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Abstract. SAT solvers can now handle very large SAT instances. As a
consequence, many translations into SAT have been shown successful in
recent years: Planning and Bounded Model Checking are two examples of
applications in which SAT engines are reported to be as good as or even
better than dedicated software. During the first CSP competition, SAT-
based approaches were demonstrated competitive with the other CSP
solvers on binary constraints. Constraints being provided in extension,
it was a big advantage for techniques based on grounding predicates
since only benchmarks that could be grounded in a reasonable space
were available. As such, the comparison between SAT-based solvers (that
need to ground predicates) and the approaches developed by the CSP
community (that usually handle directly the constraints as expressed)
was not fair. For the second edition of the competition, the constraints
can now be given in intension, and global constraints such as allDifferent
are available. The idea behind the submission of CSP2SAT4J is to show
when SAT-based CSP solvers can still compete in some cases against
”traditional” CSP solvers under those new conditions.

1 Introduction

The idea behind the submission of CSP2SAT4J is to show when SAT-based CSP
solvers can still compete against ”traditional” CSP solvers under those new con-
ditions: on non-randomly generated binary constraints benchmarks, when the
domain of the variables is not too big (a few hundred variables max) to allow
grounding the predicates in reasonable time. The translation from CSP to SAT
has been improved since last year submission: the solver can outperform another
CSP solver (namely Abscon) on last year competition’s benchmarks. The under-
lying SAT solver can handle cardinality constraints, which minimizes the number
of constraints used in the translation. The evaluation of the constraints given
in intention is done using a JavaScript to Java bytecode compiler, in order to
keep the “Keep It Simple Stupid” approach of last year submission. The exper-
imental results on the new benchmarks available in July 2006 do show the limit
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of the approach when the size of the domains increases: for some categories of
benchmarks in which the solver performed well last year (Queens and Knight for
instance), the solver is unable to ground the bigger instances available in inten-
tion this year. Since the participation to the competition also implies submitting
benchmarks, we included in the last section the description of our encoding of
the Social Golfer Problem.

2 On the power of SAT solvers

Very recently, the translation from pseudo boolean into SAT was shown compet-
itive and sometimes better than dedicated solvers during the PB05 evaluation
[20]. Indeed, the MiniSAT+ solver shown surprising good performances on most
of the benchmarks, and it can be considered as the “winner” of the evaluation.
The MiniSAT solver, together with the SatELite preprocessor were the winners
of the SAT competitions in the industrial and crafted categories. The solver Min-
iSAT+ has shown that using SAT engines as efficient generic problem-solving
engines was a reality. For that reason, we decided to submit a SAT-based CSP
solver to the first (and second) CSP competition.

The SATisfiability problem (SAT) gained interest from the industry a few
years ago when SAT solvers where used to solve Bounded Model Checking prob-
lems [6] instead of BDDs. That interest pushed people to design solvers for those
particular types of problems. One of the particularities of those benchmarks is
their size: they are“huge” compared to the classical pathological pigeon hole or
random k-SAT problems. As a consequence, the complexity of the algorithms
and data structures becomes even more important. That observation was the
origin of the design of the head-tail lazy data structure in SATO[26, 27], the
Watched Literals and cheap VSIDS heuristic in Chaff [17, 28]. Grounding CSP
problems into SAT does generate huge CNF, so it makes sense to use ”industrial”
SAT solvers for solving those formulas.

Another particularity of SAT instances coming from BMC, or more gener-
ally practical problems translated into SAT compared to the seminal 3-CNF
instances, is the lack of real characterization of those SAT instances: while the
theory around 3-CNF allows to build powerful heuristics-based SAT solvers for
3-SAT (TABLEAU, CSAT, POSIT, SATZ, CNFS, etc), non-chronological back-
tracking and learning looks like the best approach to tackle SAT-encoded prob-
lems (SATO,RELSAT,GRASP,CHAFF). Note that usually non-chronological
backtracking and learning is useless if the heuristic is good enough, which ex-
plains why solvers using those techniques are outperformed on random 3-SAT
instances by heuristics based solvers. Furthermore, it seems that the lack of
“structure” in the problem makes the VSIDS heuristic ineffective. On the other
hand, non-chronological backtracking can repair mistakes made by the heuristics
by analyzing conflicts.

One of the consequence of using an “industrial” SAT solver to power a SAT-
based CSP solver in the CSP competition is to have poor performances on ran-
domly generated CSP benchmarks. While a randomly generated CSP benchmark



encoded into a SAT benchmark cannot be considered as a randomly generated
SAT benchmark, we conjecture that the bad behavior of our approach on ran-
domly generated CSP benchmarks is due to the lack of “structure” needed by
conflict driven clause learning SAT solvers.

All the parts of a SAT solver received a huge interest from both an algorith-
mic and an implementation point of view so current SAT solvers are now heavily
tuned and they should not be considered as prototype software but rather as pro-
duction software. We use the SAT4J library3, an open-source library of conflict
driven clause learning (aka “industrial”) SAT solvers in Java. The library is ma-
ture and competitive with state-of-the-art SAT solvers: it participated to the
2004 and 2005 SAT competitions in which it went in the second stage in the
industrial category, and passed the qualification step of the SAT Race 2006, a
competition of SAT solvers especially dedicated to industrial SAT benchmarks.

In the rest of the paper, we first describe how our SAT library follows the
current trend to generalize SAT solvers to handle constraints more general than
clauses. Then we explain the CSP to SAT encodings used in our solver and
provide some experimental results.

3 From clauses to pseudo boolean constraints

Researchers are pushing the limit beyond SAT: Quantified Boolean Formulas
(QBF) and Stochastic SATisfiability (SSAT) for instance are two extensions of
SAT being studied recently. Another extension of SAT received some attention
a decade ago: using pseudo boolean constraints (linear constraints with boolean
variables) instead of plain clauses [3, 4]. Most of the solvers for those extensions
to SAT are developed using techniques that were demonstrated powerful for
SAT. Those solvers in the early 90s were based on DPLL[9, 8] while the solvers
developed today are often related to Chaff-like solvers.

This is especially true for pseudo boolean solvers: Barth first developed a
DPLL version of a pseudo boolean solver [4]. Walser [24] and later Prestwich
[18, 19] developed local search or hybrid pseudo boolean solvers. Aloul et al
[22] developed a version of Chaff handling pseudo boolean constraints instead
of clauses as input, plus symmetry breaking predicates, with clause learning
(same thing for the recent MiniSAT [13]). Dixon and Ginsberg[10] developed
a pseudo boolean version of Relsat (PRS), which was the first pseudo boolean
solver including true pseudo boolean learning. They developed a pseudo boolean
version of Chaff (PBChaff[11]) in the same spirit while Chai and Kuehlmann
[7] did extended all Chaff techniques (learning scheme and data structures) in
the pseudo boolean solver Galena. Recent work from Dixon et al [12] describes
a generic conflict driven constraint learning solver based on group theory while
Thiffault et al [23] describe a conflict driven clause learning solver working with
arbitrary boolean gates.

SAT4J uses some principles taken from both Chai and Kuehlmann and Dixon
to allow some of its solvers to use cutting planes instead of resolution when using
3 http://www.sat4j.org/



linear pseudo boolean constraints. As a result, those solvers can solve in a linear
number of conflicts the pigeon hole problem when it is expressed by linear pseudo
boolean constraints, which is not possible with a solver based only on resolution.
But that power comes with a high price to pay in practice: on benchmarks with
few pseudo boolean constraints, such approach is not as efficient as a solver
applying resolution on pseudo boolean constraints.

As a consequence, many SAT solvers are currently using general constraints
to express the problem in a more compact way than with pure clauses (e.g. for
cardinality constraints), without using the full power of those constraints, but
without additional running time either. This is how we setup our own SAT solver
for the CSP competition.

4 From CSP to SAT

Our CSP to SAT translator uses two different encodings: direct encodings [25]
and support encoding for binary clauses [14]. Note that we use a single cardinality
constraint instead of using binary (so-called “at most”) clauses to express that
no more than one value can be chosen in a domain.

The encoding used depends on the way the constraints are expressed:

extension (conflict) In that case, it is straightforward to use a direct encoding
since each tuple is translated into a clause.

extension (support) If the constraint is binary, then we use the binary sup-
port encoding, else the direct encoding, by generating all conflicting tuples.

intension The constraint is grounded by generating all the possible input values
and checking if it satisfies or not the constraint. If the constraint is binary,
then the binary support encoding is used, else the direct encoding is used. A
better option might be to approximate the number of allowed or forbidden
tuples and to select the encoding accordingly. A more sophisticated and
efficient way to generate the tuples to be considered is also a possible way
of improvement.

The main drawback of our method is the way we handle n-ary constraints: for
a constraint of arity 8 with domains of size 10, 108 tuples need to be generated.
It is currently impossible to simply enumerate all those tuples in a reasonable
time.

We also implemented the generalized support encoding [5] for n-ary con-
straints. However, the cost for generating that encoding is much higher than the
direct encoding. We are aware of another CSP to SAT encoding that we have
not experimented because it relies on a very specific way to describe the problem
in terms of disjunction of forbidden values [19].

4.1 Common encoding

The translator takes the new XML representation (XML CSP 2.0 format) of the
problem as input and outputs a set of constraints (mixing clauses and cardinality
constraints) to feed our extended SAT solver.



Variables For each variable vi ∈ V , and each domain value dj ∈ Domain(vi),
a propositional variable pi,j is created.

Domains For each variable vi ∈ V , a cardinality constraint denotes that only
one value from the domain can be chosen:

∑
x pi,x = 1. In practice, that con-

straint is expressed in the solver using the clause ∨xpi,x and the cardinality
constraint

∑
x pi,x ≤ 1

4.2 Direct encoding [25]

Forbidden tuples (nogoods) Each tuple representing a forbidden combina-
tion of values is represented by a propositional clause composed by the nega-
tion of the propositional variables representing those values. So the length
of the generated clause is the arity of the constraint. Note that in case of
binary constraints, binary clauses will be generated.

Allowed tuples (supports) When a relation is represented by allowed tuples,
we deduce all the forbidden tuples and translate them into clauses as de-
scribed above.

The main drawback of that translation is the translation of the allowed tuples. It
can take a lot of time to generate them when the arity of the constraint increases.

4.3 Support encoding for binary constraints [14]

Forbidden tuples (nogoods) Each tuple representing a forbidden combina-
tion of values is represented by a propositional clause composed by the nega-
tion of the propositional variables representing those values.

Allowed tuples (supports) For binary constraints, we create a clause ¬a ∨
b1∨ . . .∨bk for each variable a that appears in tuples (a, b1), (a, b2), . . . (a, bk)

4.4 From intension to extension

Our solver grounds predicates in intension into tuples, in order to apply the
above translation. Compared to the first competition, the cost of grounding the
predicate is added to the CSP solver, and it might not be possible to ground
some of the problems in reasonable time or space. The biggest issue for dealing
with constraints in intention in our SAT-based approach is to evaluate the ex-
pressions. Since our aim is simply to evaluate them for a complete assignment
of the variables, and since we want to keep as low as possible the portion of
our code dedicated to CSP solving, we decided to have both a pragmatic and
extensible approach to do it. Indeed, it can be expected that the next versions
of the input format will see more and more built-in functions. Furthermore,
the new version of the Java virtual machine will ship with a Java Script inter-
preter called Rhino4. So we decided to interpret the predicates defined in the
input file as a javascript expression. This can be easily achieved by defining in
4 http://www.mozilla.org/rhino/



JavaScript the built-in functions and load them before evaluating the expres-
sion. That framework also has the good property to allow to compile directly
the JavaScript expression into Java bytecode, so the cost of evaluating the ex-
pression is reduced. The main drawback of that approach in our opinion is that
the Rhino framework is 700Kb big while the SAT4J library is only 400Kb big.
Adding a dependency to such a package makes our CSP solver temporarily more
than 1MB big on current JVM).

4.5 The allDifferent global constraint

One of the new features of the second version of the CSP input format is the
ability to express global constraints. For the second competition, only the allD-
ifferent constraint is available. That constraint has some nice properties and
is very useful to eliminate values in domains. A translation into SAT of the
allDifferent constraint preserving some of those properties was proposed in [16].
However, we decided to use a simpler approach: for each allDifferent constraint
we simply add the binary clauses ensuring that no couple of variables share
a common value: it is a sort of local direct encoding of the constraint, since
the forbidden tuples of the global constraint can be easily expressed by binary
constraints (allDiff(x1, x2, . . . , xn) ≡ ∧i<jxi 6= xj). In some sense, we are not
taking advantage that way of the constraint being global.

Note that a specific data structure proposed by Lawrence Ryan [21] is used
in our SAT solver to handle binary clauses because the implementation of the
allDifferent constraint is likely to produce many of them.

5 A few experimental results

We present here some experimental results comparing our SAT-based CSP solver
against Abscon, one of the strongest CSP solvers that participated in the first
CSP competition. Note that Abscon and our own solver are to the best of our
knowledge the only CSP solvers freely available for research purpose that are
compatible with the first and second CSP competition input format. Note also
that the two solvers are written in Java.

All the results were obtained on a cluster of Bi-Xeon 2.6 GHz with 2GB
of memory (1GB per processor) running Linux, using Java 1.5.0 06 for 32 bits
architecture. The timeout was 20 mn per benchmark.

5.1 First CSP competition benchmarks (extension)

These results were obtained on January 2006 on the set of benchmarks used
for the first CSP competition, plus some additional random benchmarks. The
version of SAT4J used was 1.5 01. We used a developer version of Abscon. The
benchmarks were given in extension. The first part of the table (All column) sum-
marizes the results of the two solvers on all the benchmark (number of problems
solved) classified into binary and n-ary ones. Abscon is far better than SAT4J



overall, and especially on n-ary satisfiable benchmarks. The second column re-
stricts the results to the benchmarks that were not randomly generated. In that
case, SAT4J is slightly better than Abscon on binary benchmarks.

All Non-random

SAT4J Abscon SAT4J Abscon

non binary constraints

(186 benchmarks) (150 benchmarks)

UNSAT 27 28 27 28
SAT 61 125 48 108

binary constraints

(2031 benchmarks) (1041 benchmarks)

UNSAT 842 995 400 396
SAT 760 827 560 536

These results simply show that provided that grounding the problem is pos-
sible, a SAT-based approach is competitive with Abscon for binary benchmarks
non-randomly generated.

5.2 Benchmarks in XML 2.0 format

These results were obtained in July 2006. The version of SAT4J used was a
CVS snapshot tagged OBJECTWEB 1.0.90 (the one submitted to the CSP
competition) and the version of Abscon was 105.

SAT4J Abscon

non binary constraints (978 benchmarks)

UNSAT 69 78
SAT 273 453

binary constraints (2673 benchmarks)

UNSAT 613 1053
SAT 861 1285

Unfortunately, we do not have the details of random/non-random bench-
marks. However, a few remarks can help reading these results:

Queens/Knights During the first CSP competition, the direct encoding gave
poor results on those benchmarks (none of them solved). Using the support
encoding allowed SAT4J to solve all them quickly (in less than 2 minutes
overall). The benchmarks proposed this year are much bigger: queensKnights-
50 has for instance a domain size of 2500. As a consequence, enumerating
25002 tuples just makes the SAT-based approach hopeless on those bigger
benchmarks.



Fapp There are 40 series of 11 benchmarks for the FAPP benchmarks (binary
benchmarks). For the first CSP competition, only the first two series (the
smaller ones) were submitted because the other ones were too big to be
expressed in extension. Our approach is only able to solve the benchmarks
of the first series and a few from the second series, and runs out of memory on
the other ones. On the other hand, Abscon is able to solve almost all of them.
Those particular series of benchmarks represents 1/6 of the total number of
benchmarks, while there are more than 25 different sets of benchmarks: the
difference in number of problems solved in the table should be considered at
the light of that fact. We expect to have closer results between SAT4J and
Abscon during the second CSP competition because the number of problems
will be close for each kind of benchmarks.

Out of Memory happened in 633 cases on binary benchmarks, and 204 cases
on n-ary benchmarks, i.e. respectively in 24% and 21% of the total number
of benchmarks! It happened starting at domino-2000, fapp-02, knights-50,
queens-knights-50 and js-taillard-15 for binary benchmarks. For n-ary bench-
marks, it happened mostly on pseudo boolean benchmarks translated into
CSP and on traveling salesman problems, golomb ruler, all interval series
and mknap. It happened even on some problems given in extension in n-ary
benchmarks, because we need to generate forbidden tuples when supports
tuples are given.

6 The social golfer problem

The social golfer problem is derived from a question posted to sci.op-research
in May 1998:

The coordinator of a local golf club has come to you with the following prob-
lem. In her club, there are 32 social golfers, each of whom play golf once a week,
and always in groups of 4. She would like you to come up with a schedule of play
for these golfers, to last as many weeks as possible, such that no golfer plays in
the same group as any other golfer on more than one occasion.

In other words, this problem can be described more explicitly by enumerating
four constraints which must be satisfied:

– The golf club has 32 members.
– Each member plays golf once a week.
– Golfers always play in groups of 4.
– No golfer plays in the same group as any other golfer twice.

Since 1998, this problem has become a famous combinatorial problem. It is
problem number 10 in CSPLib (http://www.csplib.org/). A solution is said to
be optimal when maximum socialisation is achieved, i.e. when one golfer plays
with as many other golfers as possible. Clearly, since a golfer plays with three
new golfers each week, the schedule cannot exceed 10 weeks. This follows from
the fact that each golfer plays with three other golfers each week. Since there
is a total of 31 other golfers, this means that a golfer runs out of opponents



after 31/3 weeks. For some years, it was not known if a 10 week (and therefore
optimal) solution for 32 golfers exists. In 2004, Aguado found a solution using
design-theoretic techniques [1].

Even though the social golfer problem was described for 32 golfers playing
in groups of 4, it can be easily generalized. An instance to the problem is char-
acterized by a triple w-p-g, where w is the number of weeks, p is the number of
players per group and g is the number of groups. The original question therefore
is to find a solution to the w-4-8 problem, with w being the maximum, i.e. to
find a solution to 10-4-8 (or prove that none exists).

The social golfer problem is related with other well-known combinatorial
problems. Indeed, this problem is a generalisation of the problem of constructing
a round-robin tournament schedule, the main difference being that in the social
golfer problem the number of players in a group may be greater than two. Also,
the social golfer problem of finding a 7 week schedule for 5 groups of 3 players
(7-3-5) is the same as Kirkman’s Schoolgirl Problem, where the main goal is to
arrange fifteen schoolgirls in rows of three so that each schoolgirl walks in the
same row with every other schoolgirl exactly once a week.

The encoding used is the one proposed by Walser available on CSPLIB that
can be summarized as follows:

– 0-1 variables Golferi,j,k = 1 indicate that golfer i plays in group j in week
k.

– 0-1 variables Meeti,j,k = 1 indicate that golfers i and j meet in week k (thus
are in the same group).

– constraints relating the above variables: Golferi,k,l+Golferj,k,l−Meeti,j,l ≤
1.

– golfers play in exactly one group per week:
∑

j Golferi,j,k = 1.
– each pair of golfer plays only once:

∑
k Meeti,j,k = 1.

– each group has exactly p golfers:
∑

i Golferi,j,k = p.

Note that while the domain of the variables is small (boolean), some con-
straints have a big arity (the number of golfers p∗g) which makes the SAT-based
approach inefficient (enumerating 232 tuples for a 8-4-8 problem for instance is
out of reach for our solver).

The problems 8-4-8, 9-4-8 and 10-4-8 that we have submitted are quite chal-
lenging. It would be a good news if some competitors were able to solve them.
Some recent work on a SAT encoding with symmetry breaking predicates can
be found in [15]. [2] has proposed to dynamically break symmetries in the social
golfers problem. This new approach is often able to outperform the traditional
approaches, although at the cost of eliminating some solutions. Hence, the pro-
posed method is incomplete.

7 Conclusion

We presented our new SAT-based CSP solver as submitted to the second CSP
competition. We presented some experimental results showing that a SAT-based



approach for CSP is quite competitive provided that the problems are not ran-
domly generated and contain binary constraints with “reasonable size” domain
to make the grounding of the predicates possible. We also presented our en-
coding of the Social Golfer Problem for which we provided a generator and 10
samples benchmarks for the competition. We believe that one solution to cope
with the predicates given in intension that cannot be grounded in reasonable
time or space is to manage them as a new kind of constraint in the SAT solver.
Two manipulations are needed in the case of a conflict driven constraint learning
solver:

value propagation the constraint should be able to cope with partial assign-
ment (of boolean variables provided by the SAT solver) and to detect which
values in the domains need to be assigned/forbiden as a result of a domain
assignment (thus leading to unit propagation in the SAT solver).

reason computation Conflict analysis is an important part of the SAT solver.
It relies on computing for each propagated assignment a reason for that
assignment in the form of a set of literals (the set of falsified literals in a
clause). The biggest issue in our opinion will be to make sure that such a
reason can be computed in a predicate given in intention and to see how a
possible solution relates with CSP backjumping and nogood learning.

We hope to be able to compare our solver against numerous other CSP solvers in
the future: it would be nice it the solvers that participate in the CSP competition
could be freely available for research purpose after the competition.
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