
Alternative methods for learning in CSP Solvers

Diarmuid Grimes and Richard J. Wallace
Cork Constraint Computation Centre and Department of Computer Science

University College Cork, Cork, Ireland
email: d.grimes, r.wallace@4c.ucc.ie

Abstract

This paper outlines the major features of three solvers entered in this years
CPAI solver competition. The solvers shared the same underlying architecture
which is described in detail in the following paper, the base solver is rjw (submitted
by Richard Wallace) which Diarmuid-rndi and Diarmuid-wtdi (both submitted by
Diarmuid Grimes) are built on. Furthermore the solvers all used constraint weight-
ing as a means for identifying sources of contention in the problem. However two
of the solvers (Diarmuid-rndi and Diarmuid-wtdi) used restarting to approximate
sources of global difficulty, while rjw learnt local information.

1 Introduction

The solver rjw is an implementation of the classical treesearch algorithm for solv-
ing CSPs, consisting of backtracking plus lookahead (using MAC-3 for consistency
maintenance). In other words, it is a complete algorithm that uses depth-first back-
tracking with k-way branching, interleaved with propagation. Currently it is restricted
to problems involving only extensional binary constraints. This solver is designed for
experimentation so the features that have received the most attention are related to this
aim. Naturally efficiency is always an issue as the efficiency impacts the experiments
that can be performed. The present version represents fairly mature code which has not
been changed in any fundamental way over the past few years. We firstly descibe rjw
then the solvers Diarmuid-rndi and Diarmuid-wtdi which build on rjw by combining
learning with restarts in two quite different ways.

2 Basic Features of rjw

The solvers are implemented in Common Lisp and are designed to run on a Unix ma-
chine. Since many lisp compilers only compile into a kind of intermediate code, the
program cannot run with the speed of a C or a C++ program.

The present version of rjw has a ‘backbone’ that is a recursive procedure (which
naturally limits the size of the problems that can be handled). The basic structure is

1



search (variables, domain, solution)
if variables == nil /* clause 1 */

save-solution
return t

else if domain == nil /* clause 2 */
reset data structures
return nil /* backtrack */

else if /* clause 3 */
arc-consistency(next-variable, next-domain-value, remaining-variables) returns t

and
search (remaining-variables, new-domain, solution+next-assignment) returns t

else /* clause 4 */
return (search (remaining-variables, remaining-domain, solution))

Figure 1: Basic recursive structure underlying tree search in the present solver.

shown in Figure 1; as indicated, it uses recursion to run through a list of variables and
a list of values in the domain of the current variable.

In the actual code, this structure is elaborated to:

• heuristically choose the next variable (in clause 3)

• set up data structures for handling arc consistency (in clause 3). (These are reset
in clause 2, as indicated.)

• handle all-solutions as well as one-solution search.

In addition, the MAC solver tests for singleton domains and only does arc consistency
when the current domain has more than one value. Incidentally, during search consis-
tency maintenance is only carried out following each new instantiation (i.e. not after a
value has been discarded). As per usual only arcs between a variable whose domain has
changed and its unassigned neighbors are added to the queue (so the initial queue com-
prises solely of arcs between the variable just assigned and its unassigned neighbors).
A full arc consistency is, of course, carried out prior to search.

3 Data Structures

Domain values are kept in simple lisp lists, accessed via an array. A list of variables
is also used, as indicated in Figure 1. The current (partial) assignment is stored as
an array, with nil values for currently unassigned variables. This array is accessed by
variable-numbers, so it accomodates dynamic variable ordering. (Hence, the resetting
in clause 2 in Figure 1 includes setting the value for the current variable to nil.)

In the present implementation, constraint relations are represented as arrays of bi-
nary values; the size is set by the size of the largest domain. The arrays themselves are

2



accessed via a hash table, where the hash key is based on the two variable-numbers.
Two arrays are stored for each relation, so the program does not have to put the vari-
ables in any particular order when computing the hash key. Furthermore all constraints
have a weight, initially set to 1, associated with them. The weights are stored in a hash-
table with a hash key based on the variable-numbers of the variables in the constraint.
Whenever a constraint causes a domain wipeout during consistency maintenance the
weight gets incremented by 1

The constraint representation is a global data structure that can be accessed by
any function in connection with search or heuristic selection. This is also true for the
current assignment. Global structures are also used to maintain a list of the original
variables and the original domains.

Another important global data structure is the set of adjacency lists, which are lists
of variables adjacent to a given variable in the constraint graph. Again, these are kept
in an array so they can be accessed by variable-numbers. There are also data structures
for certain parametric features like the degree of each variable, and the current domain
sizes, and the original tightness of each constraint, which are used by certain heuristics.

A critical data structure used in connection with propagation stores current domains
during search. The basic strategy (remember that this is lisp) is to maintain lists of lists
within an array. Each list of lists is handled as a stack, with the current domain at the
top. Using an array allows the program to access the current domain via the variable-
number.

In order to use this structure during recursive search, the setup function (in clause 3
in Figure 1) adds a duplicate of the current domain to the top of each stack. (For forward
checking this need only be the domains of variables adjacent to the current variable.)
As successive assignments are made at a given level of search, the arc consistency
functions take the domain just below the top of the stack before support testing and
replace the top-most list with the adjusted domain afterwards. This means that no
special (setting-up) code is required for this purpose when re-assigning a variable. If
the program backtracks from a given level of search (clause 2 in Figure 1), the stacks
are cut back so the domains are as they were when this level was entered.

(Incidentally, if lookahead value ordering heuristics are used [which is not done
by the solvers entered in this competition], thend entries are made in these lists in
the course of support checking - in the order in which values are to be assigned. This
avoids any further forward checking at this level of search.)

4 Heuristics

One of the major uses to which this solver has been put in the last few years has been
the experimental study of variable ordering heuristics. So there are a large number of
heuristics - and anti-heuristics coded. These are organized in an elaborate but tedious
manner for selecting a particular heuristic during a given run of the program.

For the competition, rjw used the domain over weighted-degree heuristic (dom/wdeg)
of Boussemart et al. [?], in this case, the heuristic code is in the same file as the search
code and the heuristic is called directly. For all solvers, values were chosen lexically
(as were arcs during consistency maintenance).

3



5 Environment and I/O

The solvers normally run either interactively or in batch mode, where they take the
same instructions from a command file. There is an i/o module that currently accepts
two kinds of problem formats, both involving extensional constraints. The top-level
of the program (not used in the competition) is a menu-driven system. Different top-
level commands either read in the next problem (and set up most of the global data
structures), or generate the next problem, or call for a solver of some generic type (e.g.
backtrack, hybrid tree search, local search). During this interactive process, after an
algorithm is selected, further menu options allow the heuristic to be selected for the
run.

6 Restarting Strategies

The solver Diarmuid-wtdi works as follows: there is an initial failure cutoffC where
search runs untilC failures have occurred. It then restarts with a new cutoff which is
the previous cutoff multiplied by a constant factorz. So the failure cutoff for theRth
restarted search is:C ∗ (zR−1). The only difference between this and the solver rjw
is the restarting, so MAC-3 is the consistency algorithm and dom/wdeg is the variable
ordering heuristic. The solver stops as soon as it finds a solution or proves the problem
insoluble. It is complete since C is incremented with every restart.

Since weights are consistently being updated, the variable ordering is always chang-
ing, thus search is unlikely to revisit an identical part of the search space upon restart-
ing. This allows the solver to visit different parts of the search space while still main-
taining a large degree of confidence in the variables selected. In fact since at each restart
it has more information available for dom/wdeg to make its early decisions it should
improve its ordering with each restart. However this is contingent on the information
learnt being of uniform quality which is not necessarily the case.

The solver Diarmuid-rndi is an automated learning approach to problem solving
that aims to boost the power of the dom/wdeg heuristic by randomly probing the search
space for information prior to a complete search using dom/wdeg. It follows Refalos
third principle [?] which emphasises the importance of making good choices at the top
of search as these have the largest impact. Refalo suggests that, in general, to achieve
this one must perform some preprocessing on a problem.

The solver works as follows: similarly to Diarmuid-wtdi there is an initial failure
cutoff C. However this cutoff is never incremented. Search runs identically to rjw with
the one exception that variables are chosen randomly at each selection point. Constraint
weights are updated throughout but are never used to guide search. If the problem is
solved or the problem proven insoluble (although insolubility is unlikely to be proven
since the failure cutoff is normally quite low) during these “random probes” then the
solver stops.

Otherwise there is a minimum number of restarts (Rmin)which the solver will per-
form, at which point it will check the stability of the variable weight profile between
theRmin

th restart and the(Rmin − 10)th restart. If it doesn’t satisfy some criteria for
stability then the random probing continues, after everyR restarts ((whereR modulo

4



10 = 0) it checks the stability between theRth restart and the(R − 10)th restart un-
til either the stability criteria has been satisfied or the number of restarts is equal to a
predefined maximum number of restarts.

When either the stability criteria has been satisfied or the maximum number of
restarts has been reached, search restarts for the final time. The cutoff is removed
(i.e. search runs to completion), and dom/wdeg is used for variable selection with the
weights learnt during preprocessing being interleaved with weights learnt during this
final search.

Acknowledgment.This work was supported in part by Science Foundation Ireland
under Grant 00/PI.1/C075.

References

[BHLS04] F. Boussemart, F. Hemery, C. Lecoutre, and L. Sais. Boosting systematic
search by weighting constraints. InProc. Sixteenth European Conference
on Artificial Intelligence-ECAI’04, pages 146–150, 2004.

[Ref04] P. Refalo. Impact-based search strategies for constraint programming. In
M. Wallace, editor,Principles and Practice of Constraint Programming-
CP’04. LNCS No. 3258, pages 557–571, 2004.

5


