridation de prouveurs CSP et apprentissage.In Actes des troisièmes Journées
Francophones de Programmation par Contraintes (JFPC ’07),to appear, 2007.

