
Sugar: A CSP to SAT Translator Based on
Order Encoding

Naoyuki Tamura and Mutsunori Banbara

Information Science and Technology Center, Kobe University, JAPAN
{tamura,banbara}@kobe-u.ac.jp

Abstract. This paper gives some details on the implementation of sugar
constraint solver submitted to the Second International CSP Solver Com-
petition. The sugar solver solves a finite linear CSP by translating it into
a SAT problem by using order encoding method and then solving the
translated SAT problem by the MiniSat solver. In the order encoding
method, a comparison x ≤ a is encoded by a different Boolean variable
for each integer variable x and integer value a.

1 Introduction

This paper gives some details on the implementation of sugar constraint solver
submitted to the Second International CSP Solver Competition.

The sugar solver solves a finite linear CSP by translating it into a SAT
problem by using order encoding method [1] and then solving the translated
SAT problem by the MiniSat solver [2].

The method of the order encoding is basically the same with the one used
for Job-Shop Scheduling Problems by Crawford and Baker in [3] and studied
by Soh, Inoue, and Nabeshima in [4–6]. It encodes a comparison x ≤ a by a
different Boolean variable for each integer variable x and integer value a.

The benefit of this encoding is the natural representation of the order relation
on integers. Axiom clauses with two literals, such as {¬(x ≤ a), x ≤ a + 1} for
each integer a, represent the order relation of an integer variable x. Clauses,
for example {x ≤ a,¬(y ≤ a)} for each integer a, can be used to represent the
constraint among integer variables, i.e. x ≤ y.

2 Order encoding

The order encoding uses Boolean variables pxi meaning x ≤ i for each CSP
variable x and each integer constant i (`(x)−1 ≤ i ≤ u(x)) where `(x) and u(x)
are the lower and upper bounds of x respectively1.

1 px`(x)−1 and pxu(x) are redundant because they are always false and true respectively.
However, we use them for simplicity of the discussion.



0 1 2 3 4 5 6 7

1

2

3

4

5

6

7

x

y

Fig. 1. Encoding x + y ≤ 7

Consider an example of encoding x + y ≤ 7 when x, y ∈ {2, 3, 4, 5, 6}. The
following 12 Boolean variables are used to encode the example.

px1 px2 px3 px4 px5 px6

py1 py2 py3 py4 py5 py6

The following clauses are used as axioms representing the bounds and the
order relation for each CSP variable x.

¬px `(x)−1

pxu(x)

¬px i−1 ∨ pxi (`(x) ≤ i ≤ u(x))

Therefore, the following 14 clauses are required for the example.

¬px1 px6

¬px1 ∨ px2 ¬px2 ∨ px3 ¬px3 ∨ px4 ¬px4 ∨ px5 ¬px5 ∨ px6

(similar clauses for y)

Constraints are encoded into clauses representing conflict regions instead of
conflict points. When all points (x1, . . . , xn) in the region i1 < x1 ≤ j1, . . . ,
in < xn ≤ jn violate the constraint, the following clause is added.

px1i1 ∨ ¬px1j1 ∨ · · · ∨ pxnin ∨ ¬pxnjn

Therefore, the following 5 clauses are used to encode x + y ≤ 7 (Fig.1).

px1 ∨ py5 px2 ∨ py4 px3 ∨ py3 px4 ∨ py2 px5 ∨ py1

When ai’s are non-zero integer constants, c is an integer constant, and xi’s are
mutually distinct integer variables, any finite linear comparison

∑n
i=1 ai xi ≤ c



can be encoded into the following CNF formula [1].∧∑n

i=1
bi=c−n+1

∨
i

(ai xi ≤ bi)#

Parameters bi’s range over integers satisfying
∑n

i=1 bi = c−n+1 and `(aixi)−1 ≤
bi ≤ u(aixi) for all i where functions ` and u give the lower and upper bounds
of the given expression respectively. The translation ()# is defined as follows.

(a x ≤ b)# ≡


x ≤

⌊
b

a

⌋
(a > 0)

¬
(

x ≤
⌈

b

a

⌉
− 1

)
(a < 0)

3 System Description of Sugar

Sugar is a CSP to SAT solver based on the order encoding. It consists of the
front-end Perl program and the encoder program written in Java2. The MiniSat
1.4 [2] is used as the backend SAT solver in the submitted version.

CSP instances are encoded into SAT instances in the following ways.

Encoding m-ary linear comparisons: As described in the previous section,
comparisons of the form

∑m
i=1 aixi ≤ b can be encoded into O(dm−1) clauses in

general where d is the domain size.
However, it is possible to reduce the number of integer variables in each

comparison at most three by introducing new integer variables. Therefore, each
comparison

∑m
i=1 ai xi ≤ b can be encoded by at most O(md2) clauses even

when m ≥ 4.

Encoding other expressions: Expressions other than
∑

aixi ≤ b are encoded
to SAT formulas by using the conversion described in the Fig.2 where E div c
and E mod c are integer quotient and remainder of E divided by an integer
constant c.

Expression at the first column is replaced with the replacement at the second
column with some extra condition at the third column.

Note that non-linear expressions such as x × y can not be handled by the
sugar program submitted to the competition.

Keeping clausal form: When encoding a clause of CSP to SAT, the encoded
formula is no more a clausal form in general. As it is well known, introduction
of new Boolean variables is useful to solve this problem.
2 The package is available at http://bach.istc.kobe-u.ac.jp/sugar/



Expression Replacement Extra condition

E < F E + 1 ≤ F
E = F (E ≤ F ) ∧ (E ≥ F )
E 6= F (E < F ) ∨ (E > F )

max(E, F ) x (x ≥ E) ∧ (x ≥ F ) ∧ ((x ≤ E) ∨ (x ≤ F ))
min(E, F ) x (x ≤ E) ∧ (x ≤ F ) ∧ ((x ≥ E) ∨ (x ≥ F ))

abs(E) max(E,−E)
E div c q (E = c q + r) ∧ (0 ≤ r) ∧ (r < c)
E mod c r (E = c q + r) ∧ (0 ≤ r) ∧ (r < c)

Fig. 2. Encoding expressions other than
∑

aixi ≤ b

Consider an example of encoding a clause {x − y ≤ −1,−x + y ≤ −1} when
x, y ∈ {0, 1, 2}. Comparisons x − y ≤ −1 and −x + y ≤ −1 are converted into
S1 = (x ≤ −1 ∨ ¬(y ≤ 0)) ∧ (x ≤ 0 ∨ ¬(y ≤ 1)) ∧ (x ≤ 1 ∨ ¬(y ≤ 2)) and
S2 = (¬(x ≤ 2)∨ y ≤ 1)∧ (¬(x ≤ 1)∨ y ≤ 0)∧ (¬(x ≤ 0)∨ y ≤ −1) respectively.
Expanding S1 ∨ S2 generates 9 clauses. However, by introducing new Boolean
variables p and q, we obtain the following seven clauses.

{p, q}
{¬p, x ≤ −1,¬(y ≤ 0)} {¬p, x ≤ 0,¬(y ≤ 1)} {¬p, x ≤ 1,¬(y ≤ 2)}
{¬q,¬(x ≤ 2), y ≤ 1} {¬q,¬(x ≤ 1), y ≤ 0} {¬q,¬(x ≤ 0), y ≤ −1}

Encoding extensional constraints: Extensional constraints with conflict tu-
ples and support tuples are encoded by a simple way in the submitted version
of sugar.

Conflict tuples {(a1, b1), . . . , (an, bn)} for variables (x, y) are encoded as fol-
lows.

¬(x = a1 ∧ y = b1) ∧ · · · ∧ ¬(x = an ∧ y = bn)

Support tuples {(a1, b1), . . . , (an, bn)} for variables (x, y) are encoded as fol-
lows.

(x = a1 ∧ y = b1) ∨ · · · ∨ (x = an ∧ y = bn)

4 Conclusion

In this paper, we have described some details on the implementation of sugar
constraint solver submitted to the Second International CSP Solver Competition.
The sugar solver solves a finite linear CSP by translating it into a SAT problem
by using order encoding method and then solving the translated SAT problem
by the MiniSat solver. Although the system is still under development, we hope
it gives some research directions for CSP to SAT encoding systems.



Acknowledgments

We would like to give thanks to Katsumi Inoue, Hidetomo Nabeshima, Takehide
Soh, and Shuji Ohnishi for their helpful suggestions.

References

1. Tamura, N., Taga, A., Kitagawa, S., Banbara, M.: Compiling finite linear CSP
into SAT. In: Proceedings of the 12th International Conference on Principles and
Practice of Constraint Programming (CP 2006). (2006) 590–603

2. Eén, N., Sörensson, N.: An extensible SAT-solver. In: Proceedings of the 6th
International Conference on Theory and Applications of Satisfiability Testing (SAT
2003). (2003) 502–518

3. Crawford, J.M., Baker, A.B.: Experimental results on the application of satisfiability
algorithms to scheduling problems. In: Proceedings of the 12th National Conference
on Artificial Intelligence (AAAI-94). (1994) 1092–1097

4. Soh, T., Inoue, K., Banbara, M., Tamura, N.: Experimental results for solving
job-shop scheduling problems with multiple SAT solvers. In: Proceedings of the
1st International Workshop on Distributed and Speculative Constraint Processing
(DSCP’05). (2005)

5. Inoue, K., Soh, T., Ueda, S., Sasaura, Y., Banbara, M., Tamura, N.: A competitive
and cooperative approach to propositional satisfiability. Discrete Applied Mathe-
matics (2006) (to appear).

6. Nabeshima, H., Soh, T., Inoue, K., Iwanuma, K.: Lemma reusing for SAT based
planning and scheduling. In: Proceedings of the International Conference on Auto-
mated Planning and Scheduling 2006 (ICAPS’06). (2006) 103–112


